ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodf1o GIF version

Theorem fprodf1o 12107
Description: Re-index a finite product using a bijection. (Contributed by Scott Fenton, 7-Dec-2017.)
Hypotheses
Ref Expression
fprodf1o.1 (𝑘 = 𝐺𝐵 = 𝐷)
fprodf1o.2 (𝜑𝐶 ∈ Fin)
fprodf1o.3 (𝜑𝐹:𝐶1-1-onto𝐴)
fprodf1o.4 ((𝜑𝑛𝐶) → (𝐹𝑛) = 𝐺)
fprodf1o.5 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
fprodf1o (𝜑 → ∏𝑘𝐴 𝐵 = ∏𝑛𝐶 𝐷)
Distinct variable groups:   𝐴,𝑘,𝑛   𝐵,𝑛   𝐶,𝑛   𝐷,𝑘   𝑛,𝐹   𝑘,𝐺   𝜑,𝑘,𝑛
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)   𝐷(𝑛)   𝐹(𝑘)   𝐺(𝑛)

Proof of Theorem fprodf1o
Dummy variables 𝑓 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prod0 12104 . . . 4 𝑘 ∈ ∅ 𝐵 = 1
2 fprodf1o.3 . . . . . . . . 9 (𝜑𝐹:𝐶1-1-onto𝐴)
32adantr 276 . . . . . . . 8 ((𝜑𝐶 = ∅) → 𝐹:𝐶1-1-onto𝐴)
4 f1oeq2 5563 . . . . . . . . 9 (𝐶 = ∅ → (𝐹:𝐶1-1-onto𝐴𝐹:∅–1-1-onto𝐴))
54adantl 277 . . . . . . . 8 ((𝜑𝐶 = ∅) → (𝐹:𝐶1-1-onto𝐴𝐹:∅–1-1-onto𝐴))
63, 5mpbid 147 . . . . . . 7 ((𝜑𝐶 = ∅) → 𝐹:∅–1-1-onto𝐴)
7 f1ofo 5581 . . . . . . 7 (𝐹:∅–1-1-onto𝐴𝐹:∅–onto𝐴)
86, 7syl 14 . . . . . 6 ((𝜑𝐶 = ∅) → 𝐹:∅–onto𝐴)
9 fo00 5611 . . . . . . 7 (𝐹:∅–onto𝐴 ↔ (𝐹 = ∅ ∧ 𝐴 = ∅))
109simprbi 275 . . . . . 6 (𝐹:∅–onto𝐴𝐴 = ∅)
118, 10syl 14 . . . . 5 ((𝜑𝐶 = ∅) → 𝐴 = ∅)
1211prodeq1d 12083 . . . 4 ((𝜑𝐶 = ∅) → ∏𝑘𝐴 𝐵 = ∏𝑘 ∈ ∅ 𝐵)
13 prodeq1 12072 . . . . . 6 (𝐶 = ∅ → ∏𝑛𝐶 𝐷 = ∏𝑛 ∈ ∅ 𝐷)
14 prod0 12104 . . . . . 6 𝑛 ∈ ∅ 𝐷 = 1
1513, 14eqtrdi 2278 . . . . 5 (𝐶 = ∅ → ∏𝑛𝐶 𝐷 = 1)
1615adantl 277 . . . 4 ((𝜑𝐶 = ∅) → ∏𝑛𝐶 𝐷 = 1)
171, 12, 163eqtr4a 2288 . . 3 ((𝜑𝐶 = ∅) → ∏𝑘𝐴 𝐵 = ∏𝑛𝐶 𝐷)
1817ex 115 . 2 (𝜑 → (𝐶 = ∅ → ∏𝑘𝐴 𝐵 = ∏𝑛𝐶 𝐷))
19 2fveq3 5634 . . . . . . . 8 (𝑚 = (𝑓𝑛) → ((𝑘𝐴𝐵)‘(𝐹𝑚)) = ((𝑘𝐴𝐵)‘(𝐹‘(𝑓𝑛))))
20 simprl 529 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) → (♯‘𝐶) ∈ ℕ)
21 simprr 531 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) → 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)
22 f1of 5574 . . . . . . . . . . . 12 (𝐹:𝐶1-1-onto𝐴𝐹:𝐶𝐴)
232, 22syl 14 . . . . . . . . . . 11 (𝜑𝐹:𝐶𝐴)
2423ffvelcdmda 5772 . . . . . . . . . 10 ((𝜑𝑚𝐶) → (𝐹𝑚) ∈ 𝐴)
25 fprodf1o.5 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
2625fmpttd 5792 . . . . . . . . . . 11 (𝜑 → (𝑘𝐴𝐵):𝐴⟶ℂ)
2726ffvelcdmda 5772 . . . . . . . . . 10 ((𝜑 ∧ (𝐹𝑚) ∈ 𝐴) → ((𝑘𝐴𝐵)‘(𝐹𝑚)) ∈ ℂ)
2824, 27syldan 282 . . . . . . . . 9 ((𝜑𝑚𝐶) → ((𝑘𝐴𝐵)‘(𝐹𝑚)) ∈ ℂ)
