| Step | Hyp | Ref
 | Expression | 
| 1 |   | simp2 1000 | 
. . . 4
⊢ ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) → 𝐴 ≈ suc 𝑀) | 
| 2 | 1 | ensymd 6842 | 
. . 3
⊢ ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) → suc 𝑀 ≈ 𝐴) | 
| 3 |   | bren 6806 | 
. . 3
⊢ (suc
𝑀 ≈ 𝐴 ↔ ∃𝑓 𝑓:suc 𝑀–1-1-onto→𝐴) | 
| 4 | 2, 3 | sylib 122 | 
. 2
⊢ ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) → ∃𝑓 𝑓:suc 𝑀–1-1-onto→𝐴) | 
| 5 |   | peano2 4631 | 
. . . . . . . 8
⊢ (𝑀 ∈ ω → suc 𝑀 ∈
ω) | 
| 6 |   | nnfi 6933 | 
. . . . . . . 8
⊢ (suc
𝑀 ∈ ω → suc
𝑀 ∈
Fin) | 
| 7 | 5, 6 | syl 14 | 
. . . . . . 7
⊢ (𝑀 ∈ ω → suc 𝑀 ∈ Fin) | 
| 8 | 7 | 3ad2ant1 1020 | 
. . . . . 6
⊢ ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) → suc 𝑀 ∈ Fin) | 
| 9 |   | enfii 6935 | 
. . . . . 6
⊢ ((suc
𝑀 ∈ Fin ∧ 𝐴 ≈ suc 𝑀) → 𝐴 ∈ Fin) | 
| 10 | 8, 1, 9 | syl2anc 411 | 
. . . . 5
⊢ ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) → 𝐴 ∈ Fin) | 
| 11 | 10 | adantr 276 | 
. . . 4
⊢ (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) ∧ 𝑓:suc 𝑀–1-1-onto→𝐴) → 𝐴 ∈ Fin) | 
| 12 |   | simpl3 1004 | 
. . . 4
⊢ (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) ∧ 𝑓:suc 𝑀–1-1-onto→𝐴) → 𝑋 ∈ 𝐴) | 
| 13 |   | f1of 5504 | 
. . . . . 6
⊢ (𝑓:suc 𝑀–1-1-onto→𝐴 → 𝑓:suc 𝑀⟶𝐴) | 
| 14 | 13 | adantl 277 | 
. . . . 5
⊢ (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) ∧ 𝑓:suc 𝑀–1-1-onto→𝐴) → 𝑓:suc 𝑀⟶𝐴) | 
| 15 |   | sucidg 4451 | 
. . . . . . 7
⊢ (𝑀 ∈ ω → 𝑀 ∈ suc 𝑀) | 
| 16 | 15 | 3ad2ant1 1020 | 
. . . . . 6
⊢ ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) → 𝑀 ∈ suc 𝑀) | 
| 17 | 16 | adantr 276 | 
. . . . 5
⊢ (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) ∧ 𝑓:suc 𝑀–1-1-onto→𝐴) → 𝑀 ∈ suc 𝑀) | 
| 18 | 14, 17 | ffvelcdmd 5698 | 
. . . 4
⊢ (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) ∧ 𝑓:suc 𝑀–1-1-onto→𝐴) → (𝑓‘𝑀) ∈ 𝐴) | 
| 19 |   | fidifsnen 6931 | 
. . . 4
⊢ ((𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐴 ∧ (𝑓‘𝑀) ∈ 𝐴) → (𝐴 ∖ {𝑋}) ≈ (𝐴 ∖ {(𝑓‘𝑀)})) | 
