ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dif1en GIF version

Theorem dif1en 6773
Description: If a set 𝐴 is equinumerous to the successor of a natural number 𝑀, then 𝐴 with an element removed is equinumerous to 𝑀. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Stefan O'Rear, 16-Aug-2015.)
Assertion
Ref Expression
dif1en ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → (𝐴 ∖ {𝑋}) ≈ 𝑀)

Proof of Theorem dif1en
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 simp2 982 . . . 4 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → 𝐴 ≈ suc 𝑀)
21ensymd 6677 . . 3 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → suc 𝑀𝐴)
3 bren 6641 . . 3 (suc 𝑀𝐴 ↔ ∃𝑓 𝑓:suc 𝑀1-1-onto𝐴)
42, 3sylib 121 . 2 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → ∃𝑓 𝑓:suc 𝑀1-1-onto𝐴)
5 peano2 4509 . . . . . . . 8 (𝑀 ∈ ω → suc 𝑀 ∈ ω)
6 nnfi 6766 . . . . . . . 8 (suc 𝑀 ∈ ω → suc 𝑀 ∈ Fin)
75, 6syl 14 . . . . . . 7 (𝑀 ∈ ω → suc 𝑀 ∈ Fin)
873ad2ant1 1002 . . . . . 6 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → suc 𝑀 ∈ Fin)
9 enfii 6768 . . . . . 6 ((suc 𝑀 ∈ Fin ∧ 𝐴 ≈ suc 𝑀) → 𝐴 ∈ Fin)
108, 1, 9syl2anc 408 . . . . 5 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → 𝐴 ∈ Fin)
1110adantr 274 . . . 4 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → 𝐴 ∈ Fin)
12 simpl3 986 . . . 4 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → 𝑋𝐴)
13 f1of 5367 . . . . . 6 (𝑓:suc 𝑀1-1-onto𝐴𝑓:suc 𝑀𝐴)
1413adantl 275 . . . . 5 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → 𝑓:suc 𝑀𝐴)
15 sucidg 4338 . . . . . . 7 (𝑀 ∈ ω → 𝑀 ∈ suc 𝑀)
16153ad2ant1 1002 . . . . . 6 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → 𝑀 ∈ suc 𝑀)
1716adantr 274 . . . . 5 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → 𝑀 ∈ suc 𝑀)
1814, 17ffvelrnd 5556 . . . 4 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → (𝑓𝑀) ∈ 𝐴)
19 fidifsnen 6764 . . . 4 ((𝐴 ∈ Fin ∧ 𝑋𝐴 ∧ (𝑓𝑀) ∈ 𝐴) → (𝐴 ∖ {𝑋}) ≈ (𝐴 ∖ {(𝑓𝑀)}))
2011, 12, 18, 19syl3anc 1216 . . 3 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → (𝐴 ∖ {𝑋}) ≈ (𝐴 ∖ {(𝑓𝑀)}))
21 nnord 4525 . . . . . . . 8 (𝑀 ∈ ω → Ord 𝑀)
22 orddif 4462 . . . . . . . 8 (Ord 𝑀𝑀 = (suc 𝑀 ∖ {𝑀}))
2321, 22syl 14 . . . . . . 7 (𝑀 ∈ ω → 𝑀 = (suc 𝑀 ∖ {𝑀}))
24233ad2ant1 1002 . . . . . 6 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → 𝑀 = (suc 𝑀 ∖ {𝑀}))
2524adantr 274 . . . . 5 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → 𝑀 = (suc 𝑀 ∖ {𝑀}))
