Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1oeq1 | GIF version |
Description: Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997.) |
Ref | Expression |
---|---|
f1oeq1 | ⊢ (𝐹 = 𝐺 → (𝐹:𝐴–1-1-onto→𝐵 ↔ 𝐺:𝐴–1-1-onto→𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1eq1 5388 | . . 3 ⊢ (𝐹 = 𝐺 → (𝐹:𝐴–1-1→𝐵 ↔ 𝐺:𝐴–1-1→𝐵)) | |
2 | foeq1 5406 | . . 3 ⊢ (𝐹 = 𝐺 → (𝐹:𝐴–onto→𝐵 ↔ 𝐺:𝐴–onto→𝐵)) | |
3 | 1, 2 | anbi12d 465 | . 2 ⊢ (𝐹 = 𝐺 → ((𝐹:𝐴–1-1→𝐵 ∧ 𝐹:𝐴–onto→𝐵) ↔ (𝐺:𝐴–1-1→𝐵 ∧ 𝐺:𝐴–onto→𝐵))) |
4 | df-f1o 5195 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–1-1→𝐵 ∧ 𝐹:𝐴–onto→𝐵)) | |
5 | df-f1o 5195 | . 2 ⊢ (𝐺:𝐴–1-1-onto→𝐵 ↔ (𝐺:𝐴–1-1→𝐵 ∧ 𝐺:𝐴–onto→𝐵)) | |
6 | 3, 4, 5 | 3bitr4g 222 | 1 ⊢ (𝐹 = 𝐺 → (𝐹:𝐴–1-1-onto→𝐵 ↔ 𝐺:𝐴–1-1-onto→𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1343 –1-1→wf1 5185 –onto→wfo 5186 –1-1-onto→wf1o 5187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 |
This theorem is referenced by: f1oeq123d 5427 f1ocnvb 5446 f1orescnv 5448 f1ovi 5471 f1osng 5473 f1oresrab 5650 fsn 5657 isoeq1 5769 mapsn 6656 mapsnf1o3 6663 f1oen3g 6720 ensn1 6762 xpcomf1o 6791 xpen 6811 seq3f1olemstep 10436 seq3f1olemp 10437 fihasheqf1oi 10701 fihashf1rn 10702 hashfacen 10749 summodc 11324 fsum3 11328 prodmodc 11519 fprodseq 11524 eulerthlemh 12163 relogf1o 13422 |
Copyright terms: Public domain | W3C validator |