ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1oeq1 GIF version

Theorem f1oeq1 5522
Description: Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997.)
Assertion
Ref Expression
f1oeq1 (𝐹 = 𝐺 → (𝐹:𝐴1-1-onto𝐵𝐺:𝐴1-1-onto𝐵))

Proof of Theorem f1oeq1
StepHypRef Expression
1 f1eq1 5488 . . 3 (𝐹 = 𝐺 → (𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵))
2 foeq1 5506 . . 3 (𝐹 = 𝐺 → (𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵))
31, 2anbi12d 473 . 2 (𝐹 = 𝐺 → ((𝐹:𝐴1-1𝐵𝐹:𝐴onto𝐵) ↔ (𝐺:𝐴1-1𝐵𝐺:𝐴onto𝐵)))
4 df-f1o 5287 . 2 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴1-1𝐵𝐹:𝐴onto𝐵))
5 df-f1o 5287 . 2 (𝐺:𝐴1-1-onto𝐵 ↔ (𝐺:𝐴1-1𝐵𝐺:𝐴onto𝐵))
63, 4, 53bitr4g 223 1 (𝐹 = 𝐺 → (𝐹:𝐴1-1-onto𝐵𝐺:𝐴1-1-onto𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  1-1wf1 5277  ontowfo 5278  1-1-ontowf1o 5279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-sn 3644  df-pr 3645  df-op 3647  df-br 4052  df-opab 4114  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287
This theorem is referenced by:  f1oeq123d  5528  f1oeq1d  5529  f1ocnvb  5548  f1orescnv  5550  f1ovi  5574  f1osng  5576  f1oresrab  5758  fsn  5765  isoeq1  5883  mapsn  6790  mapsnf1o3  6797  f1oen4g  6856  f1oen3g  6858  ensn1  6901  en2prd  6923  xpcomf1o  6935  xpen  6957  seq3f1olemstep  10681  seq3f1olemp  10682  seqf1oglem2  10687  seqf1og  10688  fihasheqf1oi  10954  fihashf1rn  10955  hashfacen  11003  summodc  11769  fsum3  11773  prodmodc  11964  fprodseq  11969  eulerthlemh  12628  relogf1o  15408  2lgslem1  15643
  Copyright terms: Public domain W3C validator