2623eleq1d 2208 . . . . . . . . 9 (𝑀 ∈ ω → (𝑀 ∈ ω ↔ (suc 𝑀 ∖ {𝑀}) ∈ ω))
2726ibi 175 . . . . . . . 8 (𝑀 ∈ ω → (suc 𝑀 ∖ {𝑀}) ∈ ω)
28273ad2ant1 1002 . . . . . . 7 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → (suc 𝑀 ∖ {𝑀}) ∈ ω)
2928adantr 274 . . . . . 6 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → (suc 𝑀 ∖ {𝑀}) ∈ ω)
30 dff1o2 5372 . . . . . . . . 9 (𝑓:suc 𝑀1-1-onto𝐴 ↔ (𝑓 Fn suc 𝑀 ∧ Fun 𝑓 ∧ ran 𝑓 = 𝐴))
3130simp2bi 997 . . . . . . . 8 (𝑓:suc 𝑀1-1-onto𝐴 → Fun 𝑓)
3231adantl 275 . . . . . . 7 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → Fun 𝑓)
33 f1ofo 5374 . . . . . . . . 9 (𝑓:suc 𝑀1-1-onto𝐴𝑓:suc 𝑀onto𝐴)
3433adantl 275 . . . . . . . 8 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → 𝑓:suc 𝑀onto𝐴)
35 f1orel 5370 . . . . . . . . . . . 12 (𝑓:suc 𝑀1-1-onto𝐴 → Rel 𝑓)
3635adantl 275 . . . . . . . . . . 11 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → Rel 𝑓)
37 resdm 4858 . . . . . . . . . . 11 (Rel 𝑓 → (𝑓 ↾ dom 𝑓) = 𝑓)
3836, 37syl 14 . . . . . . . . . 10 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → (𝑓 ↾ dom 𝑓) = 𝑓)
39 f1odm 5371 . . . . . . . . . . . 12 (𝑓:suc 𝑀1-1-onto𝐴 → dom 𝑓 = suc 𝑀)
4039reseq2d 4819 . . . . . . . . . . 11 (𝑓:suc 𝑀1-1-onto𝐴 → (𝑓 ↾ dom 𝑓) = (𝑓 ↾ suc 𝑀))
4140adantl 275 . . . . . . . . . 10 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → (𝑓 ↾ dom 𝑓) = (𝑓 ↾ suc 𝑀))
4238, 41eqtr3d 2174 . . . . . . . . 9 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → 𝑓 = (𝑓 ↾ suc 𝑀))
43 foeq1 5341 . . . . . . . . 9 (𝑓 = (𝑓 ↾ suc 𝑀) → (𝑓:suc 𝑀onto𝐴 ↔ (𝑓 ↾ suc 𝑀):suc 𝑀onto𝐴))
4442, 43syl 14 . . . . . . . 8 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → (𝑓:suc 𝑀onto𝐴 ↔ (𝑓 ↾ suc 𝑀):suc 𝑀onto𝐴))
4534, 44mpbid 146 . . . . . . 7 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → (𝑓 ↾ suc 𝑀):suc 𝑀onto𝐴)
46 simpl1 984 . . . . . . . . . 10 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → 𝑀 ∈ ω)
47 f1osng 5408 . . . . . . . . . 10 ((𝑀 ∈ ω ∧ (𝑓𝑀) ∈ 𝐴) → {⟨𝑀, (𝑓𝑀)⟩}:{𝑀}–1-1-onto→{(𝑓𝑀)})
4846, 18, 47syl2anc 408 . . . . . . . . 9 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → {⟨𝑀, (𝑓𝑀)⟩}:{𝑀}–1-1-onto→{(𝑓𝑀)})
49 f1ofo 5374 . . . . . . . . 9 ({⟨𝑀, (𝑓𝑀)⟩}:{𝑀}–1-1-onto→{(𝑓𝑀)} → {⟨𝑀, (𝑓𝑀)⟩}:{𝑀}–onto→{(𝑓𝑀)})
5048, 49syl 14 . . . . . . . 8 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → {⟨𝑀, (𝑓𝑀)⟩}:{𝑀}–onto→{(𝑓𝑀)})
51 f1ofn 5368 . . . . . . . . . . 11 (𝑓:suc 𝑀1-1-onto𝐴𝑓 Fn suc 𝑀)