2928adantlr 477 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) ∧ 𝑚𝐶) → ((𝑘𝐴𝐵)‘(𝐹𝑚)) ∈ ℂ)
30 simpr 110 . . . . . . . . . . . 12 (((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶) → 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)
31 f1oco 5597 . . . . . . . . . . . 12 ((𝐹:𝐶1-1-onto𝐴𝑓:(1...(♯‘𝐶))–1-1-onto𝐶) → (𝐹𝑓):(1...(♯‘𝐶))–1-1-onto𝐴)
322, 30, 31syl2an 289 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) → (𝐹𝑓):(1...(♯‘𝐶))–1-1-onto𝐴)
33 f1of 5574 . . . . . . . . . . 11 ((𝐹𝑓):(1...(♯‘𝐶))–1-1-onto𝐴 → (𝐹𝑓):(1...(♯‘𝐶))⟶𝐴)
3432, 33syl 14 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) → (𝐹𝑓):(1...(♯‘𝐶))⟶𝐴)
35 fvco3 5707 . . . . . . . . . 10 (((𝐹𝑓):(1...(♯‘𝐶))⟶𝐴𝑛 ∈ (1...(♯‘𝐶))) → (((𝑘𝐴𝐵) ∘ (𝐹𝑓))‘𝑛) = ((𝑘𝐴𝐵)‘((𝐹𝑓)‘𝑛)))
3634, 35sylan 283 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) ∧ 𝑛 ∈ (1...(♯‘𝐶))) → (((𝑘𝐴𝐵) ∘ (𝐹𝑓))‘𝑛) = ((𝑘𝐴𝐵)‘((𝐹𝑓)‘𝑛)))
37 f1of 5574 . . . . . . . . . . . . 13 (𝑓:(1...(♯‘𝐶))–1-1-onto𝐶𝑓:(1...(♯‘𝐶))⟶𝐶)
3837adantl 277 . . . . . . . . . . . 12 (((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶) → 𝑓:(1...(♯‘𝐶))⟶𝐶)
3938adantl 277 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) → 𝑓:(1...(♯‘𝐶))⟶𝐶)
40 fvco3 5707 . . . . . . . . . . 11 ((𝑓:(1...(♯‘𝐶))⟶𝐶𝑛 ∈ (1...(♯‘𝐶))) → ((𝐹𝑓)‘𝑛) = (𝐹‘(𝑓𝑛)))
4139, 40sylan 283 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) ∧ 𝑛 ∈ (1...(♯‘𝐶))) → ((𝐹𝑓)‘𝑛) = (𝐹‘(𝑓𝑛)))
4241fveq2d 5633 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) ∧ 𝑛 ∈ (1...(♯‘𝐶))) → ((𝑘𝐴𝐵)‘((𝐹𝑓)‘𝑛)) = ((𝑘𝐴𝐵)‘(𝐹‘(𝑓𝑛))))
4336, 42eqtrd 2262 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) ∧ 𝑛 ∈ (1...(♯‘𝐶))) → (((𝑘𝐴𝐵) ∘ (𝐹𝑓))‘𝑛) = ((𝑘𝐴𝐵)‘(𝐹‘(𝑓𝑛))))
4419, 20, 21, 29, 43fprodseq 12102 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) → ∏𝑚𝐶 ((𝑘𝐴𝐵)‘(𝐹𝑚)) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐶), (((𝑘𝐴𝐵) ∘ (𝐹𝑓))‘𝑛), 1)))‘(♯‘𝐶)))
45 eqid 2229 . . . . . . . . . . . . 13 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
46 fprodf1o.1 . . . . . . . . . . . . 13 (𝑘 = 𝐺𝐵 = 𝐷)
47 fprodf1o.4 . . . . . . . . . . . . . 14 ((𝜑𝑛𝐶) → (𝐹𝑛) = 𝐺)
4823ffvelcdmda 5772 . . . . . . . . . . . . . 14 ((𝜑𝑛𝐶) → (𝐹𝑛) ∈ 𝐴)
4947, 48eqeltrrd 2307 . . . . . . . . . . . . 13 ((𝜑𝑛𝐶) → 𝐺𝐴)
5046eleq1d 2298 . . . . . . . . . . . . . 14 (𝑘 = 𝐺 → (𝐵 ∈ ℂ ↔ 𝐷 ∈ ℂ))
