| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rabexg | GIF version | ||
| Description: Separation Scheme in terms of a restricted class abstraction. (Contributed by NM, 23-Oct-1999.) |
| Ref | Expression |
|---|---|
| rabexg | ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 3282 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 | |
| 2 | ssexg 4191 | . 2 ⊢ (({𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉) → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) | |
| 3 | 1, 2 | mpan 424 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 {crab 2489 Vcvv 2773 ⊆ wss 3170 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-sep 4170 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rab 2494 df-v 2775 df-in 3176 df-ss 3183 |
| This theorem is referenced by: rabex 4196 rabexd 4197 exmidsssnc 4255 exse 4391 frind 4407 elfvmptrab1 5687 elovmporab 6159 elovmporab1w 6160 mpoxopoveq 6339 diffitest 6999 supex2g 7150 cc4f 7401 omctfn 12889 ismhm 13368 mhmex 13369 issubm 13379 issubg 13584 subgex 13587 isnsg 13613 isrim0 13998 issubrng 14036 issubrg 14058 rrgval 14099 lssex 14191 lsssetm 14193 psrval 14503 psrplusgg 14515 psraddcl 14517 epttop 14637 cldval 14646 neif 14688 neival 14690 cnfval 14741 cnovex 14743 cnpval 14745 hmeofn 14849 hmeofvalg 14850 ispsmet 14870 ismet 14891 isxmet 14892 blvalps 14935 blval 14936 cncfval 15119 |
| Copyright terms: Public domain | W3C validator |