5251adantl 275 . . . . . . . . . 10 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → 𝑓 Fn suc 𝑀)
53 fnressn 5606 . . . . . . . . . 10 ((𝑓 Fn suc 𝑀𝑀 ∈ suc 𝑀) → (𝑓 ↾ {𝑀}) = {⟨𝑀, (𝑓𝑀)⟩})
5452, 17, 53syl2anc 408 . . . . . . . . 9 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → (𝑓 ↾ {𝑀}) = {⟨𝑀, (𝑓𝑀)⟩})
55 foeq1 5341 . . . . . . . . 9 ((𝑓 ↾ {𝑀}) = {⟨𝑀, (𝑓𝑀)⟩} → ((𝑓 ↾ {𝑀}):{𝑀}–onto→{(𝑓𝑀)} ↔ {⟨𝑀, (𝑓𝑀)⟩}:{𝑀}–onto→{(𝑓𝑀)}))
5654, 55syl 14 . . . . . . . 8 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → ((𝑓 ↾ {𝑀}):{𝑀}–onto→{(𝑓𝑀)} ↔ {⟨𝑀, (𝑓𝑀)⟩}:{𝑀}–onto→{(𝑓𝑀)}))
5750, 56mpbird 166 . . . . . . 7 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → (𝑓 ↾ {𝑀}):{𝑀}–onto→{(𝑓𝑀)})
58 resdif 5389 . . . . . . 7 ((Fun 𝑓 ∧ (𝑓 ↾ suc 𝑀):suc 𝑀onto𝐴 ∧ (𝑓 ↾ {𝑀}):{𝑀}–onto→{(𝑓𝑀)}) → (𝑓 ↾ (suc 𝑀 ∖ {𝑀})):(suc 𝑀 ∖ {𝑀})–1-1-onto→(𝐴 ∖ {(𝑓𝑀)}))
5932, 45, 57, 58syl3anc 1216 . . . . . 6 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → (𝑓 ↾ (suc 𝑀 ∖ {𝑀})):(suc 𝑀 ∖ {𝑀})–1-1-onto→(𝐴 ∖ {(𝑓𝑀)}))
60 f1oeng 6651 . . . . . 6 (((suc 𝑀 ∖ {𝑀}) ∈ ω ∧ (𝑓 ↾ (suc 𝑀 ∖ {𝑀})):(suc 𝑀 ∖ {𝑀})–1-1-onto→(𝐴 ∖ {(𝑓𝑀)})) → (suc 𝑀 ∖ {𝑀}) ≈ (𝐴 ∖ {(𝑓𝑀)}))
6129, 59, 60syl2anc 408 . . . . 5 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → (suc 𝑀 ∖ {𝑀}) ≈ (𝐴 ∖ {(𝑓𝑀)}))
6225, 61eqbrtrd 3950 . . . 4 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → 𝑀 ≈ (𝐴 ∖ {(𝑓𝑀)}))
6362ensymd 6677 . . 3 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → (𝐴 ∖ {(𝑓𝑀)}) ≈ 𝑀)
64 entr 6678 . . 3 (((𝐴 ∖ {𝑋}) ≈ (𝐴 ∖ {(𝑓𝑀)}) ∧ (𝐴 ∖ {(𝑓𝑀)}) ≈ 𝑀) → (𝐴 ∖ {𝑋}) ≈ 𝑀)
6520, 63, 64syl2anc 408 . 2 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → (𝐴 ∖ {𝑋}) ≈ 𝑀)
664, 65exlimddv 1870 1 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → (𝐴 ∖ {𝑋}) ≈ 𝑀)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 962   = wceq 1331  wex 1468  wcel 1480  cdif 3068  {csn 3527  cop 3530   class class class wbr 3929  Ord word 4284  suc csuc 4287  ωcom 4504  ccnv 4538  dom cdm 4539  ran crn 4540  cres 4541  Rel wrel 4544  Fun wfun 5117   Fn wfn 5118  wf 5119  ontowfo 5121  1-1-ontowf1o 5122  cfv 5123  cen 6632  Fincfn 6634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-er 6429  df-en 6635  df-fin 6637
This theorem is referenced by:  dif1enen  6774  findcard  6782  findcard2  6783  findcard2s  6784  diffisn  6787  en2eleq  7051  en2other2  7052  zfz1isolem1  10583
  Copyright terms: Public domain W3C validator