5125ralrimiva 2603 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℂ)
5251adantr 276 . . . . . . . . . . . . . 14 ((𝜑𝑛𝐶) → ∀𝑘𝐴 𝐵 ∈ ℂ)
5350, 52, 49rspcdva 2912 . . . . . . . . . . . . 13 ((𝜑𝑛𝐶) → 𝐷 ∈ ℂ)
5445, 46, 49, 53fvmptd3 5730 . . . . . . . . . . . 12 ((𝜑𝑛𝐶) → ((𝑘𝐴𝐵)‘𝐺) = 𝐷)
5547fveq2d 5633 . . . . . . . . . . . 12 ((𝜑𝑛𝐶) → ((𝑘𝐴𝐵)‘(𝐹𝑛)) = ((𝑘𝐴𝐵)‘𝐺))
56 simpr 110 . . . . . . . . . . . . 13 ((𝜑𝑛𝐶) → 𝑛𝐶)
57 eqid 2229 . . . . . . . . . . . . . 14 (𝑛𝐶𝐷) = (𝑛𝐶𝐷)
5857fvmpt2 5720 . . . . . . . . . . . . 13 ((𝑛𝐶𝐷 ∈ ℂ) → ((𝑛𝐶𝐷)‘𝑛) = 𝐷)
5956, 53, 58syl2anc 411 . . . . . . . . . . . 12 ((𝜑𝑛𝐶) → ((𝑛𝐶𝐷)‘𝑛) = 𝐷)
6054, 55, 593eqtr4rd 2273 . . . . . . . . . . 11 ((𝜑𝑛𝐶) → ((𝑛𝐶𝐷)‘𝑛) = ((𝑘𝐴𝐵)‘(𝐹𝑛)))
6160ralrimiva 2603 . . . . . . . . . 10 (𝜑 → ∀𝑛𝐶 ((𝑛𝐶𝐷)‘𝑛) = ((𝑘𝐴𝐵)‘(𝐹𝑛)))
62 nffvmpt1 5640 . . . . . . . . . . . 12 𝑛((𝑛𝐶𝐷)‘𝑚)
6362nfeq1 2382 . . . . . . . . . . 11 𝑛((𝑛𝐶𝐷)‘𝑚) = ((𝑘𝐴𝐵)‘(𝐹𝑚))
64 fveq2 5629 . . . . . . . . . . . 12 (𝑛 = 𝑚 → ((𝑛𝐶𝐷)‘𝑛) = ((𝑛𝐶𝐷)‘𝑚))
65 2fveq3 5634 . . . . . . . . . . . 12 (𝑛 = 𝑚 → ((𝑘𝐴𝐵)‘(𝐹𝑛)) = ((𝑘𝐴𝐵)‘(𝐹𝑚)))
6664, 65eqeq12d 2244 . . . . . . . . . . 11 (𝑛 = 𝑚 → (((𝑛𝐶𝐷)‘𝑛) = ((𝑘𝐴𝐵)‘(𝐹𝑛)) ↔ ((𝑛𝐶𝐷)‘𝑚) = ((𝑘𝐴𝐵)‘(𝐹𝑚))))
6763, 66rspc 2901 . . . . . . . . . 10 (𝑚𝐶 → (∀𝑛𝐶 ((𝑛𝐶𝐷)‘𝑛) = ((𝑘𝐴𝐵)‘(𝐹𝑛)) → ((𝑛𝐶𝐷)‘𝑚) = ((𝑘𝐴𝐵)‘(𝐹𝑚))))
6861, 67mpan9 281 . . . . . . . . 9 ((𝜑𝑚𝐶) → ((𝑛𝐶𝐷)‘𝑚) = ((𝑘𝐴𝐵)‘(𝐹𝑚)))
6968adantlr 477 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) ∧ 𝑚𝐶) → ((𝑛𝐶𝐷)‘𝑚) = ((𝑘𝐴𝐵)‘(𝐹𝑚)))
7069prodeq2dv 12085 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) → ∏𝑚𝐶 ((𝑛𝐶𝐷)‘𝑚) = ∏𝑚𝐶 ((𝑘𝐴𝐵)‘(𝐹𝑚)))
71 fveq2 5629 . . . . . . . 8 (𝑚 = ((𝐹𝑓)‘𝑛) → ((𝑘𝐴𝐵)‘𝑚) = ((𝑘𝐴𝐵)‘((𝐹𝑓)‘𝑛)))
7226adantr 276 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) → (𝑘𝐴𝐵):𝐴⟶ℂ)
7372ffvelcdmda 5772 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) ∧ 𝑚𝐴) → ((𝑘𝐴𝐵)‘𝑚) ∈ ℂ)
7471, 20, 32, 73, 36fprodseq 12102 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) → ∏𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐶), (((𝑘𝐴𝐵) ∘ (𝐹𝑓))‘𝑛), 1)))‘(♯‘𝐶)))
7544, 70, 743eqtr4rd 2273 . . . . . 6 ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) → ∏𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = ∏𝑚𝐶 ((𝑛𝐶𝐷)‘𝑚))
7651adantr 276 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) → ∀𝑘𝐴 𝐵 ∈ ℂ)
