ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1opw2 GIF version

Theorem f1opw2 6044
Description: A one-to-one mapping induces a one-to-one mapping on power sets. This version of f1opw 6045 avoids the Axiom of Replacement. (Contributed by Mario Carneiro, 26-Jun-2015.)
Hypotheses
Ref Expression
f1opw2.1 (𝜑𝐹:𝐴1-1-onto𝐵)
f1opw2.2 (𝜑 → (𝐹𝑎) ∈ V)
f1opw2.3 (𝜑 → (𝐹𝑏) ∈ V)
Assertion
Ref Expression
f1opw2 (𝜑 → (𝑏 ∈ 𝒫 𝐴 ↦ (𝐹𝑏)):𝒫 𝐴1-1-onto→𝒫 𝐵)
Distinct variable groups:   𝑎,𝑏,𝐴   𝐵,𝑎,𝑏   𝐹,𝑎,𝑏   𝜑,𝑎,𝑏

Proof of Theorem f1opw2
StepHypRef Expression
1 eqid 2165 . 2 (𝑏 ∈ 𝒫 𝐴 ↦ (𝐹𝑏)) = (𝑏 ∈ 𝒫 𝐴 ↦ (𝐹𝑏))
2 imassrn 4957 . . . . 5 (𝐹𝑏) ⊆ ran 𝐹
3 f1opw2.1 . . . . . . 7 (𝜑𝐹:𝐴1-1-onto𝐵)
4 f1ofo 5439 . . . . . . 7 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴onto𝐵)
53, 4syl 14 . . . . . 6 (𝜑𝐹:𝐴onto𝐵)
6 forn 5413 . . . . . 6 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
75, 6syl 14 . . . . 5 (𝜑 → ran 𝐹 = 𝐵)
82, 7sseqtrid 3192 . . . 4 (𝜑 → (𝐹𝑏) ⊆ 𝐵)
9 f1opw2.3 . . . . 5 (𝜑 → (𝐹𝑏) ∈ V)
10 elpwg 3567 . . . . 5 ((𝐹𝑏) ∈ V → ((𝐹𝑏) ∈ 𝒫 𝐵 ↔ (𝐹𝑏) ⊆ 𝐵))
119, 10syl 14 . . . 4 (𝜑 → ((𝐹𝑏) ∈ 𝒫 𝐵 ↔ (𝐹𝑏) ⊆ 𝐵))
128, 11mpbird 166 . . 3 (𝜑 → (𝐹𝑏) ∈ 𝒫 𝐵)
1312adantr 274 . 2 ((𝜑𝑏 ∈ 𝒫 𝐴) → (𝐹𝑏) ∈ 𝒫 𝐵)
14 imassrn 4957 . . . . 5 (𝐹𝑎) ⊆ ran 𝐹
15 dfdm4 4796 . . . . . 6 dom 𝐹 = ran 𝐹
16 f1odm 5436 . . . . . . 7 (𝐹:𝐴1-1-onto𝐵 → dom 𝐹 = 𝐴)
173, 16syl 14 . . . . . 6 (𝜑 → dom 𝐹 = 𝐴)
1815, 17eqtr3id 2213 . . . . 5 (𝜑 → ran 𝐹 = 𝐴)
1914, 18sseqtrid 3192 . . . 4 (𝜑 → (𝐹𝑎) ⊆ 𝐴)
20 f1opw2.2 . . . . 5 (𝜑 → (𝐹𝑎) ∈ V)
21 elpwg 3567 . . . . 5 ((𝐹𝑎) ∈ V → ((𝐹𝑎) ∈ 𝒫 𝐴 ↔ (𝐹𝑎) ⊆ 𝐴))
2220, 21syl 14 . . . 4 (𝜑 → ((𝐹𝑎) ∈ 𝒫 𝐴 ↔ (𝐹𝑎) ⊆ 𝐴))
2319, 22mpbird 166 . . 3 (𝜑 → (𝐹𝑎) ∈ 𝒫 𝐴)
2423adantr 274 . 2 ((𝜑𝑎 ∈ 𝒫 𝐵) → (𝐹𝑎) ∈ 𝒫 𝐴)
25 elpwi 3568 . . . . . . 7 (𝑎 ∈ 𝒫 𝐵𝑎𝐵)
2625adantl 275 . . . . . 6 ((𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵) → 𝑎𝐵)
27 foimacnv 5450 . . . . . 6 ((𝐹:𝐴onto𝐵𝑎𝐵) → (𝐹 “ (𝐹𝑎)) = 𝑎)
285, 26, 27syl2an 287 . . . . 5 ((𝜑 ∧ (𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵)) → (𝐹 “ (𝐹𝑎)) = 𝑎)
2928eqcomd 2171 . . . 4 ((𝜑 ∧ (𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵)) → 𝑎 = (𝐹 “ (𝐹𝑎)))
30 imaeq2 4942 . . . . 5 (𝑏 = (𝐹𝑎) → (𝐹𝑏) = (𝐹 “ (𝐹𝑎)))
3130eqeq2d 2177 . . . 4 (𝑏 = (𝐹𝑎) → (𝑎 = (𝐹𝑏) ↔ 𝑎 = (𝐹 “ (𝐹𝑎))))
3229, 31syl5ibrcom 156 . . 3 ((𝜑 ∧ (𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵)) → (𝑏 = (𝐹𝑎) → 𝑎 = (𝐹𝑏)))
33 f1of1 5431 . . . . . . 7 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴1-1𝐵)
343, 33syl 14 . . . . . 6 (𝜑𝐹:𝐴1-1𝐵)
35 elpwi 3568 . . . . . . 7 (𝑏 ∈ 𝒫 𝐴𝑏𝐴)
3635adantr 274 . . . . . 6 ((𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵) → 𝑏𝐴)
37 f1imacnv 5449 . . . . . 6 ((𝐹:𝐴1-1𝐵𝑏𝐴) → (𝐹 “ (𝐹𝑏)) = 𝑏)
3834, 36, 37syl2an 287 . . . . 5 ((𝜑 ∧ (𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵)) → (𝐹 “ (𝐹𝑏)) = 𝑏)
3938eqcomd 2171 . . . 4 ((𝜑 ∧ (𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵)) → 𝑏 = (𝐹 “ (𝐹𝑏)))
40 imaeq2 4942 . . . . 5 (𝑎 = (𝐹𝑏) → (𝐹𝑎) = (𝐹 “ (𝐹𝑏)))
4140eqeq2d 2177 . . . 4 (𝑎 = (𝐹𝑏) → (𝑏 = (𝐹𝑎) ↔ 𝑏 = (𝐹 “ (𝐹𝑏))))
4239, 41syl5ibrcom 156 . . 3 ((𝜑 ∧ (𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵)) → (𝑎 = (𝐹𝑏) → 𝑏 = (𝐹𝑎)))
4332, 42impbid 128 . 2 ((𝜑 ∧ (𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵)) → (𝑏 = (𝐹𝑎) ↔ 𝑎 = (𝐹𝑏)))
441, 13, 24, 43f1o2d 6043 1 (𝜑 → (𝑏 ∈ 𝒫 𝐴 ↦ (𝐹𝑏)):𝒫 𝐴1-1-onto→𝒫 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wcel 2136  Vcvv 2726  wss 3116  𝒫 cpw 3559  cmpt 4043  ccnv 4603  dom cdm 4604  ran crn 4605  cima 4607  1-1wf1 5185  ontowfo 5186  1-1-ontowf1o 5187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195
This theorem is referenced by:  f1opw  6045
  Copyright terms: Public domain W3C validator