| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rabexg | GIF version | ||
| Description: Separation Scheme in terms of a restricted class abstraction. (Contributed by NM, 23-Oct-1999.) |
| Ref | Expression |
|---|---|
| rabexg | ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 3309 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 | |
| 2 | ssexg 4222 | . 2 ⊢ (({𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉) → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) | |
| 3 | 1, 2 | mpan 424 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 {crab 2512 Vcvv 2799 ⊆ wss 3197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4201 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rab 2517 df-v 2801 df-in 3203 df-ss 3210 |
| This theorem is referenced by: rabex 4227 rabexd 4228 exmidsssnc 4286 exse 4426 frind 4442 elfvmptrab1 5728 elovmporab 6204 elovmporab1w 6205 mpoxopoveq 6384 diffitest 7045 supex2g 7196 cc4f 7451 omctfn 13009 ismhm 13489 mhmex 13490 issubm 13500 issubg 13705 subgex 13708 isnsg 13734 isrim0 14119 issubrng 14157 issubrg 14179 rrgval 14220 lssex 14312 lsssetm 14314 psrval 14624 psrplusgg 14636 psraddcl 14638 epttop 14758 cldval 14767 neif 14809 neival 14811 cnfval 14862 cnovex 14864 cnpval 14866 hmeofn 14970 hmeofvalg 14971 ispsmet 14991 ismet 15012 isxmet 15013 blvalps 15056 blval 15057 cncfval 15240 |
| Copyright terms: Public domain | W3C validator |