ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1oeq1 GIF version

Theorem f1oeq1 5228
Description: Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997.)
Assertion
Ref Expression
f1oeq1 (𝐹 = 𝐺 → (𝐹:𝐴1-1-onto𝐵𝐺:𝐴1-1-onto𝐵))

Proof of Theorem f1oeq1
StepHypRef Expression
1 f1eq1 5195 . . 3 (𝐹 = 𝐺 → (𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵))
2 foeq1 5213 . . 3 (𝐹 = 𝐺 → (𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵))
31, 2anbi12d 457 . 2 (𝐹 = 𝐺 → ((𝐹:𝐴1-1𝐵𝐹:𝐴onto𝐵) ↔ (𝐺:𝐴1-1𝐵𝐺:𝐴onto𝐵)))
4 df-f1o 5009 . 2 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴1-1𝐵𝐹:𝐴onto𝐵))
5 df-f1o 5009 . 2 (𝐺:𝐴1-1-onto𝐵 ↔ (𝐺:𝐴1-1𝐵𝐺:𝐴onto𝐵))
63, 4, 53bitr4g 221 1 (𝐹 = 𝐺 → (𝐹:𝐴1-1-onto𝐵𝐺:𝐴1-1-onto𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1289  1-1wf1 4999  ontowfo 5000  1-1-ontowf1o 5001
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-v 2621  df-un 3001  df-in 3003  df-ss 3010  df-sn 3447  df-pr 3448  df-op 3450  df-br 3838  df-opab 3892  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-fun 5004  df-fn 5005  df-f 5006  df-f1 5007  df-fo 5008  df-f1o 5009
This theorem is referenced by:  f1oeq123d  5234  f1ocnvb  5251  f1orescnv  5253  f1ovi  5276  f1osng  5278  f1oresrab  5447  fsn  5453  isoeq1  5562  mapsn  6427  mapsnf1o3  6434  f1oen3g  6451  ensn1  6493  xpcomf1o  6521  xpen  6541  seq3f1olemstep  9895  seq3f1olemp  9896  fihasheqf1oi  10161  fihashf1rn  10162  hashfacen  10206  isummo  10737  fisum  10742
  Copyright terms: Public domain W3C validator