Step | Hyp | Ref
| Expression |
1 | | prod0 11526 |
. . . 4
⊢
∏𝑘 ∈
∅ 𝐵 =
1 |
2 | | fprodf1o.3 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:𝐶–1-1-onto→𝐴) |
3 | 2 | adantr 274 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐶 = ∅) → 𝐹:𝐶–1-1-onto→𝐴) |
4 | | f1oeq2 5422 |
. . . . . . . . 9
⊢ (𝐶 = ∅ → (𝐹:𝐶–1-1-onto→𝐴 ↔ 𝐹:∅–1-1-onto→𝐴)) |
5 | 4 | adantl 275 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐶 = ∅) → (𝐹:𝐶–1-1-onto→𝐴 ↔ 𝐹:∅–1-1-onto→𝐴)) |
6 | 3, 5 | mpbid 146 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐶 = ∅) → 𝐹:∅–1-1-onto→𝐴) |
7 | | f1ofo 5439 |
. . . . . . 7
⊢ (𝐹:∅–1-1-onto→𝐴 → 𝐹:∅–onto→𝐴) |
8 | 6, 7 | syl 14 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶 = ∅) → 𝐹:∅–onto→𝐴) |
9 | | fo00 5468 |
. . . . . . 7
⊢ (𝐹:∅–onto→𝐴 ↔ (𝐹 = ∅ ∧ 𝐴 = ∅)) |
10 | 9 | simprbi 273 |
. . . . . 6
⊢ (𝐹:∅–onto→𝐴 → 𝐴 = ∅) |
11 | 8, 10 | syl 14 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶 = ∅) → 𝐴 = ∅) |
12 | 11 | prodeq1d 11505 |
. . . 4
⊢ ((𝜑 ∧ 𝐶 = ∅) → ∏𝑘 ∈ 𝐴 𝐵 = ∏𝑘 ∈ ∅ 𝐵) |
13 | | prodeq1 11494 |
. . . . . 6
⊢ (𝐶 = ∅ → ∏𝑛 ∈ 𝐶 𝐷 = ∏𝑛 ∈ ∅ 𝐷) |
14 | | prod0 11526 |
. . . . . 6
⊢
∏𝑛 ∈
∅ 𝐷 =
1 |
15 | 13, 14 | eqtrdi 2215 |
. . . . 5
⊢ (𝐶 = ∅ → ∏𝑛 ∈ 𝐶 𝐷 = 1) |
16 | 15 | adantl 275 |
. . . 4
⊢ ((𝜑 ∧ 𝐶 = ∅) → ∏𝑛 ∈ 𝐶 𝐷 = 1) |
17 | 1, 12, 16 | 3eqtr4a 2225 |
. . 3
⊢ ((𝜑 ∧ 𝐶 = ∅) → ∏𝑘 ∈ 𝐴 𝐵 = ∏𝑛 ∈ 𝐶 𝐷) |
18 | 17 | ex 114 |
. 2
⊢ (𝜑 → (𝐶 = ∅ → ∏𝑘 ∈ 𝐴 𝐵 = ∏𝑛 ∈ 𝐶 𝐷)) |
19 | | 2fveq3 5491 |
. . . . . . . 8
⊢ (𝑚 = (𝑓‘𝑛) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝐹‘𝑚)) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝐹‘(𝑓‘𝑛)))) |
20 | | simprl 521 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto→𝐶)) → (♯‘𝐶) ∈
ℕ) |
21 | | simprr 522 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto→𝐶)) → 𝑓:(1...(♯‘𝐶))–1-1-onto→𝐶) |
22 | | f1of 5432 |
. . . . . . . . . . . 12
⊢ (𝐹:𝐶–1-1-onto→𝐴 → 𝐹:𝐶⟶𝐴) |
23 | 2, 22 | syl 14 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹:𝐶⟶𝐴) |
24 | 23 | ffvelrnda 5620 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ 𝐶) → (𝐹‘𝑚) ∈ 𝐴) |
25 | | fprodf1o.5 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
26 | 25 | fmpttd 5640 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ) |
27 | 26 | ffvelrnda 5620 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐹‘𝑚) ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝐹‘𝑚)) ∈ ℂ) |
28 | 24, 27 | syldan 280 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ 𝐶) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝐹‘𝑚)) ∈ ℂ) |
29 | 28 | adantlr 469 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto→𝐶)) ∧ 𝑚 ∈ 𝐶) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝐹‘𝑚)) ∈ ℂ) |
30 | | simpr 109 |
. . . . . . . . . . . 12
⊢
(((♯‘𝐶)
∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto→𝐶) → 𝑓:(1...(♯‘𝐶))–1-1-onto→𝐶) |
31 | | f1oco 5455 |
. . . . . . . . . . . 12
⊢ ((𝐹:𝐶–1-1-onto→𝐴 ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto→𝐶) → (𝐹 ∘ 𝑓):(1...(♯‘𝐶))–1-1-onto→𝐴) |
32 | 2, 30, 31 | syl2an 287 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto→𝐶)) → (𝐹 ∘ 𝑓):(1...(♯‘𝐶))–1-1-onto→𝐴) |
33 | | f1of 5432 |
. . . . . . . . . . 11
⊢ ((𝐹 ∘ 𝑓):(1...(♯‘𝐶))–1-1-onto→𝐴 → (𝐹 ∘ 𝑓):(1...(♯‘𝐶))⟶𝐴) |
34 | 32, 33 | syl 14 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto→𝐶)) → (𝐹 ∘ 𝑓):(1...(♯‘𝐶))⟶𝐴) |
35 | | fvco3 5557 |
. . . . . . . . . 10
⊢ (((𝐹 ∘ 𝑓):(1...(♯‘𝐶))⟶𝐴 ∧ 𝑛 ∈ (1...(♯‘𝐶))) → (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ (𝐹 ∘ 𝑓))‘𝑛) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘((𝐹 ∘ 𝑓)‘𝑛))) |
36 | 34, 35 | sylan 281 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto→𝐶)) ∧ 𝑛 ∈ (1...(♯‘𝐶))) → (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ (𝐹 ∘ 𝑓))‘𝑛) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘((𝐹 ∘ 𝑓)‘𝑛))) |
37 | | f1of 5432 |
. . . . . . . . . . . . 13
⊢ (𝑓:(1...(♯‘𝐶))–1-1-onto→𝐶 → 𝑓:(1...(♯‘𝐶))⟶𝐶) |
38 | 37 | adantl 275 |
. . . . . . . . . . . 12
⊢
(((♯‘𝐶)
∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto→𝐶) → 𝑓:(1...(♯‘𝐶))⟶𝐶) |
39 | 38 | adantl 275 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto→𝐶)) → 𝑓:(1...(♯‘𝐶))⟶𝐶) |
40 | | fvco3 5557 |
. . . . . . . . . . 11
⊢ ((𝑓:(1...(♯‘𝐶))⟶𝐶 ∧ 𝑛 ∈ (1...(♯‘𝐶))) → ((𝐹 ∘ 𝑓)‘𝑛) = (𝐹‘(𝑓‘𝑛))) |
41 | 39, 40 | sylan 281 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto→𝐶)) ∧ 𝑛 ∈ (1...(♯‘𝐶))) → ((𝐹 ∘ 𝑓)‘𝑛) = (𝐹‘(𝑓‘𝑛))) |
42 | 41 | fveq2d 5490 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto→𝐶)) ∧ 𝑛 ∈ (1...(♯‘𝐶))) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘((𝐹 ∘ 𝑓)‘𝑛)) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝐹‘(𝑓‘𝑛)))) |
43 | 36, 42 | eqtrd 2198 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto→𝐶)) ∧ 𝑛 ∈ (1...(♯‘𝐶))) → (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ (𝐹 ∘ 𝑓))‘𝑛) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝐹‘(𝑓‘𝑛)))) |
44 | 19, 20, 21, 29, 43 | fprodseq 11524 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto→𝐶)) → ∏𝑚 ∈ 𝐶 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝐹‘𝑚)) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐶), (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ (𝐹 ∘ 𝑓))‘𝑛), 1)))‘(♯‘𝐶))) |
45 | | eqid 2165 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵) |
46 | | fprodf1o.1 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝐺 → 𝐵 = 𝐷) |
47 | | fprodf1o.4 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → (𝐹‘𝑛) = 𝐺) |
48 | 23 | ffvelrnda 5620 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → (𝐹‘𝑛) ∈ 𝐴) |