77 prodfct 12106 . . . . . . 7 (∀𝑘𝐴 𝐵 ∈ ℂ → ∏𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = ∏𝑘𝐴 𝐵)
7876, 77syl 14 . . . . . 6 ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) → ∏𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = ∏𝑘𝐴 𝐵)
7953ralrimiva 2603 . . . . . . . 8 (𝜑 → ∀𝑛𝐶 𝐷 ∈ ℂ)
8079adantr 276 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) → ∀𝑛𝐶 𝐷 ∈ ℂ)
81 prodfct 12106 . . . . . . 7 (∀𝑛𝐶 𝐷 ∈ ℂ → ∏𝑚𝐶 ((𝑛𝐶𝐷)‘𝑚) = ∏𝑛𝐶 𝐷)
8280, 81syl 14 . . . . . 6 ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) → ∏𝑚𝐶 ((𝑛𝐶𝐷)‘𝑚) = ∏𝑛𝐶 𝐷)
8375, 78, 823eqtr3d 2270 . . . . 5 ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) → ∏𝑘𝐴 𝐵 = ∏𝑛𝐶 𝐷)
8483expr 375 . . . 4 ((𝜑 ∧ (♯‘𝐶) ∈ ℕ) → (𝑓:(1...(♯‘𝐶))–1-1-onto𝐶 → ∏𝑘𝐴 𝐵 = ∏𝑛𝐶 𝐷))
8584exlimdv 1865 . . 3 ((𝜑 ∧ (♯‘𝐶) ∈ ℕ) → (∃𝑓 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶 → ∏𝑘𝐴 𝐵 = ∏𝑛𝐶 𝐷))
8685expimpd 363 . 2 (𝜑 → (((♯‘𝐶) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶) → ∏𝑘𝐴 𝐵 = ∏𝑛𝐶 𝐷))
87 fprodf1o.2 . . 3 (𝜑𝐶 ∈ Fin)
88 fz1f1o 11894 . . 3 (𝐶 ∈ Fin → (𝐶 = ∅ ∨ ((♯‘𝐶) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)))
8987, 88syl 14 . 2 (𝜑 → (𝐶 = ∅ ∨ ((♯‘𝐶) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)))
9018, 86, 89mpjaod 723 1 (𝜑 → ∏𝑘𝐴 𝐵 = ∏𝑛𝐶 𝐷)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 713   = wceq 1395  wex 1538  wcel 2200  wral 2508  c0 3491  ifcif 3602   class class class wbr 4083  cmpt 4145  ccom 4723  wf 5314  ontowfo 5316  1-1-ontowf1o 5317  cfv 5318  (class class class)co 6007  Fincfn 6895  cc 8005  1c1 8008   · cmul 8012  cle 8190  cn 9118  ...cfz 10212  seqcseq 10677  chash 11005  cprod 12069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-irdg 6522  df-frec 6543  df-1o 6568  df-oadd 6572  df-er 6688  df-en 6896  df-dom 6897  df-fin 6898  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-n0 9378  df-z 9455  df-uz 9731  df-q 9823  df-rp 9858  df-fz 10213  df-fzo 10347  df-seqfrec 10678  df-exp 10769  df-ihash 11006  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518  df-clim 11798  df-proddc 12070
This theorem is referenced by:  fprodssdc  12109  fprodshft  12137  fprodrev  12138  fprod2dlemstep  12141  fprodcnv  12144  eulerthlemth  12762  gausslemma2dlem1  15748
  Copyright terms: Public domain W3C validator