ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dif1en GIF version

Theorem dif1en 6873
Description: If a set 𝐴 is equinumerous to the successor of a natural number 𝑀, then 𝐴 with an element removed is equinumerous to 𝑀. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Stefan O'Rear, 16-Aug-2015.)
Assertion
Ref Expression
dif1en ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → (𝐴 ∖ {𝑋}) ≈ 𝑀)

Proof of Theorem dif1en
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 simp2 998 . . . 4 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → 𝐴 ≈ suc 𝑀)
21ensymd 6777 . . 3 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → suc 𝑀𝐴)
3 bren 6741 . . 3 (suc 𝑀𝐴 ↔ ∃𝑓 𝑓:suc 𝑀1-1-onto𝐴)
42, 3sylib 122 . 2 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → ∃𝑓 𝑓:suc 𝑀1-1-onto𝐴)
5 peano2 4591 . . . . . . . 8 (𝑀 ∈ ω → suc 𝑀 ∈ ω)
6 nnfi 6866 . . . . . . . 8 (suc 𝑀 ∈ ω → suc 𝑀 ∈ Fin)
75, 6syl 14 . . . . . . 7 (𝑀 ∈ ω → suc 𝑀 ∈ Fin)
873ad2ant1 1018 . . . . . 6 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → suc 𝑀 ∈ Fin)
9 enfii 6868 . . . . . 6 ((suc 𝑀 ∈ Fin ∧ 𝐴 ≈ suc 𝑀) → 𝐴 ∈ Fin)
108, 1, 9syl2anc 411 . . . . 5 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → 𝐴 ∈ Fin)
1110adantr 276 . . . 4 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → 𝐴 ∈ Fin)
12 simpl3 1002 . . . 4 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → 𝑋𝐴)
13 f1of 5457 . . . . . 6 (𝑓:suc 𝑀1-1-onto𝐴𝑓:suc 𝑀𝐴)
1413adantl 277 . . . . 5 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → 𝑓:suc 𝑀𝐴)
15 sucidg 4413 . . . . . . 7 (𝑀 ∈ ω → 𝑀 ∈ suc 𝑀)
16153ad2ant1 1018 . . . . . 6 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → 𝑀 ∈ suc 𝑀)
1716adantr 276 . . . . 5 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → 𝑀 ∈ suc 𝑀)
1814, 17ffvelcdmd 5648 . . . 4 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → (𝑓𝑀) ∈ 𝐴)
19 fidifsnen 6864 . . . 4 ((𝐴 ∈ Fin ∧ 𝑋𝐴 ∧ (𝑓𝑀) ∈ 𝐴) → (𝐴 ∖ {𝑋}) ≈ (𝐴 ∖ {(𝑓𝑀)}))
2011, 12, 18, 19syl3anc 1238 . . 3 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → (𝐴 ∖ {𝑋}) ≈ (𝐴 ∖ {(𝑓𝑀)}))
21 nnord 4608 . . . . . . . 8 (𝑀 ∈ ω → Ord 𝑀)
22 orddif 4543 . . . . . . . 8 (Ord 𝑀𝑀 = (suc 𝑀 ∖ {𝑀}))
2321, 22syl 14 . . . . . . 7 (𝑀 ∈ ω → 𝑀 = (suc 𝑀 ∖ {𝑀}))
24233ad2ant1 1018 . . . . . 6 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → 𝑀 = (suc 𝑀 ∖ {𝑀}))
2524adantr 276 . . . . 5 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → 𝑀 = (suc 𝑀 ∖ {𝑀}))
