| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rabexg | GIF version | ||
| Description: Separation Scheme in terms of a restricted class abstraction. (Contributed by NM, 23-Oct-1999.) |
| Ref | Expression |
|---|---|
| rabexg | ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 3277 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 | |
| 2 | ssexg 4182 | . 2 ⊢ (({𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉) → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) | |
| 3 | 1, 2 | mpan 424 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2175 {crab 2487 Vcvv 2771 ⊆ wss 3165 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-sep 4161 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-rab 2492 df-v 2773 df-in 3171 df-ss 3178 |
| This theorem is referenced by: rabex 4187 rabexd 4188 exmidsssnc 4246 exse 4381 frind 4397 elfvmptrab1 5668 elovmporab 6136 elovmporab1w 6137 mpoxopoveq 6316 diffitest 6966 supex2g 7117 cc4f 7363 omctfn 12733 ismhm 13211 mhmex 13212 issubm 13222 issubg 13427 subgex 13430 isnsg 13456 isrim0 13841 issubrng 13879 issubrg 13901 rrgval 13942 lssex 14034 lsssetm 14036 psrval 14346 psrplusgg 14358 psraddcl 14360 epttop 14480 cldval 14489 neif 14531 neival 14533 cnfval 14584 cnovex 14586 cnpval 14588 hmeofn 14692 hmeofvalg 14693 ispsmet 14713 ismet 14734 isxmet 14735 blvalps 14778 blval 14779 cncfval 14962 |
| Copyright terms: Public domain | W3C validator |