| Step | Hyp | Ref
 | Expression | 
| 1 |   | prod0 11750 | 
. . . 4
⊢
∏𝑘 ∈
∅ 𝐵 =
1 | 
| 2 |   | fprodf1o.3 | 
. . . . . . . . 9
⊢ (𝜑 → 𝐹:𝐶–1-1-onto→𝐴) | 
| 3 | 2 | adantr 276 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐶 = ∅) → 𝐹:𝐶–1-1-onto→𝐴) | 
| 4 |   | f1oeq2 5493 | 
. . . . . . . . 9
⊢ (𝐶 = ∅ → (𝐹:𝐶–1-1-onto→𝐴 ↔ 𝐹:∅–1-1-onto→𝐴)) | 
| 5 | 4 | adantl 277 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐶 = ∅) → (𝐹:𝐶–1-1-onto→𝐴 ↔ 𝐹:∅–1-1-onto→𝐴)) | 
| 6 | 3, 5 | mpbid 147 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝐶 = ∅) → 𝐹:∅–1-1-onto→𝐴) | 
| 7 |   | f1ofo 5511 | 
. . . . . . 7
⊢ (𝐹:∅–1-1-onto→𝐴 → 𝐹:∅–onto→𝐴) | 
| 8 | 6, 7 | syl 14 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝐶 = ∅) → 𝐹:∅–onto→𝐴) | 
| 9 |   | fo00 5540 | 
. . . . . . 7
⊢ (𝐹:∅–onto→𝐴 ↔ (𝐹 = ∅ ∧ 𝐴 = ∅)) | 
| 10 | 9 | simprbi 275 | 
. . . . . 6
⊢ (𝐹:∅–onto→𝐴 → 𝐴 = ∅) | 
| 11 | 8, 10 | syl 14 | 
. . . . 5
⊢ ((𝜑 ∧ 𝐶 = ∅) → 𝐴 = ∅) | 
| 12 | 11 | prodeq1d 11729 | 
. . . 4
⊢ ((𝜑 ∧ 𝐶 = ∅) → ∏𝑘 ∈ 𝐴 𝐵 = ∏𝑘 ∈ ∅ 𝐵) | 
| 13 |   | prodeq1 11718 | 
. . . . . 6
⊢ (𝐶 = ∅ → ∏𝑛 ∈ 𝐶 𝐷 = ∏𝑛 ∈ ∅ 𝐷) | 
| 14 |   | prod0 11750 | 
. . . . . 6
⊢
∏𝑛 ∈
∅ 𝐷 =
1 | 
| 15 | 13, 14 | eqtrdi 2245 | 
. . . . 5
⊢ (𝐶 = ∅ → ∏𝑛 ∈ 𝐶 𝐷 = 1) | 
| 16 | 15 | adantl 277 | 
. . . 4
⊢ ((𝜑 ∧ 𝐶 = ∅) → ∏𝑛 ∈ 𝐶 𝐷 = 1) | 
| 17 | 1, 12, 16 | 3eqtr4a 2255 | 
. . 3
⊢ ((𝜑 ∧ 𝐶 = ∅) → ∏𝑘 ∈ 𝐴 𝐵 = ∏𝑛 ∈ 𝐶 𝐷) | 
| 18 | 17 | ex 115 | 
. 2
⊢ (𝜑 → (𝐶 = ∅ → ∏𝑘 ∈ 𝐴 𝐵 = ∏𝑛 ∈ 𝐶 𝐷)) | 
| 19 |   | 2fveq3 5563 | 
. . . . . . . 8
⊢ (𝑚 = (𝑓‘𝑛) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝐹‘𝑚)) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝐹‘(𝑓‘𝑛)))) | 
| 20 |   | simprl 529 | 
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto→𝐶)) → (♯‘𝐶) ∈
ℕ) | 
| 21 |   | simprr 531 | 
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto→𝐶)) → 𝑓:(1...(♯‘𝐶))–1-1-onto→𝐶) | 
| 22 |   | f1of 5504 | 
. . . . . . . . . . . 12
⊢ (𝐹:𝐶–1-1-onto→𝐴 → 𝐹:𝐶⟶𝐴) | 
| 23 | 2, 22 | syl 14 | 
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹:𝐶⟶𝐴) | 
| 24 | 23 | ffvelcdmda 5697 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ 𝐶) → (𝐹‘𝑚) ∈ 𝐴) | 
| 25 |   | fprodf1o.5 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) | 
| 26 | 25 | fmpttd 5717 | 
. . . . . . . . . . 11
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ) | 
| 27 | 26 | ffvelcdmda 5697 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐹‘𝑚) ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝐹‘𝑚)) ∈ ℂ) | 
| 28 | 24, 27 | syldan 282 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ 𝐶) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝐹‘𝑚)) ∈ ℂ) | 
| 29 | 28 | adantlr 477 | 
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto→𝐶)) ∧ 𝑚 ∈ 𝐶) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝐹‘𝑚)) ∈ ℂ) | 
| 30 |   | simpr 110 | 