| 20 | 11, 12, 18, 19 | syl3anc 1249 | 
. . 3
⊢ (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) ∧ 𝑓:suc 𝑀–1-1-onto→𝐴) → (𝐴 ∖ {𝑋}) ≈ (𝐴 ∖ {(𝑓‘𝑀)})) | 
| 21 |   | nnord 4648 | 
. . . . . . . 8
⊢ (𝑀 ∈ ω → Ord 𝑀) | 
| 22 |   | orddif 4583 | 
. . . . . . . 8
⊢ (Ord
𝑀 → 𝑀 = (suc 𝑀 ∖ {𝑀})) | 
| 23 | 21, 22 | syl 14 | 
. . . . . . 7
⊢ (𝑀 ∈ ω → 𝑀 = (suc 𝑀 ∖ {𝑀})) | 
| 24 | 23 | 3ad2ant1 1020 | 
. . . . . 6
⊢ ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) → 𝑀 = (suc 𝑀 ∖ {𝑀})) | 
| 25 | 24 | adantr 276 | 
. . . . 5
⊢ (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) ∧ 𝑓:suc 𝑀–1-1-onto→𝐴) → 𝑀 = (suc 𝑀 ∖ {𝑀})) | 
| 26 | 23 | eleq1d 2265 | 
. . . . . . . . 9
⊢ (𝑀 ∈ ω → (𝑀 ∈ ω ↔ (suc
𝑀 ∖ {𝑀}) ∈
ω)) | 
| 27 | 26 | ibi 176 | 
. . . . . . . 8
⊢ (𝑀 ∈ ω → (suc
𝑀 ∖ {𝑀}) ∈
ω) | 
| 28 | 27 | 3ad2ant1 1020 | 
. . . . . . 7
⊢ ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) → (suc 𝑀 ∖ {𝑀}) ∈ ω) | 
| 29 | 28 | adantr 276 | 
. . . . . 6
⊢ (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) ∧ 𝑓:suc 𝑀–1-1-onto→𝐴) → (suc 𝑀 ∖ {𝑀}) ∈ ω) | 
| 30 |   | dff1o2 5509 | 
. . . . . . . . 9
⊢ (𝑓:suc 𝑀–1-1-onto→𝐴 ↔ (𝑓 Fn suc 𝑀 ∧ Fun ◡𝑓 ∧ ran 𝑓 = 𝐴)) | 
| 31 | 30 | simp2bi 1015 | 
. . . . . . . 8
⊢ (𝑓:suc 𝑀–1-1-onto→𝐴 → Fun ◡𝑓) | 
| 32 | 31 | adantl 277 | 
. . . . . . 7
⊢ (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) ∧ 𝑓:suc 𝑀–1-1-onto→𝐴) → Fun ◡𝑓) | 
| 33 |   | f1ofo 5511 | 
. . . . . . . . 9
⊢ (𝑓:suc 𝑀–1-1-onto→𝐴 → 𝑓:suc 𝑀–onto→𝐴) | 
| 34 | 33 | adantl 277 | 
. . . . . . . 8
⊢ (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) ∧ 𝑓:suc 𝑀–1-1-onto→𝐴) → 𝑓:suc 𝑀–onto→𝐴) | 
| 35 |   | f1orel 5507 | 
. . . . . . . . . . . 12
⊢ (𝑓:suc 𝑀–1-1-onto→𝐴 → Rel 𝑓) | 
| 36 | 35 | adantl 277 | 
. . . . . . . . . . 11
⊢ (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) ∧ 𝑓:suc 𝑀–1-1-onto→𝐴) → Rel 𝑓) | 
| 37 |   | resdm 4985 | 
. . . . . . . . . . 11
⊢ (Rel
𝑓 → (𝑓 ↾ dom 𝑓) = 𝑓) | 
| 38 | 36, 37 | syl 14 | 
. . . . . . . . . 10
