ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  copsex2g GIF version

Theorem copsex2g 4064
Description: Implicit substitution inference for ordered pairs. (Contributed by NM, 28-May-1995.)
Hypothesis
Ref Expression
copsex2g.1 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
Assertion
Ref Expression
copsex2g ((𝐴𝑉𝐵𝑊) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜓))
Distinct variable groups:   𝑥,𝑦,𝜓   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem copsex2g
StepHypRef Expression
1 elisset 2633 . 2 (𝐴𝑉 → ∃𝑥 𝑥 = 𝐴)
2 elisset 2633 . 2 (𝐵𝑊 → ∃𝑦 𝑦 = 𝐵)
3 eeanv 1855 . . 3 (∃𝑥𝑦(𝑥 = 𝐴𝑦 = 𝐵) ↔ (∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵))
4 nfe1 1430 . . . . 5 𝑥𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
5 nfv 1466 . . . . 5 𝑥𝜓
64, 5nfbi 1526 . . . 4 𝑥(∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜓)
7 nfe1 1430 . . . . . . 7 𝑦𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
87nfex 1573 . . . . . 6 𝑦𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
9 nfv 1466 . . . . . 6 𝑦𝜓
108, 9nfbi 1526 . . . . 5 𝑦(∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜓)
11 opeq12 3619 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → ⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
12 copsexg 4062 . . . . . . . 8 (⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ → (𝜑 ↔ ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
1312eqcoms 2091 . . . . . . 7 (⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩ → (𝜑 ↔ ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
1411, 13syl 14 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑 ↔ ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
15 copsex2g.1 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
1614, 15bitr3d 188 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜓))
1710, 16exlimi 1530 . . . 4 (∃𝑦(𝑥 = 𝐴𝑦 = 𝐵) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜓))
186, 17exlimi 1530 . . 3 (∃𝑥𝑦(𝑥 = 𝐴𝑦 = 𝐵) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜓))
193, 18sylbir 133 . 2 ((∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜓))
201, 2, 19syl2an 283 1 ((𝐴𝑉𝐵𝑊) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1289  wex 1426  wcel 1438  cop 3444
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-v 2621  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450
This theorem is referenced by:  opelopabga  4081  ov6g  5764  ltresr  7355
  Copyright terms: Public domain W3C validator