. . . . . . . . . . . 12
⊢
(((♯‘𝐶)
∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto→𝐶) → 𝑓:(1...(♯‘𝐶))–1-1-onto→𝐶) | 
| 31 |   | f1oco 5527 | 
. . . . . . . . . . . 12
⊢ ((𝐹:𝐶–1-1-onto→𝐴 ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto→𝐶) → (𝐹 ∘ 𝑓):(1...(♯‘𝐶))–1-1-onto→𝐴) | 
| 32 | 2, 30, 31 | syl2an 289 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto→𝐶)) → (𝐹 ∘ 𝑓):(1...(♯‘𝐶))–1-1-onto→𝐴) | 
| 33 |   | f1of 5504 | 
. . . . . . . . . . 11
⊢ ((𝐹 ∘ 𝑓):(1...(♯‘𝐶))–1-1-onto→𝐴 → (𝐹 ∘ 𝑓):(1...(♯‘𝐶))⟶𝐴) | 
| 34 | 32, 33 | syl 14 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto→𝐶)) → (𝐹 ∘ 𝑓):(1...(♯‘𝐶))⟶𝐴) | 
| 35 |   | fvco3 5632 | 
. . . . . . . . . 10
⊢ (((𝐹 ∘ 𝑓):(1...(♯‘𝐶))⟶𝐴 ∧ 𝑛 ∈ (1...(♯‘𝐶))) → (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ (𝐹 ∘ 𝑓))‘𝑛) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘((𝐹 ∘ 𝑓)‘𝑛))) | 
| 36 | 34, 35 | sylan 283 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto→𝐶)) ∧ 𝑛 ∈ (1...(♯‘𝐶))) → (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ (𝐹 ∘ 𝑓))‘𝑛) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘((𝐹 ∘ 𝑓)‘𝑛))) | 
| 37 |   | f1of 5504 | 
. . . . . . . . . . . . 13
⊢ (𝑓:(1...(♯‘𝐶))–1-1-onto→𝐶 → 𝑓:(1...(♯‘𝐶))⟶𝐶) | 
| 38 | 37 | adantl 277 | 
. . . . . . . . . . . 12
⊢
(((♯‘𝐶)
∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto→𝐶) → 𝑓:(1...(♯‘𝐶))⟶𝐶) | 
| 39 | 38 | adantl 277 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto→𝐶)) → 𝑓:(1...(♯‘𝐶))⟶𝐶) | 
| 40 |   | fvco3 5632 | 
. . . . . . . . . . 11
⊢ ((𝑓:(1...(♯‘𝐶))⟶𝐶 ∧ 𝑛 ∈ (1...(♯‘𝐶))) → ((𝐹 ∘ 𝑓)‘𝑛) = (𝐹‘(𝑓‘𝑛))) | 
| 41 | 39, 40 | sylan 283 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto→𝐶)) ∧ 𝑛 ∈ (1...(♯‘𝐶))) → ((𝐹 ∘ 𝑓)‘𝑛) = (𝐹‘(𝑓‘𝑛))) | 
| 42 | 41 | fveq2d 5562 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto→𝐶)) ∧ 𝑛 ∈ (1...(♯‘𝐶))) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘((𝐹 ∘ 𝑓)‘𝑛)) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝐹‘(𝑓‘𝑛)))) | 
| 43 | 36, 42 | eqtrd 2229 | 
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto→𝐶)) ∧ 𝑛 ∈ (1...(♯‘𝐶))) → (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ (𝐹 ∘ 𝑓))‘𝑛) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝐹‘(𝑓‘𝑛)))) | 
| 44 | 19, 20, 21, 29, 43 | fprodseq 11748 | 
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto→𝐶)) → ∏𝑚 ∈ 𝐶 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝐹‘𝑚)) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐶), (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ (𝐹 ∘ 𝑓))‘𝑛), 1)))‘(♯‘𝐶))) | 
| 45 |   | eqid 2196 | 
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵) | 
| 46 |   | fprodf1o.1 | 
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝐺 → 𝐵 = 𝐷) | 
| 47 |   | fprodf1o.4 | 
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → (𝐹‘𝑛) = 𝐺) | 
| 48 | 23 | ffvelcdmda 5697 | 
