ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dif1en GIF version

Theorem dif1en 6935
Description: If a set 𝐴 is equinumerous to the successor of a natural number 𝑀, then 𝐴 with an element removed is equinumerous to 𝑀. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Stefan O'Rear, 16-Aug-2015.)
Assertion
Ref Expression
dif1en ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → (𝐴 ∖ {𝑋}) ≈ 𝑀)

Proof of Theorem dif1en
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 simp2 1000 . . . 4 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → 𝐴 ≈ suc 𝑀)
21ensymd 6837 . . 3 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → suc 𝑀𝐴)
3 bren 6801 . . 3 (suc 𝑀𝐴 ↔ ∃𝑓 𝑓:suc 𝑀1-1-onto𝐴)
42, 3sylib 122 . 2 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → ∃𝑓 𝑓:suc 𝑀1-1-onto𝐴)
5 peano2 4627 . . . . . . . 8 (𝑀 ∈ ω → suc 𝑀 ∈ ω)
6 nnfi 6928 . . . . . . . 8 (suc 𝑀 ∈ ω → suc 𝑀 ∈ Fin)
75, 6syl 14 . . . . . . 7 (𝑀 ∈ ω → suc 𝑀 ∈ Fin)
873ad2ant1 1020 . . . . . 6 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → suc 𝑀 ∈ Fin)
9 enfii 6930 . . . . . 6 ((suc 𝑀 ∈ Fin ∧ 𝐴 ≈ suc 𝑀) → 𝐴 ∈ Fin)
108, 1, 9syl2anc 411 . . . . 5 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → 𝐴 ∈ Fin)
1110adantr 276 . . . 4 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → 𝐴 ∈ Fin)
12 simpl3 1004 . . . 4 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → 𝑋𝐴)
13 f1of 5500 . . . . . 6 (𝑓:suc 𝑀1-1-onto𝐴𝑓:suc 𝑀𝐴)
1413adantl 277 . . . . 5 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → 𝑓:suc 𝑀𝐴)
15 sucidg 4447 . . . . . . 7 (𝑀 ∈ ω → 𝑀 ∈ suc 𝑀)
16153ad2ant1 1020 . . . . . 6 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → 𝑀 ∈ suc 𝑀)
1716adantr 276 . . . . 5 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → 𝑀 ∈ suc 𝑀)
1814, 17ffvelcdmd 5694 . . . 4 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → (𝑓𝑀) ∈ 𝐴)
19 fidifsnen 6926 . . . 4 ((𝐴 ∈ Fin ∧ 𝑋𝐴 ∧ (𝑓𝑀) ∈ 𝐴) → (𝐴 ∖ {𝑋}) ≈ (𝐴 ∖ {(𝑓𝑀)}))
2011, 12, 18, 19syl3anc 1249 . . 3 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → (𝐴 ∖ {𝑋}) ≈ (𝐴 ∖ {(𝑓𝑀)}))
21 nnord 4644 . . . . . . . 8 (𝑀 ∈ ω → Ord 𝑀)
22 orddif 4579 . . . . . . . 8 (Ord 𝑀𝑀 = (suc 𝑀 ∖ {𝑀}))
2321, 22syl 14 . . . . . . 7 (𝑀 ∈ ω → 𝑀 = (suc 𝑀 ∖ {𝑀}))
24233ad2ant1 1020 . . . . . 6 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → 𝑀 = (suc 𝑀 ∖ {𝑀}))
2524adantr 276 . . . . 5 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → 𝑀 = (suc 𝑀 ∖ {𝑀}))