⊢ (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) ∧ 𝑓:suc 𝑀–1-1-onto→𝐴) → (𝑓 ↾ dom 𝑓) = 𝑓) | 
| 39 |   | f1odm 5508 | 
. . . . . . . . . . . 12
⊢ (𝑓:suc 𝑀–1-1-onto→𝐴 → dom 𝑓 = suc 𝑀) | 
| 40 | 39 | reseq2d 4946 | 
. . . . . . . . . . 11
⊢ (𝑓:suc 𝑀–1-1-onto→𝐴 → (𝑓 ↾ dom 𝑓) = (𝑓 ↾ suc 𝑀)) | 
| 41 | 40 | adantl 277 | 
. . . . . . . . . 10
⊢ (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) ∧ 𝑓:suc 𝑀–1-1-onto→𝐴) → (𝑓 ↾ dom 𝑓) = (𝑓 ↾ suc 𝑀)) | 
| 42 | 38, 41 | eqtr3d 2231 | 
. . . . . . . . 9
⊢ (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) ∧ 𝑓:suc 𝑀–1-1-onto→𝐴) → 𝑓 = (𝑓 ↾ suc 𝑀)) | 
| 43 |   | foeq1 5476 | 
. . . . . . . . 9
⊢ (𝑓 = (𝑓 ↾ suc 𝑀) → (𝑓:suc 𝑀–onto→𝐴 ↔ (𝑓 ↾ suc 𝑀):suc 𝑀–onto→𝐴)) | 
| 44 | 42, 43 | syl 14 | 
. . . . . . . 8
⊢ (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) ∧ 𝑓:suc 𝑀–1-1-onto→𝐴) → (𝑓:suc 𝑀–onto→𝐴 ↔ (𝑓 ↾ suc 𝑀):suc 𝑀–onto→𝐴)) | 
| 45 | 34, 44 | mpbid 147 | 
. . . . . . 7
⊢ (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) ∧ 𝑓:suc 𝑀–1-1-onto→𝐴) → (𝑓 ↾ suc 𝑀):suc 𝑀–onto→𝐴) | 
| 46 |   | simpl1 1002 | 
. . . . . . . . . 10
⊢ (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) ∧ 𝑓:suc 𝑀–1-1-onto→𝐴) → 𝑀 ∈ ω) | 
| 47 |   | f1osng 5545 | 
. . . . . . . . . 10
⊢ ((𝑀 ∈ ω ∧ (𝑓‘𝑀) ∈ 𝐴) → {〈𝑀, (𝑓‘𝑀)〉}:{𝑀}–1-1-onto→{(𝑓‘𝑀)}) | 
| 48 | 46, 18, 47 | syl2anc 411 | 
. . . . . . . . 9
⊢ (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) ∧ 𝑓:suc 𝑀–1-1-onto→𝐴) → {〈𝑀, (𝑓‘𝑀)〉}:{𝑀}–1-1-onto→{(𝑓‘𝑀)}) | 
| 49 |   | f1ofo 5511 | 
. . . . . . . . 9
⊢
({〈𝑀, (𝑓‘𝑀)〉}:{𝑀}–1-1-onto→{(𝑓‘𝑀)} → {〈𝑀, (𝑓‘𝑀)〉}:{𝑀}–onto→{(𝑓‘𝑀)}) | 
| 50 | 48, 49 | syl 14 | 
. . . . . . . 8
⊢ (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) ∧ 𝑓:suc 𝑀–1-1-onto→𝐴) → {〈𝑀, (𝑓‘𝑀)〉}:{𝑀}–onto→{(𝑓‘𝑀)}) | 
| 51 |   | f1ofn 5505 | 
. . . . . . . . . . 11
⊢ (𝑓:suc 𝑀–1-1-onto→𝐴 → 𝑓 Fn suc 𝑀) | 
| 52 | 51 | adantl 277 | 
. . . . . . . . . 10
⊢ (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) ∧ 𝑓:suc 𝑀–1-1-onto→𝐴) → 𝑓 Fn suc 𝑀) | 
| 53 |   | fnressn 5748 | 
. . . . . . . . . 10