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → (𝐹‘𝑛) ∈ 𝐴) | 
| 49 | 47, 48 | eqeltrrd 2274 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → 𝐺 ∈ 𝐴) | 
| 50 | 46 | eleq1d 2265 | 
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝐺 → (𝐵 ∈ ℂ ↔ 𝐷 ∈ ℂ)) | 
| 51 | 25 | ralrimiva 2570 | 
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) | 
| 52 | 51 | adantr 276 | 
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) | 
| 53 | 50, 52, 49 | rspcdva 2873 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → 𝐷 ∈ ℂ) | 
| 54 | 45, 46, 49, 53 | fvmptd3 5655 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝐺) = 𝐷) | 
| 55 | 47 | fveq2d 5562 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝐹‘𝑛)) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝐺)) | 
| 56 |   | simpr 110 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → 𝑛 ∈ 𝐶) | 
| 57 |   | eqid 2196 | 
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ 𝐶 ↦ 𝐷) = (𝑛 ∈ 𝐶 ↦ 𝐷) | 
| 58 | 57 | fvmpt2 5645 | 
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ 𝐶 ∧ 𝐷 ∈ ℂ) → ((𝑛 ∈ 𝐶 ↦ 𝐷)‘𝑛) = 𝐷) | 
| 59 | 56, 53, 58 | syl2anc 411 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → ((𝑛 ∈ 𝐶 ↦ 𝐷)‘𝑛) = 𝐷) | 
| 60 | 54, 55, 59 | 3eqtr4rd 2240 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → ((𝑛 ∈ 𝐶 ↦ 𝐷)‘𝑛) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝐹‘𝑛))) | 
| 61 | 60 | ralrimiva 2570 | 
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑛 ∈ 𝐶 ((𝑛 ∈ 𝐶 ↦ 𝐷)‘𝑛) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝐹‘𝑛))) | 
| 62 |   | nffvmpt1 5569 | 
. . . . . . . . . . . 12
⊢
Ⅎ𝑛((𝑛 ∈ 𝐶 ↦ 𝐷)‘𝑚) | 
| 63 | 62 | nfeq1 2349 | 
. . . . . . . . . . 11
⊢
Ⅎ𝑛((𝑛 ∈ 𝐶 ↦ 𝐷)‘𝑚) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝐹‘𝑚)) | 
| 64 |   | fveq2 5558 | 
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑚 → ((𝑛 ∈ 𝐶 ↦ 𝐷)‘𝑛) = ((𝑛 ∈ 𝐶 ↦ 𝐷)‘𝑚)) | 
| 65 |   | 2fveq3 5563 | 
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑚 → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝐹‘𝑛)) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝐹‘𝑚))) | 
| 66 | 64, 65 | eqeq12d 2211 | 
. . . . . . . . . . 11
⊢ (𝑛 = 𝑚 → (((𝑛 ∈ 𝐶 ↦ 𝐷)‘𝑛) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝐹‘𝑛)) ↔ ((𝑛 ∈ 𝐶 ↦ 𝐷)‘𝑚) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝐹‘𝑚)))) | 
| 67 | 63, 66 | rspc 2862 | 
. . . . . . . . . 10
⊢ (𝑚 ∈ 𝐶 → (∀𝑛 ∈ 𝐶 ((𝑛 ∈ 𝐶 ↦ 𝐷)‘𝑛) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝐹‘𝑛)) → ((𝑛 ∈ 𝐶 ↦ 𝐷)‘𝑚) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝐹‘𝑚)))) | 
| 68 | 61, 67 | mpan9 281 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ 𝐶) → ((𝑛 ∈ 𝐶 ↦ 𝐷)‘𝑚) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝐹‘𝑚))) | 
| 69 | 68 | adantlr 477 | 
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto→𝐶)) ∧ 𝑚 ∈ 𝐶) → ((𝑛 ∈ 𝐶 ↦ 𝐷)‘𝑚) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝐹‘𝑚))) | 
