| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rabexg | GIF version | ||
| Description: Separation Scheme in terms of a restricted class abstraction. (Contributed by NM, 23-Oct-1999.) |
| Ref | Expression |
|---|---|
| rabexg | ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 3269 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 | |
| 2 | ssexg 4173 | . 2 ⊢ (({𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉) → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) | |
| 3 | 1, 2 | mpan 424 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 {crab 2479 Vcvv 2763 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-v 2765 df-in 3163 df-ss 3170 |
| This theorem is referenced by: rabex 4178 rabexd 4179 exmidsssnc 4237 exse 4372 frind 4388 elfvmptrab1 5659 elovmporab 6127 elovmporab1w 6128 mpoxopoveq 6307 diffitest 6957 supex2g 7108 cc4f 7352 omctfn 12685 ismhm 13163 mhmex 13164 issubm 13174 issubg 13379 subgex 13382 isnsg 13408 isrim0 13793 issubrng 13831 issubrg 13853 rrgval 13894 lssex 13986 lsssetm 13988 psrval 14296 psrplusgg 14306 psraddcl 14308 epttop 14410 cldval 14419 neif 14461 neival 14463 cnfval 14514 cnovex 14516 cnpval 14518 hmeofn 14622 hmeofvalg 14623 ispsmet 14643 ismet 14664 isxmet 14665 blvalps 14708 blval 14709 cncfval 14892 |
| Copyright terms: Public domain | W3C validator |