| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rabexg | GIF version | ||
| Description: Separation Scheme in terms of a restricted class abstraction. (Contributed by NM, 23-Oct-1999.) |
| Ref | Expression |
|---|---|
| rabexg | ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 3277 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 | |
| 2 | ssexg 4182 | . 2 ⊢ (({𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉) → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) | |
| 3 | 1, 2 | mpan 424 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2175 {crab 2487 Vcvv 2771 ⊆ wss 3165 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-sep 4161 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-rab 2492 df-v 2773 df-in 3171 df-ss 3178 |
| This theorem is referenced by: rabex 4187 rabexd 4188 exmidsssnc 4246 exse 4382 frind 4398 elfvmptrab1 5673 elovmporab 6145 elovmporab1w 6146 mpoxopoveq 6325 diffitest 6983 supex2g 7134 cc4f 7380 omctfn 12756 ismhm 13235 mhmex 13236 issubm 13246 issubg 13451 subgex 13454 isnsg 13480 isrim0 13865 issubrng 13903 issubrg 13925 rrgval 13966 lssex 14058 lsssetm 14060 psrval 14370 psrplusgg 14382 psraddcl 14384 epttop 14504 cldval 14513 neif 14555 neival 14557 cnfval 14608 cnovex 14610 cnpval 14612 hmeofn 14716 hmeofvalg 14717 ispsmet 14737 ismet 14758 isxmet 14759 blvalps 14802 blval 14803 cncfval 14986 |
| Copyright terms: Public domain | W3C validator |