| 70 | 69 | prodeq2dv 11731 | 
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto→𝐶)) → ∏𝑚 ∈ 𝐶 ((𝑛 ∈ 𝐶 ↦ 𝐷)‘𝑚) = ∏𝑚 ∈ 𝐶 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝐹‘𝑚))) | 
| 71 |   | fveq2 5558 | 
. . . . . . . 8
⊢ (𝑚 = ((𝐹 ∘ 𝑓)‘𝑛) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘((𝐹 ∘ 𝑓)‘𝑛))) | 
| 72 | 26 | adantr 276 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto→𝐶)) → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ) | 
| 73 | 72 | ffvelcdmda 5697 | 
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto→𝐶)) ∧ 𝑚 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) ∈ ℂ) | 
| 74 | 71, 20, 32, 73, 36 | fprodseq 11748 | 
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto→𝐶)) → ∏𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐶), (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ (𝐹 ∘ 𝑓))‘𝑛), 1)))‘(♯‘𝐶))) | 
| 75 | 44, 70, 74 | 3eqtr4rd 2240 | 
. . . . . 6
⊢ ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto→𝐶)) → ∏𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) = ∏𝑚 ∈ 𝐶 ((𝑛 ∈ 𝐶 ↦ 𝐷)‘𝑚)) | 
| 76 | 51 | adantr 276 | 
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto→𝐶)) → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) | 
| 77 |   | prodfct 11752 | 
. . . . . . 7
⊢
(∀𝑘 ∈
𝐴 𝐵 ∈ ℂ → ∏𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) = ∏𝑘 ∈ 𝐴 𝐵) | 
| 78 | 76, 77 | syl 14 | 
. . . . . 6
⊢ ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto→𝐶)) → ∏𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) = ∏𝑘 ∈ 𝐴 𝐵) | 
| 79 | 53 | ralrimiva 2570 | 
. . . . . . . 8
⊢ (𝜑 → ∀𝑛 ∈ 𝐶 𝐷 ∈ ℂ) | 
| 80 | 79 | adantr 276 | 
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto→𝐶)) → ∀𝑛 ∈ 𝐶 𝐷 ∈ ℂ) | 
| 81 |   | prodfct 11752 | 
. . . . . . 7
⊢
(∀𝑛 ∈
𝐶 𝐷 ∈ ℂ → ∏𝑚 ∈ 𝐶 ((𝑛 ∈ 𝐶 ↦ 𝐷)‘𝑚) = ∏𝑛 ∈ 𝐶 𝐷) | 
| 82 | 80, 81 | syl 14 | 
. . . . . 6
⊢ ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto→𝐶)) → ∏𝑚 ∈ 𝐶 ((𝑛 ∈ 𝐶 ↦ 𝐷)‘𝑚) = ∏𝑛 ∈ 𝐶 𝐷) | 
| 83 | 75, 78, 82 | 3eqtr3d 2237 | 
. . . . 5
⊢ ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto→𝐶)) → ∏𝑘 ∈ 𝐴 𝐵 = ∏𝑛 ∈ 𝐶 𝐷) | 
| 84 | 83 | expr 375 | 
. . . 4
⊢ ((𝜑 ∧ (♯‘𝐶) ∈ ℕ) → (𝑓:(1...(♯‘𝐶))–1-1-onto→𝐶 → ∏𝑘 ∈ 𝐴 𝐵 = ∏𝑛 ∈ 𝐶 𝐷)) | 
| 85 | 84 | exlimdv 1833 | 
. . 3
⊢ ((𝜑 ∧ (♯‘𝐶) ∈ ℕ) →
(∃𝑓 𝑓:(1...(♯‘𝐶))–1-1-onto→𝐶 → ∏𝑘 ∈ 𝐴 𝐵 = ∏𝑛 ∈ 𝐶 𝐷)) | 
| 86 | 85 | expimpd 363 | 
. 2
⊢ (𝜑 → (((♯‘𝐶) ∈ ℕ ∧
∃𝑓 𝑓:(1...(♯‘𝐶))–1-1-onto→𝐶) → ∏𝑘 ∈ 𝐴 𝐵 = ∏𝑛 ∈ 𝐶 𝐷)) | 
| 87 |   | fprodf1o.2 | 
. . 3
⊢ (𝜑 → 𝐶 ∈ Fin) | 
| 88 |   | fz1f1o 11540 | 
. . 3
⊢ (𝐶 ∈ Fin → (𝐶 = ∅ ∨
((♯‘𝐶) ∈
ℕ ∧ ∃𝑓
𝑓:(1...(♯‘𝐶))–1-1-onto→𝐶))) | 
| 89 | 87, 88 | syl 14 | 
. 2
⊢ (𝜑 → (𝐶 = ∅ ∨ ((♯‘𝐶) ∈ ℕ ∧
∃𝑓 𝑓:(1...(♯‘𝐶))–1-1-onto→𝐶))) | 
| 90 | 18, 86, 89 | mpjaod 719 | 
1
⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 = ∏𝑛 ∈ 𝐶 𝐷) |