Proof of Theorem f1opw2
| Step | Hyp | Ref
 | Expression | 
| 1 |   | eqid 2196 | 
. 2
⊢ (𝑏 ∈ 𝒫 𝐴 ↦ (𝐹 “ 𝑏)) = (𝑏 ∈ 𝒫 𝐴 ↦ (𝐹 “ 𝑏)) | 
| 2 |   | imassrn 5020 | 
. . . . 5
⊢ (𝐹 “ 𝑏) ⊆ ran 𝐹 | 
| 3 |   | f1opw2.1 | 
. . . . . . 7
⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) | 
| 4 |   | f1ofo 5511 | 
. . . . . . 7
⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–onto→𝐵) | 
| 5 | 3, 4 | syl 14 | 
. . . . . 6
⊢ (𝜑 → 𝐹:𝐴–onto→𝐵) | 
| 6 |   | forn 5483 | 
. . . . . 6
⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) | 
| 7 | 5, 6 | syl 14 | 
. . . . 5
⊢ (𝜑 → ran 𝐹 = 𝐵) | 
| 8 | 2, 7 | sseqtrid 3233 | 
. . . 4
⊢ (𝜑 → (𝐹 “ 𝑏) ⊆ 𝐵) | 
| 9 |   | f1opw2.3 | 
. . . . 5
⊢ (𝜑 → (𝐹 “ 𝑏) ∈ V) | 
| 10 |   | elpwg 3613 | 
. . . . 5
⊢ ((𝐹 “ 𝑏) ∈ V → ((𝐹 “ 𝑏) ∈ 𝒫 𝐵 ↔ (𝐹 “ 𝑏) ⊆ 𝐵)) | 
| 11 | 9, 10 | syl 14 | 
. . . 4
⊢ (𝜑 → ((𝐹 “ 𝑏) ∈ 𝒫 𝐵 ↔ (𝐹 “ 𝑏) ⊆ 𝐵)) | 
| 12 | 8, 11 | mpbird 167 | 
. . 3
⊢ (𝜑 → (𝐹 “ 𝑏) ∈ 𝒫 𝐵) | 
| 13 | 12 | adantr 276 | 
. 2
⊢ ((𝜑 ∧ 𝑏 ∈ 𝒫 𝐴) → (𝐹 “ 𝑏) ∈ 𝒫 𝐵) | 
| 14 |   | imassrn 5020 | 
. . . . 5
⊢ (◡𝐹 “ 𝑎) ⊆ ran ◡𝐹 | 
| 15 |   | dfdm4 4858 | 
. . . . . 6
⊢ dom 𝐹 = ran ◡𝐹 | 
| 16 |   | f1odm 5508 | 
. . . . . . 7
⊢ (𝐹:𝐴–1-1-onto→𝐵 → dom 𝐹 = 𝐴) | 
| 17 | 3, 16 | syl 14 | 
. . . . . 6
⊢ (𝜑 → dom 𝐹 = 𝐴) | 
| 18 | 15, 17 | eqtr3id 2243 | 
. . . . 5
⊢ (𝜑 → ran ◡𝐹 = 𝐴) | 
| 19 | 14, 18 | sseqtrid 3233 | 
. . . 4
⊢ (𝜑 → (◡𝐹 “ 𝑎) ⊆ 𝐴) | 
| 20 |   | f1opw2.2 | 
. . . . 5
⊢ (𝜑 → (◡𝐹 “ 𝑎) ∈ V) | 
| 21 |   | elpwg 3613 | 
. . . . 5
⊢ ((◡𝐹 “ 𝑎) ∈ V → ((◡𝐹 “ 𝑎) ∈ 𝒫 𝐴 ↔ (◡𝐹 “ 𝑎) ⊆ 𝐴)) | 
| 22 | 20, 21 | syl 14 | 
. . . 4
⊢ (𝜑 → ((◡𝐹 “ 𝑎) ∈ 𝒫 𝐴 ↔ (◡𝐹 “ 𝑎) ⊆ 𝐴)) | 
| 23 | 19, 22 | mpbird 167 | 
. . 3
⊢ (𝜑 → (◡𝐹 “ 𝑎) ∈ 𝒫 𝐴) | 
| 24 | 23 | adantr 276 | 
. 2
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝐵) → (◡𝐹 “ 𝑎) ∈ 𝒫 𝐴) | 
| 25 |   | elpwi 3614 | 
. . . . . . 7
⊢ (𝑎 ∈ 𝒫 𝐵 → 𝑎 ⊆ 𝐵) | 
| 26 | 25 | adantl 277 | 
. . . . . 6
⊢ ((𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵) → 𝑎 ⊆ 𝐵) | 
