Step | Hyp | Ref
| Expression |
1 | | simp2 993 |
. . . 4
⊢ ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) → 𝐴 ≈ suc 𝑀) |
2 | 1 | ensymd 6761 |
. . 3
⊢ ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) → suc 𝑀 ≈ 𝐴) |
3 | | bren 6725 |
. . 3
⊢ (suc
𝑀 ≈ 𝐴 ↔ ∃𝑓 𝑓:suc 𝑀–1-1-onto→𝐴) |
4 | 2, 3 | sylib 121 |
. 2
⊢ ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) → ∃𝑓 𝑓:suc 𝑀–1-1-onto→𝐴) |
5 | | peano2 4579 |
. . . . . . . 8
⊢ (𝑀 ∈ ω → suc 𝑀 ∈
ω) |
6 | | nnfi 6850 |
. . . . . . . 8
⊢ (suc
𝑀 ∈ ω → suc
𝑀 ∈
Fin) |
7 | 5, 6 | syl 14 |
. . . . . . 7
⊢ (𝑀 ∈ ω → suc 𝑀 ∈ Fin) |
8 | 7 | 3ad2ant1 1013 |
. . . . . 6
⊢ ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) → suc 𝑀 ∈ Fin) |
9 | | enfii 6852 |
. . . . . 6
⊢ ((suc
𝑀 ∈ Fin ∧ 𝐴 ≈ suc 𝑀) → 𝐴 ∈ Fin) |
10 | 8, 1, 9 | syl2anc 409 |
. . . . 5
⊢ ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) → 𝐴 ∈ Fin) |
11 | 10 | adantr 274 |
. . . 4
⊢ (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) ∧ 𝑓:suc 𝑀–1-1-onto→𝐴) → 𝐴 ∈ Fin) |
12 | | simpl3 997 |
. . . 4
⊢ (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) ∧ 𝑓:suc 𝑀–1-1-onto→𝐴) → 𝑋 ∈ 𝐴) |
13 | | f1of 5442 |
. . . . . 6
⊢ (𝑓:suc 𝑀–1-1-onto→𝐴 → 𝑓:suc 𝑀⟶𝐴) |
14 | 13 | adantl 275 |
. . . . 5
⊢ (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) ∧ 𝑓:suc 𝑀–1-1-onto→𝐴) → 𝑓:suc 𝑀⟶𝐴) |
15 | | sucidg 4401 |
. . . . . . 7
⊢ (𝑀 ∈ ω → 𝑀 ∈ suc 𝑀) |
16 | 15 | 3ad2ant1 1013 |
. . . . . 6
⊢ ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) → 𝑀 ∈ suc 𝑀) |
17 | 16 | adantr 274 |
. . . . 5
⊢ (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) ∧ 𝑓:suc 𝑀–1-1-onto→𝐴) → 𝑀 ∈ suc 𝑀) |
18 | 14, 17 | ffvelrnd 5632 |
. . . 4
⊢ (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) ∧ 𝑓:suc 𝑀–1-1-onto→𝐴) → (𝑓‘𝑀) ∈ 𝐴) |
19 | | fidifsnen 6848 |
. . . 4
⊢ ((𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐴 ∧ (𝑓‘𝑀) ∈ 𝐴) → (𝐴 ∖ {𝑋}) ≈ (𝐴 ∖ {(𝑓‘𝑀)})) |
20 | 11, 12, 18, 19 | syl3anc 1233 |
. . 3
⊢ (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) ∧ 𝑓:suc 𝑀–1-1-onto→𝐴) → (𝐴 ∖ {𝑋}) ≈ (𝐴 ∖ {(𝑓‘𝑀)})) |
21 | | nnord 4596 |
. . . . . . . 8
⊢ (𝑀 ∈ ω → Ord 𝑀) |
22 | | orddif 4531 |
. . . . . . . 8
⊢ (Ord
𝑀 → 𝑀 = (suc 𝑀 ∖ {𝑀})) |
23 | 21, 22 | syl 14 |
. . . . . . 7
⊢ (𝑀 ∈ ω → 𝑀 = (suc 𝑀 ∖ {𝑀})) |
24 | 23 | 3ad2ant1 1013 |
. . . . . 6
⊢ ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) → 𝑀 = (suc 𝑀 ∖ {𝑀})) |
25 | 24 | adantr 274 |
. . . . 5
⊢ (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) ∧ 𝑓:suc 𝑀–1-1-onto→𝐴) → 𝑀 = (suc 𝑀 ∖ {𝑀})) |
26 | 23 | eleq1d 2239 |