2623eleq1d 2262 . . . . . . . . 9 (𝑀 ∈ ω → (𝑀 ∈ ω ↔ (suc 𝑀 ∖ {𝑀}) ∈ ω))
2726ibi 176 . . . . . . . 8 (𝑀 ∈ ω → (suc 𝑀 ∖ {𝑀}) ∈ ω)
28273ad2ant1 1020 . . . . . . 7 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → (suc 𝑀 ∖ {𝑀}) ∈ ω)
2928adantr 276 . . . . . 6 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → (suc 𝑀 ∖ {𝑀}) ∈ ω)
30 dff1o2 5505 . . . . . . . . 9 (𝑓:suc 𝑀1-1-onto𝐴 ↔ (𝑓 Fn suc 𝑀 ∧ Fun 𝑓 ∧ ran 𝑓 = 𝐴))
3130simp2bi 1015 . . . . . . . 8 (𝑓:suc 𝑀1-1-onto𝐴 → Fun 𝑓)
3231adantl 277 . . . . . . 7 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → Fun 𝑓)
33 f1ofo 5507 . . . . . . . . 9 (𝑓:suc 𝑀1-1-onto𝐴𝑓:suc 𝑀onto𝐴)
3433adantl 277 . . . . . . . 8 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → 𝑓:suc 𝑀onto𝐴)
35 f1orel 5503 . . . . . . . . . . . 12 (𝑓:suc 𝑀1-1-onto𝐴 → Rel 𝑓)
3635adantl 277 . . . . . . . . . . 11 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → Rel 𝑓)
37 resdm 4981 . . . . . . . . . . 11 (Rel 𝑓 → (𝑓 ↾ dom 𝑓) = 𝑓)
3836, 37syl 14 . . . . . . . . . 10 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → (𝑓 ↾ dom 𝑓) = 𝑓)
39 f1odm 5504 . . . . . . . . . . . 12 (𝑓:suc 𝑀1-1-onto𝐴 → dom 𝑓 = suc 𝑀)
4039reseq2d 4942 . . . . . . . . . . 11 (𝑓:suc 𝑀1-1-onto𝐴 → (𝑓 ↾ dom 𝑓) = (𝑓 ↾ suc 𝑀))
4140adantl 277 . . . . . . . . . 10 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → (𝑓 ↾ dom 𝑓) = (𝑓 ↾ suc 𝑀))
4238, 41eqtr3d 2228 . . . . . . . . 9 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → 𝑓 = (𝑓 ↾ suc 𝑀))
43 foeq1 5472 . . . . . . . . 9 (𝑓 = (𝑓 ↾ suc 𝑀) → (𝑓:suc 𝑀onto𝐴 ↔ (𝑓 ↾ suc 𝑀):suc 𝑀onto𝐴))
4442, 43syl 14 . . . . . . . 8 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → (𝑓:suc 𝑀onto𝐴 ↔ (𝑓 ↾ suc 𝑀):suc 𝑀onto𝐴))
4534, 44mpbid 147 . . . . . . 7 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → (𝑓 ↾ suc 𝑀):suc 𝑀onto𝐴)
46 simpl1 1002 . . . . . . . . . 10 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → 𝑀 ∈ ω)
47 f1osng 5541 . . . . . . . . . 10 ((𝑀 ∈ ω ∧ (𝑓𝑀) ∈ 𝐴) → {⟨𝑀, (𝑓𝑀)⟩}:{𝑀}–1-1-onto→{(𝑓𝑀)})
4846, 18, 47syl2anc 411 . . . . . . . . 9 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → {⟨𝑀, (𝑓𝑀)⟩}:{𝑀}–1-1-onto→{(𝑓𝑀)})
49 f1ofo 5507 . . . . . . . . 9 ({⟨𝑀, (𝑓𝑀)⟩}:{𝑀}–1-1-onto→{(𝑓𝑀)} → {⟨𝑀, (𝑓𝑀)⟩}:{𝑀}–onto→{(𝑓𝑀)})
5048, 49syl 14 . . . . . . . 8 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → {⟨𝑀, (𝑓𝑀)⟩}:{𝑀}–onto→{(𝑓𝑀)})
51 f1ofn 5501 . . . . . . . . . . 11 (𝑓:suc 𝑀1-1-onto𝐴𝑓 Fn suc 𝑀)
