| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > rabexg | GIF version | ||
| Description: Separation Scheme in terms of a restricted class abstraction. (Contributed by NM, 23-Oct-1999.) | 
| Ref | Expression | 
|---|---|
| rabexg | ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ssrab2 3268 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 | |
| 2 | ssexg 4172 | . 2 ⊢ (({𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉) → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) | |
| 3 | 1, 2 | mpan 424 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∈ wcel 2167 {crab 2479 Vcvv 2763 ⊆ wss 3157 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4151 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-v 2765 df-in 3163 df-ss 3170 | 
| This theorem is referenced by: rabex 4177 rabexd 4178 exmidsssnc 4236 exse 4371 frind 4387 elfvmptrab1 5656 elovmporab 6123 elovmporab1w 6124 mpoxopoveq 6298 diffitest 6948 supex2g 7099 cc4f 7336 omctfn 12660 ismhm 13093 mhmex 13094 issubm 13104 issubg 13303 subgex 13306 isnsg 13332 isrim0 13717 issubrng 13755 issubrg 13777 rrgval 13818 lssex 13910 lsssetm 13912 psrval 14220 psrplusgg 14230 psraddcl 14232 epttop 14326 cldval 14335 neif 14377 neival 14379 cnfval 14430 cnovex 14432 cnpval 14434 hmeofn 14538 hmeofvalg 14539 ispsmet 14559 ismet 14580 isxmet 14581 blvalps 14624 blval 14625 cncfval 14808 | 
| Copyright terms: Public domain | W3C validator |