. . . . . . . . 9
⊢ (𝑀 ∈ ω → (𝑀 ∈ ω ↔ (suc
𝑀 ∖ {𝑀}) ∈
ω)) |
27 | 26 | ibi 175 |
. . . . . . . 8
⊢ (𝑀 ∈ ω → (suc
𝑀 ∖ {𝑀}) ∈
ω) |
28 | 27 | 3ad2ant1 1013 |
. . . . . . 7
⊢ ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) → (suc 𝑀 ∖ {𝑀}) ∈ ω) |
29 | 28 | adantr 274 |
. . . . . 6
⊢ (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) ∧ 𝑓:suc 𝑀–1-1-onto→𝐴) → (suc 𝑀 ∖ {𝑀}) ∈ ω) |
30 | | dff1o2 5447 |
. . . . . . . . 9
⊢ (𝑓:suc 𝑀–1-1-onto→𝐴 ↔ (𝑓 Fn suc 𝑀 ∧ Fun ◡𝑓 ∧ ran 𝑓 = 𝐴)) |
31 | 30 | simp2bi 1008 |
. . . . . . . 8
⊢ (𝑓:suc 𝑀–1-1-onto→𝐴 → Fun ◡𝑓) |
32 | 31 | adantl 275 |
. . . . . . 7
⊢ (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) ∧ 𝑓:suc 𝑀–1-1-onto→𝐴) → Fun ◡𝑓) |
33 | | f1ofo 5449 |
. . . . . . . . 9
⊢ (𝑓:suc 𝑀–1-1-onto→𝐴 → 𝑓:suc 𝑀–onto→𝐴) |
34 | 33 | adantl 275 |
. . . . . . . 8
⊢ (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) ∧ 𝑓:suc 𝑀–1-1-onto→𝐴) → 𝑓:suc 𝑀–onto→𝐴) |
35 | | f1orel 5445 |
. . . . . . . . . . . 12
⊢ (𝑓:suc 𝑀–1-1-onto→𝐴 → Rel 𝑓) |
36 | 35 | adantl 275 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) ∧ 𝑓:suc 𝑀–1-1-onto→𝐴) → Rel 𝑓) |
37 | | resdm 4930 |
. . . . . . . . . . 11
⊢ (Rel
𝑓 → (𝑓 ↾ dom 𝑓) = 𝑓) |
38 | 36, 37 | syl 14 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) ∧ 𝑓:suc 𝑀–1-1-onto→𝐴) → (𝑓 ↾ dom 𝑓) = 𝑓) |
39 | | f1odm 5446 |
. . . . . . . . . . . 12
⊢ (𝑓:suc 𝑀–1-1-onto→𝐴 → dom 𝑓 = suc 𝑀) |
40 | 39 | reseq2d 4891 |
. . . . . . . . . . 11
⊢ (𝑓:suc 𝑀–1-1-onto→𝐴 → (𝑓 ↾ dom 𝑓) = (𝑓 ↾ suc 𝑀)) |
41 | 40 | adantl 275 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) ∧ 𝑓:suc 𝑀–1-1-onto→𝐴) → (𝑓 ↾ dom 𝑓) = (𝑓 ↾ suc 𝑀)) |
42 | 38, 41 | eqtr3d 2205 |
. . . . . . . . 9
⊢ (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) ∧ 𝑓:suc 𝑀–1-1-onto→𝐴) → 𝑓 = (𝑓 ↾ suc 𝑀)) |
43 | | foeq1 5416 |
. . . . . . . . 9
⊢ (𝑓 = (𝑓 ↾ suc 𝑀) → (𝑓:suc 𝑀–onto→𝐴 ↔ (𝑓 ↾ suc 𝑀):suc 𝑀–onto→𝐴)) |
44 | 42, 43 | syl 14 |
. . . . . . . 8
⊢ (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) ∧ 𝑓:suc 𝑀–1-1-onto→𝐴) → (𝑓:suc 𝑀–onto→𝐴 ↔ (𝑓 ↾ suc 𝑀):suc 𝑀–onto→𝐴)) |
45 | 34, 44 | mpbid 146 |
. . . . . . 7
⊢ (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) ∧ 𝑓:suc 𝑀–1-1-onto→𝐴) → (𝑓 ↾ suc 𝑀):suc 𝑀–onto→𝐴) |
46 | | simpl1 995 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) ∧ 𝑓:suc 𝑀–1-1-onto→𝐴) → 𝑀 ∈ ω) |
47 | | f1osng 5483 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ω ∧ (𝑓‘𝑀) ∈ 𝐴) → {〈𝑀, (𝑓‘𝑀)〉}:{𝑀}–1-1-onto→{(𝑓‘𝑀)}) |
48 | 46, 18, 47 | syl2anc 409 |
. . . . . . . . 9
⊢ (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) ∧ 𝑓:suc 𝑀–1-1-onto→𝐴) → {〈𝑀, (𝑓‘𝑀)〉}:{𝑀}–1-1-onto→{(𝑓‘𝑀)}) |