| 27 |   | foimacnv 5522 | 
. . . . . 6
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝑎 ⊆ 𝐵) → (𝐹 “ (◡𝐹 “ 𝑎)) = 𝑎) | 
| 28 | 5, 26, 27 | syl2an 289 | 
. . . . 5
⊢ ((𝜑 ∧ (𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵)) → (𝐹 “ (◡𝐹 “ 𝑎)) = 𝑎) | 
| 29 | 28 | eqcomd 2202 | 
. . . 4
⊢ ((𝜑 ∧ (𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵)) → 𝑎 = (𝐹 “ (◡𝐹 “ 𝑎))) | 
| 30 |   | imaeq2 5005 | 
. . . . 5
⊢ (𝑏 = (◡𝐹 “ 𝑎) → (𝐹 “ 𝑏) = (𝐹 “ (◡𝐹 “ 𝑎))) | 
| 31 | 30 | eqeq2d 2208 | 
. . . 4
⊢ (𝑏 = (◡𝐹 “ 𝑎) → (𝑎 = (𝐹 “ 𝑏) ↔ 𝑎 = (𝐹 “ (◡𝐹 “ 𝑎)))) | 
| 32 | 29, 31 | syl5ibrcom 157 | 
. . 3
⊢ ((𝜑 ∧ (𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵)) → (𝑏 = (◡𝐹 “ 𝑎) → 𝑎 = (𝐹 “ 𝑏))) | 
| 33 |   | f1of1 5503 | 
. . . . . . 7
⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–1-1→𝐵) | 
| 34 | 3, 33 | syl 14 | 
. . . . . 6
⊢ (𝜑 → 𝐹:𝐴–1-1→𝐵) | 
| 35 |   | elpwi 3614 | 
. . . . . . 7
⊢ (𝑏 ∈ 𝒫 𝐴 → 𝑏 ⊆ 𝐴) | 
| 36 | 35 | adantr 276 | 
. . . . . 6
⊢ ((𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵) → 𝑏 ⊆ 𝐴) | 
| 37 |   | f1imacnv 5521 | 
. . . . . 6
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝑏 ⊆ 𝐴) → (◡𝐹 “ (𝐹 “ 𝑏)) = 𝑏) | 
| 38 | 34, 36, 37 | syl2an 289 | 
. . . . 5
⊢ ((𝜑 ∧ (𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵)) → (◡𝐹 “ (𝐹 “ 𝑏)) = 𝑏) | 
| 39 | 38 | eqcomd 2202 | 
. . . 4
⊢ ((𝜑 ∧ (𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵)) → 𝑏 = (◡𝐹 “ (𝐹 “ 𝑏))) | 
| 40 |   | imaeq2 5005 | 
. . . . 5
⊢ (𝑎 = (𝐹 “ 𝑏) → (◡𝐹 “ 𝑎) = (◡𝐹 “ (𝐹 “ 𝑏))) | 
| 41 | 40 | eqeq2d 2208 | 
. . . 4
⊢ (𝑎 = (𝐹 “ 𝑏) → (𝑏 = (◡𝐹 “ 𝑎) ↔ 𝑏 = (◡𝐹 “ (𝐹 “ 𝑏)))) | 
| 42 | 39, 41 | syl5ibrcom 157 | 
. . 3
⊢ ((𝜑 ∧ (𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵)) → (𝑎 = (𝐹 “ 𝑏) → 𝑏 = (◡𝐹 “ 𝑎))) | 
| 43 | 32, 42 | impbid 129 | 
. 2
⊢ ((𝜑 ∧ (𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵)) → (𝑏 = (◡𝐹 “ 𝑎) ↔ 𝑎 = (𝐹 “ 𝑏))) | 
| 44 | 1, 13, 24, 43 | f1o2d 6128 | 
1
⊢ (𝜑 → (𝑏 ∈ 𝒫 𝐴 ↦ (𝐹 “ 𝑏)):𝒫 𝐴–1-1-onto→𝒫 𝐵) |