ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dif1en GIF version

Theorem dif1en 6940
Description: If a set 𝐴 is equinumerous to the successor of a natural number 𝑀, then 𝐴 with an element removed is equinumerous to 𝑀. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Stefan O'Rear, 16-Aug-2015.)
Assertion
Ref Expression
dif1en ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → (𝐴 ∖ {𝑋}) ≈ 𝑀)

Proof of Theorem dif1en
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 simp2 1000 . . . 4 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → 𝐴 ≈ suc 𝑀)
21ensymd 6842 . . 3 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → suc 𝑀𝐴)
3 bren 6806 . . 3 (suc 𝑀𝐴 ↔ ∃𝑓 𝑓:suc 𝑀1-1-onto𝐴)
42, 3sylib 122 . 2 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → ∃𝑓 𝑓:suc 𝑀1-1-onto𝐴)
5 peano2 4631 . . . . . . . 8 (𝑀 ∈ ω → suc 𝑀 ∈ ω)
6 nnfi 6933 . . . . . . . 8 (suc 𝑀 ∈ ω → suc 𝑀 ∈ Fin)
75, 6syl 14 . . . . . . 7 (𝑀 ∈ ω → suc 𝑀 ∈ Fin)
873ad2ant1 1020 . . . . . 6 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → suc 𝑀 ∈ Fin)
9 enfii 6935 . . . . . 6 ((suc 𝑀 ∈ Fin ∧ 𝐴 ≈ suc 𝑀) → 𝐴 ∈ Fin)
108, 1, 9syl2anc 411 . . . . 5 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → 𝐴 ∈ Fin)
1110adantr 276 . . . 4 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → 𝐴 ∈ Fin)
12 simpl3 1004 . . . 4 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → 𝑋𝐴)
13 f1of 5504 . . . . . 6 (𝑓:suc 𝑀1-1-onto𝐴𝑓:suc 𝑀𝐴)
1413adantl 277 . . . . 5 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → 𝑓:suc 𝑀𝐴)
15 sucidg 4451 . . . . . . 7 (𝑀 ∈ ω → 𝑀 ∈ suc 𝑀)
16153ad2ant1 1020 . . . . . 6 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → 𝑀 ∈ suc 𝑀)
1716adantr 276 . . . . 5 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → 𝑀 ∈ suc 𝑀)
1814, 17ffvelcdmd 5698 . . . 4 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → (𝑓𝑀) ∈ 𝐴)
19 fidifsnen 6931 . . . 4 ((𝐴 ∈ Fin ∧ 𝑋𝐴 ∧ (𝑓𝑀) ∈ 𝐴) → (𝐴 ∖ {𝑋}) ≈ (𝐴 ∖ {(𝑓𝑀)}))
2011, 12, 18, 19syl3anc 1249 . . 3 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → (𝐴 ∖ {𝑋}) ≈ (𝐴 ∖ {(𝑓𝑀)}))
21 nnord 4648 . . . . . . . 8 (𝑀 ∈ ω → Ord 𝑀)
22 orddif 4583 . . . . . . . 8 (Ord 𝑀𝑀 = (suc 𝑀 ∖ {𝑀}))
2321, 22syl 14 . . . . . . 7 (𝑀 ∈ ω → 𝑀 = (suc 𝑀 ∖ {𝑀}))
24233ad2ant1 1020 . . . . . 6 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → 𝑀 = (suc 𝑀 ∖ {𝑀}))
2524adantr 276 . . . . 5 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → 𝑀 = (suc 𝑀 ∖ {𝑀}))
