ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mo4 GIF version

Theorem mo4 2116
Description: "At most one" expressed using implicit substitution. (Contributed by NM, 26-Jul-1995.)
Hypothesis
Ref Expression
mo4.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
mo4 (∃*𝑥𝜑 ↔ ∀𝑥𝑦((𝜑𝜓) → 𝑥 = 𝑦))
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem mo4
StepHypRef Expression
1 nfv 1552 . 2 𝑥𝜓
2 mo4.1 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
31, 2mo4f 2115 1 (∃*𝑥𝜑 ↔ ∀𝑥𝑦((𝜑𝜓) → 𝑥 = 𝑦))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1371  ∃*wmo 2056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059
This theorem is referenced by:  eu4  2117  rmo4  2970  dffun5r  5297  dffun6f  5298  fun11  5355  brprcneu  5587  dff13  5855  mpofun  6065  caovimo  6158  th3qlem1  6742  exmidmotap  7403  addnq0mo  7590  mulnq0mo  7591  addsrmo  7886  mulsrmo  7887  summodc  11779  prodmodc  11974  limcimo  15222
  Copyright terms: Public domain W3C validator