5251adantl 277 . . . . . . . . . 10 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → 𝑓 Fn suc 𝑀)
53 fnressn 5744 . . . . . . . . . 10 ((𝑓 Fn suc 𝑀𝑀 ∈ suc 𝑀) → (𝑓 ↾ {𝑀}) = {⟨𝑀, (𝑓𝑀)⟩})
5452, 17, 53syl2anc 411 . . . . . . . . 9 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → (𝑓 ↾ {𝑀}) = {⟨𝑀, (𝑓𝑀)⟩})
55 foeq1 5472 . . . . . . . . 9 ((𝑓 ↾ {𝑀}) = {⟨𝑀, (𝑓𝑀)⟩} → ((𝑓 ↾ {𝑀}):{𝑀}–onto→{(𝑓𝑀)} ↔ {⟨𝑀, (𝑓𝑀)⟩}:{𝑀}–onto→{(𝑓𝑀)}))
5654, 55syl 14 . . . . . . . 8 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → ((𝑓 ↾ {𝑀}):{𝑀}–onto→{(𝑓𝑀)} ↔ {⟨𝑀, (𝑓𝑀)⟩}:{𝑀}–onto→{(𝑓𝑀)}))
5750, 56mpbird 167 . . . . . . 7 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → (𝑓 ↾ {𝑀}):{𝑀}–onto→{(𝑓𝑀)})
58 resdif 5522 . . . . . . 7 ((Fun 𝑓 ∧ (𝑓 ↾ suc 𝑀):suc 𝑀onto𝐴 ∧ (𝑓 ↾ {𝑀}):{𝑀}–onto→{(𝑓𝑀)}) → (𝑓 ↾ (suc 𝑀 ∖ {𝑀})):(suc 𝑀 ∖ {𝑀})–1-1-onto→(𝐴 ∖ {(𝑓𝑀)}))
5932, 45, 57, 58syl3anc 1249 . . . . . 6 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → (𝑓 ↾ (suc 𝑀 ∖ {𝑀})):(suc 𝑀 ∖ {𝑀})–1-1-onto→(𝐴 ∖ {(𝑓𝑀)}))
60 f1oeng 6811 . . . . . 6 (((suc 𝑀 ∖ {𝑀}) ∈ ω ∧ (𝑓 ↾ (suc 𝑀 ∖ {𝑀})):(suc 𝑀 ∖ {𝑀})–1-1-onto→(𝐴 ∖ {(𝑓𝑀)})) → (suc 𝑀 ∖ {𝑀}) ≈ (𝐴 ∖ {(𝑓𝑀)}))
6129, 59, 60syl2anc 411 . . . . 5 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → (suc 𝑀 ∖ {𝑀}) ≈ (𝐴 ∖ {(𝑓𝑀)}))
6225, 61eqbrtrd 4051 . . . 4 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → 𝑀 ≈ (𝐴 ∖ {(𝑓𝑀)}))
6362ensymd 6837 . . 3 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → (𝐴 ∖ {(𝑓𝑀)}) ≈ 𝑀)
64 entr 6838 . . 3 (((𝐴 ∖ {𝑋}) ≈ (𝐴 ∖ {(𝑓𝑀)}) ∧ (𝐴 ∖ {(𝑓𝑀)}) ≈ 𝑀) → (𝐴 ∖ {𝑋}) ≈ 𝑀)
6520, 63, 64syl2anc 411 . 2 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → (𝐴 ∖ {𝑋}) ≈ 𝑀)
664, 65exlimddv 1910 1 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → (𝐴 ∖ {𝑋}) ≈ 𝑀)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wex 1503  wcel 2164  cdif 3150  {csn 3618  cop 3621   class class class wbr 4029  Ord word 4393  suc csuc 4396  ωcom 4622  ccnv 4658  dom cdm 4659  ran crn 4660  cres 4661  Rel wrel 4664  Fun wfun 5248   Fn wfn 5249  wf 5250  ontowfo 5252  1-1-ontowf1o 5253  cfv 5254  cen 6792  Fincfn 6794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-er 6587  df-en 6795  df-fin 6797
This theorem is referenced by:  dif1enen  6936  findcard  6944  findcard2  6945  findcard2s  6946  diffisn  6949  en2eleq  7255  en2other2  7256  zfz1isolem1  10911
  Copyright terms: Public domain W3C validator