![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rabexg | GIF version |
Description: Separation Scheme in terms of a restricted class abstraction. (Contributed by NM, 23-Oct-1999.) |
Ref | Expression |
---|---|
rabexg | ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 3264 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 | |
2 | ssexg 4168 | . 2 ⊢ (({𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉) → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) | |
3 | 1, 2 | mpan 424 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 {crab 2476 Vcvv 2760 ⊆ wss 3153 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-sep 4147 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rab 2481 df-v 2762 df-in 3159 df-ss 3166 |
This theorem is referenced by: rabex 4173 rabexd 4174 exmidsssnc 4232 exse 4367 frind 4383 elfvmptrab1 5652 elovmporab 6118 elovmporab1w 6119 mpoxopoveq 6293 diffitest 6943 supex2g 7092 cc4f 7329 omctfn 12600 ismhm 13033 mhmex 13034 issubm 13044 issubg 13243 subgex 13246 isnsg 13272 isrim0 13657 issubrng 13695 issubrg 13717 rrgval 13758 lssex 13850 lsssetm 13852 psrval 14152 psrplusgg 14162 psraddcl 14164 epttop 14258 cldval 14267 neif 14309 neival 14311 cnfval 14362 cnovex 14364 cnpval 14366 hmeofn 14470 hmeofvalg 14471 ispsmet 14491 ismet 14512 isxmet 14513 blvalps 14556 blval 14557 cncfval 14727 |
Copyright terms: Public domain | W3C validator |