2623eleq1d 2265 . . . . . . . . 9 (𝑀 ∈ ω → (𝑀 ∈ ω ↔ (suc 𝑀 ∖ {𝑀}) ∈ ω))
2726ibi 176 . . . . . . . 8 (𝑀 ∈ ω → (suc 𝑀 ∖ {𝑀}) ∈ ω)
28273ad2ant1 1020 . . . . . . 7 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → (suc 𝑀 ∖ {𝑀}) ∈ ω)
2928adantr 276 . . . . . 6 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → (suc 𝑀 ∖ {𝑀}) ∈ ω)
30 dff1o2 5509 . . . . . . . . 9 (𝑓:suc 𝑀1-1-onto𝐴 ↔ (𝑓 Fn suc 𝑀 ∧ Fun 𝑓 ∧ ran 𝑓 = 𝐴))
3130simp2bi 1015 . . . . . . . 8 (𝑓:suc 𝑀1-1-onto𝐴 → Fun 𝑓)
3231adantl 277 . . . . . . 7 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → Fun 𝑓)
33 f1ofo 5511 . . . . . . . . 9 (𝑓:suc 𝑀1-1-onto𝐴𝑓:suc 𝑀onto𝐴)
3433adantl 277 . . . . . . . 8 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → 𝑓:suc 𝑀onto𝐴)
35 f1orel 5507 . . . . . . . . . . . 12 (𝑓:suc 𝑀1-1-onto𝐴 → Rel 𝑓)
3635adantl 277 . . . . . . . . . . 11 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → Rel 𝑓)
37 resdm 4985 . . . . . . . . . . 11 (Rel 𝑓 → (𝑓 ↾ dom 𝑓) = 𝑓)
3836, 37syl 14 . . . . . . . . . 10 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → (𝑓 ↾ dom 𝑓) = 𝑓)
39 f1odm 5508 . . . . . . . . . . . 12 (𝑓:suc 𝑀1-1-onto𝐴 → dom 𝑓 = suc 𝑀)
4039reseq2d 4946 . . . . . . . . . . 11 (𝑓:suc 𝑀1-1-onto𝐴 → (𝑓 ↾ dom 𝑓) = (𝑓 ↾ suc 𝑀))
4140adantl 277 . . . . . . . . . 10 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → (𝑓 ↾ dom 𝑓) = (𝑓 ↾ suc 𝑀))
4238, 41eqtr3d 2231 . . . . . . . . 9 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → 𝑓 = (𝑓 ↾ suc 𝑀))
43 foeq1 5476 . . . . . . . . 9 (𝑓 = (𝑓 ↾ suc 𝑀) → (𝑓:suc 𝑀onto𝐴 ↔ (𝑓 ↾ suc 𝑀):suc 𝑀onto𝐴))
4442, 43syl 14 . . . . . . . 8 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → (𝑓:suc 𝑀onto𝐴 ↔ (𝑓 ↾ suc 𝑀):suc 𝑀onto𝐴))
4534, 44mpbid 147 . . . . . . 7 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → (𝑓 ↾ suc 𝑀):suc 𝑀onto𝐴)
46 simpl1 1002 . . . . . . . . . 10 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → 𝑀 ∈ ω)
47 f1osng 5545 . . . . . . . . . 10 ((𝑀 ∈ ω ∧ (𝑓𝑀) ∈ 𝐴) → {⟨𝑀, (𝑓𝑀)⟩}:{𝑀}–1-1-onto→{(𝑓𝑀)})
4846, 18, 47syl2anc 411 . . . . . . . . 9 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → {⟨𝑀, (𝑓𝑀)⟩}:{𝑀}–1-1-onto→{(𝑓𝑀)})
49 f1ofo 5511 . . . . . . . . 9 ({⟨𝑀, (𝑓𝑀)⟩}:{𝑀}–1-1-onto→{(𝑓𝑀)} → {⟨𝑀, (𝑓𝑀)⟩}:{𝑀}–onto→{(𝑓𝑀)})
5048, 49syl 14 . . . . . . . 8 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → {⟨𝑀, (𝑓𝑀)⟩}:{𝑀}–onto→{(𝑓𝑀)})
51 f1ofn 5505 . . . . . . . . . . 11 (𝑓:suc 𝑀1-1-onto𝐴𝑓 Fn suc 𝑀)