2623eleq1d 2246 . . . . . . . . 9 (𝑀 ∈ ω → (𝑀 ∈ ω ↔ (suc 𝑀 ∖ {𝑀}) ∈ ω))
2726ibi 176 . . . . . . . 8 (𝑀 ∈ ω → (suc 𝑀 ∖ {𝑀}) ∈ ω)
28273ad2ant1 1018 . . . . . . 7 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → (suc 𝑀 ∖ {𝑀}) ∈ ω)
2928adantr 276 . . . . . 6 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → (suc 𝑀 ∖ {𝑀}) ∈ ω)
30 dff1o2 5462 . . . . . . . . 9 (𝑓:suc 𝑀1-1-onto𝐴 ↔ (𝑓 Fn suc 𝑀 ∧ Fun 𝑓 ∧ ran 𝑓 = 𝐴))
3130simp2bi 1013 . . . . . . . 8 (𝑓:suc 𝑀1-1-onto𝐴 → Fun 𝑓)
3231adantl 277 . . . . . . 7 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → Fun 𝑓)
33 f1ofo 5464 . . . . . . . . 9 (𝑓:suc 𝑀1-1-onto𝐴𝑓:suc 𝑀onto𝐴)
3433adantl 277 . . . . . . . 8 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → 𝑓:suc 𝑀onto𝐴)
35 f1orel 5460 . . . . . . . . . . . 12 (𝑓:suc 𝑀1-1-onto𝐴 → Rel 𝑓)
3635adantl 277 . . . . . . . . . . 11 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → Rel 𝑓)
37 resdm 4942 . . . . . . . . . . 11 (Rel 𝑓 → (𝑓 ↾ dom 𝑓) = 𝑓)
3836, 37syl 14 . . . . . . . . . 10 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → (𝑓 ↾ dom 𝑓) = 𝑓)
39 f1odm 5461 . . . . . . . . . . . 12 (𝑓:suc 𝑀1-1-onto𝐴 → dom 𝑓 = suc 𝑀)
4039reseq2d 4903 . . . . . . . . . . 11 (𝑓:suc 𝑀1-1-onto𝐴 → (𝑓 ↾ dom 𝑓) = (𝑓 ↾ suc 𝑀))
4140adantl 277 . . . . . . . . . 10 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → (𝑓 ↾ dom 𝑓) = (𝑓 ↾ suc 𝑀))
4238, 41eqtr3d 2212 . . . . . . . . 9 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → 𝑓 = (𝑓 ↾ suc 𝑀))
43 foeq1 5430 . . . . . . . . 9 (𝑓 = (𝑓 ↾ suc 𝑀) → (𝑓:suc 𝑀onto𝐴 ↔ (𝑓 ↾ suc 𝑀):suc 𝑀onto𝐴))
4442, 43syl 14 . . . . . . . 8 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → (𝑓:suc 𝑀onto𝐴 ↔ (𝑓 ↾ suc 𝑀):suc 𝑀onto𝐴))
4534, 44mpbid 147 . . . . . . 7 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → (𝑓 ↾ suc 𝑀):suc 𝑀onto𝐴)
46 simpl1 1000 . . . . . . . . . 10 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → 𝑀 ∈ ω)
47 f1osng 5498 . . . . . . . . . 10 ((𝑀 ∈ ω ∧ (𝑓𝑀) ∈ 𝐴) → {⟨𝑀, (𝑓𝑀)⟩}:{𝑀}–1-1-onto→{(𝑓𝑀)})
4846, 18, 47syl2anc 411 . . . . . . . . 9 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → {⟨𝑀, (𝑓𝑀)⟩}:{𝑀}–1-1-onto→{(𝑓𝑀)})
49 f1ofo 5464 . . . . . . . . 9 ({⟨𝑀, (𝑓𝑀)⟩}:{𝑀}–1-1-onto→{(𝑓𝑀)} → {⟨𝑀, (𝑓𝑀)⟩}:{𝑀}–onto→{(𝑓𝑀)})
5048, 49syl 14 . . . . . . . 8 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → {⟨𝑀, (𝑓𝑀)⟩}:{𝑀}–onto→{(𝑓𝑀)})
51 f1ofn 5458 . . . . . . . . . . 11 (𝑓:suc 𝑀1-1-onto𝐴𝑓 Fn suc 𝑀)