⊢ ((𝑓 Fn suc 𝑀 ∧ 𝑀 ∈ suc 𝑀) → (𝑓 ↾ {𝑀}) = {〈𝑀, (𝑓‘𝑀)〉}) | 
| 54 | 52, 17, 53 | syl2anc 411 | 
. . . . . . . . 9
⊢ (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) ∧ 𝑓:suc 𝑀–1-1-onto→𝐴) → (𝑓 ↾ {𝑀}) = {〈𝑀, (𝑓‘𝑀)〉}) | 
| 55 |   | foeq1 5476 | 
. . . . . . . . 9
⊢ ((𝑓 ↾ {𝑀}) = {〈𝑀, (𝑓‘𝑀)〉} → ((𝑓 ↾ {𝑀}):{𝑀}–onto→{(𝑓‘𝑀)} ↔ {〈𝑀, (𝑓‘𝑀)〉}:{𝑀}–onto→{(𝑓‘𝑀)})) | 
| 56 | 54, 55 | syl 14 | 
. . . . . . . 8
⊢ (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) ∧ 𝑓:suc 𝑀–1-1-onto→𝐴) → ((𝑓 ↾ {𝑀}):{𝑀}–onto→{(𝑓‘𝑀)} ↔ {〈𝑀, (𝑓‘𝑀)〉}:{𝑀}–onto→{(𝑓‘𝑀)})) | 
| 57 | 50, 56 | mpbird 167 | 
. . . . . . 7
⊢ (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) ∧ 𝑓:suc 𝑀–1-1-onto→𝐴) → (𝑓 ↾ {𝑀}):{𝑀}–onto→{(𝑓‘𝑀)}) | 
| 58 |   | resdif 5526 | 
. . . . . . 7
⊢ ((Fun
◡𝑓 ∧ (𝑓 ↾ suc 𝑀):suc 𝑀–onto→𝐴 ∧ (𝑓 ↾ {𝑀}):{𝑀}–onto→{(𝑓‘𝑀)}) → (𝑓 ↾ (suc 𝑀 ∖ {𝑀})):(suc 𝑀 ∖ {𝑀})–1-1-onto→(𝐴 ∖ {(𝑓‘𝑀)})) | 
| 59 | 32, 45, 57, 58 | syl3anc 1249 | 
. . . . . 6
⊢ (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) ∧ 𝑓:suc 𝑀–1-1-onto→𝐴) → (𝑓 ↾ (suc 𝑀 ∖ {𝑀})):(suc 𝑀 ∖ {𝑀})–1-1-onto→(𝐴 ∖ {(𝑓‘𝑀)})) | 
| 60 |   | f1oeng 6816 | 
. . . . . 6
⊢ (((suc
𝑀 ∖ {𝑀}) ∈ ω ∧ (𝑓 ↾ (suc 𝑀 ∖ {𝑀})):(suc 𝑀 ∖ {𝑀})–1-1-onto→(𝐴 ∖ {(𝑓‘𝑀)})) → (suc 𝑀 ∖ {𝑀}) ≈ (𝐴 ∖ {(𝑓‘𝑀)})) | 
| 61 | 29, 59, 60 | syl2anc 411 | 
. . . . 5
⊢ (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) ∧ 𝑓:suc 𝑀–1-1-onto→𝐴) → (suc 𝑀 ∖ {𝑀}) ≈ (𝐴 ∖ {(𝑓‘𝑀)})) | 
| 62 | 25, 61 | eqbrtrd 4055 | 
. . . 4
⊢ (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) ∧ 𝑓:suc 𝑀–1-1-onto→𝐴) → 𝑀 ≈ (𝐴 ∖ {(𝑓‘𝑀)})) | 
| 63 | 62 | ensymd 6842 | 
. . 3
⊢ (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) ∧ 𝑓:suc 𝑀–1-1-onto→𝐴) → (𝐴 ∖ {(𝑓‘𝑀)}) ≈ 𝑀) | 
| 64 |   | entr 6843 | 
. . 3
⊢ (((𝐴 ∖ {𝑋}) ≈ (𝐴 ∖ {(𝑓‘𝑀)}) ∧ (𝐴 ∖ {(𝑓‘𝑀)}) ≈ 𝑀) → (𝐴 ∖ {𝑋}) ≈ 𝑀) | 
| 65 | 20, 63, 64 | syl2anc 411 | 
. 2
⊢ (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) ∧ 𝑓:suc 𝑀–1-1-onto→𝐴) → (𝐴 ∖ {𝑋}) ≈ 𝑀) | 
| 66 | 4, 65 | exlimddv 1913 | 
1
⊢ ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) → (𝐴 ∖ {𝑋}) ≈ 𝑀) |