49 | 47, 48 | eqeltrrd 2244 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → 𝐺 ∈ 𝐴) |
50 | 46 | eleq1d 2235 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝐺 → (𝐵 ∈ ℂ ↔ 𝐷 ∈ ℂ)) |
51 | 25 | ralrimiva 2539 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
52 | 51 | adantr 274 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
53 | 50, 52, 49 | rspcdva 2835 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → 𝐷 ∈ ℂ) |
54 | 45, 46, 49, 53 | fvmptd3 5579 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝐺) = 𝐷) |
55 | 47 | fveq2d 5490 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝐹‘𝑛)) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝐺)) |
56 | | simpr 109 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → 𝑛 ∈ 𝐶) |
57 | | eqid 2165 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ 𝐶 ↦ 𝐷) = (𝑛 ∈ 𝐶 ↦ 𝐷) |
58 | 57 | fvmpt2 5569 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ 𝐶 ∧ 𝐷 ∈ ℂ) → ((𝑛 ∈ 𝐶 ↦ 𝐷)‘𝑛) = 𝐷) |
59 | 56, 53, 58 | syl2anc 409 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → ((𝑛 ∈ 𝐶 ↦ 𝐷)‘𝑛) = 𝐷) |
60 | 54, 55, 59 | 3eqtr4rd 2209 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → ((𝑛 ∈ 𝐶 ↦ 𝐷)‘𝑛) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝐹‘𝑛))) |
61 | 60 | ralrimiva 2539 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑛 ∈ 𝐶 ((𝑛 ∈ 𝐶 ↦ 𝐷)‘𝑛) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝐹‘𝑛))) |
62 | | nffvmpt1 5497 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑛((𝑛 ∈ 𝐶 ↦ 𝐷)‘𝑚) |
63 | 62 | nfeq1 2318 |
. . . . . . . . . . 11
⊢
Ⅎ𝑛((𝑛 ∈ 𝐶 ↦ 𝐷)‘𝑚) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝐹‘𝑚)) |
64 | | fveq2 5486 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑚 → ((𝑛 ∈ 𝐶 ↦ 𝐷)‘𝑛) = ((𝑛 ∈ 𝐶 ↦ 𝐷)‘𝑚)) |
65 | | 2fveq3 5491 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑚 → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝐹‘𝑛)) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝐹‘𝑚))) |
66 | 64, 65 | eqeq12d 2180 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑚 → (((𝑛 ∈ 𝐶 ↦ 𝐷)‘𝑛) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝐹‘𝑛)) ↔ ((𝑛 ∈ 𝐶 ↦ 𝐷)‘𝑚) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝐹‘𝑚)))) |
67 | 63, 66 | rspc 2824 |
. . . . . . . . . 10
⊢ (𝑚 ∈ 𝐶 → (∀𝑛 ∈ 𝐶 ((𝑛 ∈ 𝐶 ↦ 𝐷)‘𝑛) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝐹‘𝑛)) → ((𝑛 ∈ 𝐶 ↦ 𝐷)‘𝑚) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝐹‘𝑚)))) |
68 | 61, 67 | mpan9 279 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ 𝐶) → ((𝑛 ∈ 𝐶 ↦ 𝐷)‘𝑚) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝐹‘𝑚))) |
69 | 68 | adantlr 469 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto→𝐶)) ∧ 𝑚 ∈ 𝐶) → ((𝑛 ∈ 𝐶 ↦ 𝐷)‘𝑚) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝐹‘𝑚))) |
