![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > f1oeq1 | GIF version |
Description: Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997.) |
Ref | Expression |
---|---|
f1oeq1 | ⊢ (𝐹 = 𝐺 → (𝐹:𝐴–1-1-onto→𝐵 ↔ 𝐺:𝐴–1-1-onto→𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1eq1 5454 | . . 3 ⊢ (𝐹 = 𝐺 → (𝐹:𝐴–1-1→𝐵 ↔ 𝐺:𝐴–1-1→𝐵)) | |
2 | foeq1 5472 | . . 3 ⊢ (𝐹 = 𝐺 → (𝐹:𝐴–onto→𝐵 ↔ 𝐺:𝐴–onto→𝐵)) | |
3 | 1, 2 | anbi12d 473 | . 2 ⊢ (𝐹 = 𝐺 → ((𝐹:𝐴–1-1→𝐵 ∧ 𝐹:𝐴–onto→𝐵) ↔ (𝐺:𝐴–1-1→𝐵 ∧ 𝐺:𝐴–onto→𝐵))) |
4 | df-f1o 5261 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–1-1→𝐵 ∧ 𝐹:𝐴–onto→𝐵)) | |
5 | df-f1o 5261 | . 2 ⊢ (𝐺:𝐴–1-1-onto→𝐵 ↔ (𝐺:𝐴–1-1→𝐵 ∧ 𝐺:𝐴–onto→𝐵)) | |
6 | 3, 4, 5 | 3bitr4g 223 | 1 ⊢ (𝐹 = 𝐺 → (𝐹:𝐴–1-1-onto→𝐵 ↔ 𝐺:𝐴–1-1-onto→𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 –1-1→wf1 5251 –onto→wfo 5252 –1-1-onto→wf1o 5253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 df-opab 4091 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 |
This theorem is referenced by: f1oeq123d 5494 f1oeq1d 5495 f1ocnvb 5514 f1orescnv 5516 f1ovi 5539 f1osng 5541 f1oresrab 5723 fsn 5730 isoeq1 5844 mapsn 6744 mapsnf1o3 6751 f1oen3g 6808 ensn1 6850 xpcomf1o 6879 xpen 6901 seq3f1olemstep 10585 seq3f1olemp 10586 seqf1oglem2 10591 seqf1og 10592 fihasheqf1oi 10858 fihashf1rn 10859 hashfacen 10907 summodc 11526 fsum3 11530 prodmodc 11721 fprodseq 11726 eulerthlemh 12369 relogf1o 14996 |
Copyright terms: Public domain | W3C validator |