49 | | f1ofo 5449 |
. . . . . . . . 9
⊢
({〈𝑀, (𝑓‘𝑀)〉}:{𝑀}–1-1-onto→{(𝑓‘𝑀)} → {〈𝑀, (𝑓‘𝑀)〉}:{𝑀}–onto→{(𝑓‘𝑀)}) |
50 | 48, 49 | syl 14 |
. . . . . . . 8
⊢ (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) ∧ 𝑓:suc 𝑀–1-1-onto→𝐴) → {〈𝑀, (𝑓‘𝑀)〉}:{𝑀}–onto→{(𝑓‘𝑀)}) |
51 | | f1ofn 5443 |
. . . . . . . . . . 11
⊢ (𝑓:suc 𝑀–1-1-onto→𝐴 → 𝑓 Fn suc 𝑀) |
52 | 51 | adantl 275 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) ∧ 𝑓:suc 𝑀–1-1-onto→𝐴) → 𝑓 Fn suc 𝑀) |
53 | | fnressn 5682 |
. . . . . . . . . 10
⊢ ((𝑓 Fn suc 𝑀 ∧ 𝑀 ∈ suc 𝑀) → (𝑓 ↾ {𝑀}) = {〈𝑀, (𝑓‘𝑀)〉}) |
54 | 52, 17, 53 | syl2anc 409 |
. . . . . . . . 9
⊢ (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) ∧ 𝑓:suc 𝑀–1-1-onto→𝐴) → (𝑓 ↾ {𝑀}) = {〈𝑀, (𝑓‘𝑀)〉}) |
55 | | foeq1 5416 |
. . . . . . . . 9
⊢ ((𝑓 ↾ {𝑀}) = {〈𝑀, (𝑓‘𝑀)〉} → ((𝑓 ↾ {𝑀}):{𝑀}–onto→{(𝑓‘𝑀)} ↔ {〈𝑀, (𝑓‘𝑀)〉}:{𝑀}–onto→{(𝑓‘𝑀)})) |
56 | 54, 55 | syl 14 |
. . . . . . . 8
⊢ (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) ∧ 𝑓:suc 𝑀–1-1-onto→𝐴) → ((𝑓 ↾ {𝑀}):{𝑀}–onto→{(𝑓‘𝑀)} ↔ {〈𝑀, (𝑓‘𝑀)〉}:{𝑀}–onto→{(𝑓‘𝑀)})) |
57 | 50, 56 | mpbird 166 |
. . . . . . 7
⊢ (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) ∧ 𝑓:suc 𝑀–1-1-onto→𝐴) → (𝑓 ↾ {𝑀}):{𝑀}–onto→{(𝑓‘𝑀)}) |
58 | | resdif 5464 |
. . . . . . 7
⊢ ((Fun
◡𝑓 ∧ (𝑓 ↾ suc 𝑀):suc 𝑀–onto→𝐴 ∧ (𝑓 ↾ {𝑀}):{𝑀}–onto→{(𝑓‘𝑀)}) → (𝑓 ↾ (suc 𝑀 ∖ {𝑀})):(suc 𝑀 ∖ {𝑀})–1-1-onto→(𝐴 ∖ {(𝑓‘𝑀)})) |
59 | 32, 45, 57, 58 | syl3anc 1233 |
. . . . . 6
⊢ (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) ∧ 𝑓:suc 𝑀–1-1-onto→𝐴) → (𝑓 ↾ (suc 𝑀 ∖ {𝑀})):(suc 𝑀 ∖ {𝑀})–1-1-onto→(𝐴 ∖ {(𝑓‘𝑀)})) |
60 | | f1oeng 6735 |
. . . . . 6
⊢ (((suc
𝑀 ∖ {𝑀}) ∈ ω ∧ (𝑓 ↾ (suc 𝑀 ∖ {𝑀})):(suc 𝑀 ∖ {𝑀})–1-1-onto→(𝐴 ∖ {(𝑓‘𝑀)})) → (suc 𝑀 ∖ {𝑀}) ≈ (𝐴 ∖ {(𝑓‘𝑀)})) |
61 | 29, 59, 60 | syl2anc 409 |
. . . . 5
⊢ (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) ∧ 𝑓:suc 𝑀–1-1-onto→𝐴) → (suc 𝑀 ∖ {𝑀}) ≈ (𝐴 ∖ {(𝑓‘𝑀)})) |
62 | 25, 61 | eqbrtrd 4011 |
. . . 4
⊢ (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) ∧ 𝑓:suc 𝑀–1-1-onto→𝐴) → 𝑀 ≈ (𝐴 ∖ {(𝑓‘𝑀)})) |
63 | 62 | ensymd 6761 |
. . 3
⊢ (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) ∧ 𝑓:suc 𝑀–1-1-onto→𝐴) → (𝐴 ∖ {(𝑓‘𝑀)}) ≈ 𝑀) |
64 | | entr 6762 |
. . 3
⊢ (((𝐴 ∖ {𝑋}) ≈ (𝐴 ∖ {(𝑓‘𝑀)}) ∧ (𝐴 ∖ {(𝑓‘𝑀)}) ≈ 𝑀) → (𝐴 ∖ {𝑋}) ≈ 𝑀) |
65 | 20, 63, 64 | syl2anc 409 |
. 2
⊢ (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) ∧ 𝑓:suc 𝑀–1-1-onto→𝐴) → (𝐴 ∖ {𝑋}) ≈ 𝑀) |
66 | 4, 65 | exlimddv 1891 |
1
⊢ ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) → (𝐴 ∖ {𝑋}) ≈ 𝑀) |