70 | 69 | prodeq2dv 11507 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto→𝐶)) → ∏𝑚 ∈ 𝐶 ((𝑛 ∈ 𝐶 ↦ 𝐷)‘𝑚) = ∏𝑚 ∈ 𝐶 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝐹‘𝑚))) |
71 | | fveq2 5486 |
. . . . . . . 8
⊢ (𝑚 = ((𝐹 ∘ 𝑓)‘𝑛) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘((𝐹 ∘ 𝑓)‘𝑛))) |
72 | 26 | adantr 274 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto→𝐶)) → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ) |
73 | 72 | ffvelrnda 5620 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto→𝐶)) ∧ 𝑚 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) ∈ ℂ) |
74 | 71, 20, 32, 73, 36 | fprodseq 11524 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto→𝐶)) → ∏𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐶), (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ (𝐹 ∘ 𝑓))‘𝑛), 1)))‘(♯‘𝐶))) |
75 | 44, 70, 74 | 3eqtr4rd 2209 |
. . . . . 6
⊢ ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto→𝐶)) → ∏𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) = ∏𝑚 ∈ 𝐶 ((𝑛 ∈ 𝐶 ↦ 𝐷)‘𝑚)) |
76 | 51 | adantr 274 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto→𝐶)) → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
77 | | prodfct 11528 |
. . . . . . 7
⊢
(∀𝑘 ∈
𝐴 𝐵 ∈ ℂ → ∏𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) = ∏𝑘 ∈ 𝐴 𝐵) |
78 | 76, 77 | syl 14 |
. . . . . 6
⊢ ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto→𝐶)) → ∏𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) = ∏𝑘 ∈ 𝐴 𝐵) |
79 | 53 | ralrimiva 2539 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑛 ∈ 𝐶 𝐷 ∈ ℂ) |
80 | 79 | adantr 274 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto→𝐶)) → ∀𝑛 ∈ 𝐶 𝐷 ∈ ℂ) |
81 | | prodfct 11528 |
. . . . . . 7
⊢
(∀𝑛 ∈
𝐶 𝐷 ∈ ℂ → ∏𝑚 ∈ 𝐶 ((𝑛 ∈ 𝐶 ↦ 𝐷)‘𝑚) = ∏𝑛 ∈ 𝐶 𝐷) |
82 | 80, 81 | syl 14 |
. . . . . 6
⊢ ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto→𝐶)) → ∏𝑚 ∈ 𝐶 ((𝑛 ∈ 𝐶 ↦ 𝐷)‘𝑚) = ∏𝑛 ∈ 𝐶 𝐷) |
83 | 75, 78, 82 | 3eqtr3d 2206 |
. . . . 5
⊢ ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto→𝐶)) → ∏𝑘 ∈ 𝐴 𝐵 = ∏𝑛 ∈ 𝐶 𝐷) |
84 | 83 | expr 373 |
. . . 4
⊢ ((𝜑 ∧ (♯‘𝐶) ∈ ℕ) → (𝑓:(1...(♯‘𝐶))–1-1-onto→𝐶 → ∏𝑘 ∈ 𝐴 𝐵 = ∏𝑛 ∈ 𝐶 𝐷)) |
85 | 84 | exlimdv 1807 |
. . 3
⊢ ((𝜑 ∧ (♯‘𝐶) ∈ ℕ) →
(∃𝑓 𝑓:(1...(♯‘𝐶))–1-1-onto→𝐶 → ∏𝑘 ∈ 𝐴 𝐵 = ∏𝑛 ∈ 𝐶 𝐷)) |
86 | 85 | expimpd 361 |
. 2
⊢ (𝜑 → (((♯‘𝐶) ∈ ℕ ∧
∃𝑓 𝑓:(1...(♯‘𝐶))–1-1-onto→𝐶) → ∏𝑘 ∈ 𝐴 𝐵 = ∏𝑛 ∈ 𝐶 𝐷)) |
87 | | fprodf1o.2 |
. . 3
⊢ (𝜑 → 𝐶 ∈ Fin) |
88 | | fz1f1o 11316 |
. . 3
⊢ (𝐶 ∈ Fin → (𝐶 = ∅ ∨
((♯‘𝐶) ∈
ℕ ∧ ∃𝑓
𝑓:(1...(♯‘𝐶))–1-1-onto→𝐶))) |
89 | 87, 88 | syl 14 |
. 2
⊢ (𝜑 → (𝐶 = ∅ ∨ ((♯‘𝐶) ∈ ℕ ∧
∃𝑓 𝑓:(1...(♯‘𝐶))–1-1-onto→𝐶))) |
90 | 18, 86, 89 | mpjaod 708 |
1
⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 = ∏𝑛 ∈ 𝐶 𝐷) |