5251adantl 277 . . . . . . . . . 10 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → 𝑓 Fn suc 𝑀)
53 fnressn 5748 . . . . . . . . . 10 ((𝑓 Fn suc 𝑀𝑀 ∈ suc 𝑀) → (𝑓 ↾ {𝑀}) = {⟨𝑀, (𝑓𝑀)⟩})
5452, 17, 53syl2anc 411 . . . . . . . . 9 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → (𝑓 ↾ {𝑀}) = {⟨𝑀, (𝑓𝑀)⟩})
55 foeq1 5476 . . . . . . . . 9 ((𝑓 ↾ {𝑀}) = {⟨𝑀, (𝑓𝑀)⟩} → ((𝑓 ↾ {𝑀}):{𝑀}–onto→{(𝑓𝑀)} ↔ {⟨𝑀, (𝑓𝑀)⟩}:{𝑀}–onto→{(𝑓𝑀)}))
5654, 55syl 14 . . . . . . . 8 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → ((𝑓 ↾ {𝑀}):{𝑀}–onto→{(𝑓𝑀)} ↔ {⟨𝑀, (𝑓𝑀)⟩}:{𝑀}–onto→{(𝑓𝑀)}))
5750, 56mpbird 167 . . . . . . 7 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → (𝑓 ↾ {𝑀}):{𝑀}–onto→{(𝑓𝑀)})
58 resdif 5526 . . . . . . 7 ((Fun 𝑓 ∧ (𝑓 ↾ suc 𝑀):suc 𝑀onto𝐴 ∧ (𝑓 ↾ {𝑀}):{𝑀}–onto→{(𝑓𝑀)}) → (𝑓 ↾ (suc 𝑀 ∖ {𝑀})):(suc 𝑀 ∖ {𝑀})–1-1-onto→(𝐴 ∖ {(𝑓𝑀)}))
5932, 45, 57, 58syl3anc 1249 . . . . . 6 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → (𝑓 ↾ (suc 𝑀 ∖ {𝑀})):(suc 𝑀 ∖ {𝑀})–1-1-onto→(𝐴 ∖ {(𝑓𝑀)}))
60 f1oeng 6816 . . . . . 6 (((suc 𝑀 ∖ {𝑀}) ∈ ω ∧ (𝑓 ↾ (suc 𝑀 ∖ {𝑀})):(suc 𝑀 ∖ {𝑀})–1-1-onto→(𝐴 ∖ {(𝑓𝑀)})) → (suc 𝑀 ∖ {𝑀}) ≈ (𝐴 ∖ {(𝑓𝑀)}))
6129, 59, 60syl2anc 411 . . . . 5 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → (suc 𝑀 ∖ {𝑀}) ≈ (𝐴 ∖ {(𝑓𝑀)}))
6225, 61eqbrtrd 4055 . . . 4 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → 𝑀 ≈ (𝐴 ∖ {(𝑓𝑀)}))
6362ensymd 6842 . . 3 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → (𝐴 ∖ {(𝑓𝑀)}) ≈ 𝑀)
64 entr 6843 . . 3 (((𝐴 ∖ {𝑋}) ≈ (𝐴 ∖ {(𝑓𝑀)}) ∧ (𝐴 ∖ {(𝑓𝑀)}) ≈ 𝑀) → (𝐴 ∖ {𝑋}) ≈ 𝑀)
6520, 63, 64syl2anc 411 . 2 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → (𝐴 ∖ {𝑋}) ≈ 𝑀)
664, 65exlimddv 1913 1 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → (𝐴 ∖ {𝑋}) ≈ 𝑀)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wex 1506  wcel 2167  cdif 3154  {csn 3622  cop 3625   class class class wbr 4033  Ord word 4397  suc csuc 4400  ωcom 4626  ccnv 4662  dom cdm 4663  ran crn 4664  cres 4665  Rel wrel 4668  Fun wfun 5252   Fn wfn 5253  wf 5254  ontowfo 5256  1-1-ontowf1o 5257  cfv 5258  cen 6797  Fincfn 6799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-er 6592  df-en 6800  df-fin 6802
This theorem is referenced by:  dif1enen  6941  findcard  6949  findcard2  6950  findcard2s  6951  diffisn  6954  en2eleq  7262  en2other2  7263  zfz1isolem1  10932
  Copyright terms: Public domain W3C validator