| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mo4 | GIF version | ||
| Description: "At most one" expressed using implicit substitution. (Contributed by NM, 26-Jul-1995.) |
| Ref | Expression |
|---|---|
| mo4.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| mo4 | ⊢ (∃*𝑥𝜑 ↔ ∀𝑥∀𝑦((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1551 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 2 | mo4.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 3 | 1, 2 | mo4f 2114 | 1 ⊢ (∃*𝑥𝜑 ↔ ∀𝑥∀𝑦((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1371 ∃*wmo 2055 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 |
| This theorem is referenced by: eu4 2116 rmo4 2966 dffun5r 5283 dffun6f 5284 fun11 5341 brprcneu 5569 dff13 5837 mpofun 6047 caovimo 6140 th3qlem1 6724 exmidmotap 7373 addnq0mo 7560 mulnq0mo 7561 addsrmo 7856 mulsrmo 7857 summodc 11694 prodmodc 11889 limcimo 15137 |
| Copyright terms: Public domain | W3C validator |