5251adantl 277 . . . . . . . . . 10 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → 𝑓 Fn suc 𝑀)
53 fnressn 5698 . . . . . . . . . 10 ((𝑓 Fn suc 𝑀𝑀 ∈ suc 𝑀) → (𝑓 ↾ {𝑀}) = {⟨𝑀, (𝑓𝑀)⟩})
5452, 17, 53syl2anc 411 . . . . . . . . 9 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → (𝑓 ↾ {𝑀}) = {⟨𝑀, (𝑓𝑀)⟩})
55 foeq1 5430 . . . . . . . . 9 ((𝑓 ↾ {𝑀}) = {⟨𝑀, (𝑓𝑀)⟩} → ((𝑓 ↾ {𝑀}):{𝑀}–onto→{(𝑓𝑀)} ↔ {⟨𝑀, (𝑓𝑀)⟩}:{𝑀}–onto→{(𝑓𝑀)}))
5654, 55syl 14 . . . . . . . 8 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → ((𝑓 ↾ {𝑀}):{𝑀}–onto→{(𝑓𝑀)} ↔ {⟨𝑀, (𝑓𝑀)⟩}:{𝑀}–onto→{(𝑓𝑀)}))
5750, 56mpbird 167 . . . . . . 7 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → (𝑓 ↾ {𝑀}):{𝑀}–onto→{(𝑓𝑀)})
58 resdif 5479 . . . . . . 7 ((Fun 𝑓 ∧ (𝑓 ↾ suc 𝑀):suc 𝑀onto𝐴 ∧ (𝑓 ↾ {𝑀}):{𝑀}–onto→{(𝑓𝑀)}) → (𝑓 ↾ (suc 𝑀 ∖ {𝑀})):(suc 𝑀 ∖ {𝑀})–1-1-onto→(𝐴 ∖ {(𝑓𝑀)}))
5932, 45, 57, 58syl3anc 1238 . . . . . 6 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → (𝑓 ↾ (suc 𝑀 ∖ {𝑀})):(suc 𝑀 ∖ {𝑀})–1-1-onto→(𝐴 ∖ {(𝑓𝑀)}))
60 f1oeng 6751 . . . . . 6 (((suc 𝑀 ∖ {𝑀}) ∈ ω ∧ (𝑓 ↾ (suc 𝑀 ∖ {𝑀})):(suc 𝑀 ∖ {𝑀})–1-1-onto→(𝐴 ∖ {(𝑓𝑀)})) → (suc 𝑀 ∖ {𝑀}) ≈ (𝐴 ∖ {(𝑓𝑀)}))
6129, 59, 60syl2anc 411 . . . . 5 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → (suc 𝑀 ∖ {𝑀}) ≈ (𝐴 ∖ {(𝑓𝑀)}))
6225, 61eqbrtrd 4022 . . . 4 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → 𝑀 ≈ (𝐴 ∖ {(𝑓𝑀)}))
6362ensymd 6777 . . 3 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → (𝐴 ∖ {(𝑓𝑀)}) ≈ 𝑀)
64 entr 6778 . . 3 (((𝐴 ∖ {𝑋}) ≈ (𝐴 ∖ {(𝑓𝑀)}) ∧ (𝐴 ∖ {(𝑓𝑀)}) ≈ 𝑀) → (𝐴 ∖ {𝑋}) ≈ 𝑀)
6520, 63, 64syl2anc 411 . 2 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → (𝐴 ∖ {𝑋}) ≈ 𝑀)
664, 65exlimddv 1898 1 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → (𝐴 ∖ {𝑋}) ≈ 𝑀)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 978   = wceq 1353  wex 1492  wcel 2148  cdif 3126  {csn 3591  cop 3594   class class class wbr 4000  Ord word 4359  suc csuc 4362  ωcom 4586  ccnv 4622  dom cdm 4623  ran crn 4624  cres 4625  Rel wrel 4628  Fun wfun 5206   Fn wfn 5207  wf 5208  ontowfo 5210  1-1-ontowf1o 5211  cfv 5212  cen 6732  Fincfn 6734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-iord 4363  df-on 4365  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-er 6529  df-en 6735  df-fin 6737
This theorem is referenced by:  dif1enen  6874  findcard  6882  findcard2  6883  findcard2s  6884  diffisn  6887  en2eleq  7188  en2other2  7189  zfz1isolem1  10804
  Copyright terms: Public domain W3C validator