ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabexg GIF version

Theorem rabexg 4141
Description: Separation Scheme in terms of a restricted class abstraction. (Contributed by NM, 23-Oct-1999.)
Assertion
Ref Expression
rabexg (𝐴𝑉 → {𝑥𝐴𝜑} ∈ V)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem rabexg
StepHypRef Expression
1 ssrab2 3238 . 2 {𝑥𝐴𝜑} ⊆ 𝐴
2 ssexg 4137 . 2 (({𝑥𝐴𝜑} ⊆ 𝐴𝐴𝑉) → {𝑥𝐴𝜑} ∈ V)
31, 2mpan 424 1 (𝐴𝑉 → {𝑥𝐴𝜑} ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2146  {crab 2457  Vcvv 2735  wss 3127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157  ax-sep 4116
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-rab 2462  df-v 2737  df-in 3133  df-ss 3140
This theorem is referenced by:  rabex  4142  exmidsssnc  4198  exse  4330  frind  4346  elfvmptrab1  5602  mpoxopoveq  6231  diffitest  6877  supex2g  7022  cc4f  7243  omctfn  12411  ismhm  12716  issubm  12726  epttop  13161  cldval  13170  neif  13212  neival  13214  cnfval  13265  cnovex  13267  cnpval  13269  hmeofn  13373  hmeofvalg  13374  ispsmet  13394  ismet  13415  isxmet  13416  blvalps  13459  blval  13460  cncfval  13630
  Copyright terms: Public domain W3C validator