ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumf1o GIF version

Theorem fsumf1o 11191
Description: Re-index a finite sum using a bijection. (Contributed by Mario Carneiro, 20-Apr-2014.)
Hypotheses
Ref Expression
fsumf1o.1 (𝑘 = 𝐺𝐵 = 𝐷)
fsumf1o.2 (𝜑𝐶 ∈ Fin)
fsumf1o.3 (𝜑𝐹:𝐶1-1-onto𝐴)
fsumf1o.4 ((𝜑𝑛𝐶) → (𝐹𝑛) = 𝐺)
fsumf1o.5 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
fsumf1o (𝜑 → Σ𝑘𝐴 𝐵 = Σ𝑛𝐶 𝐷)
Distinct variable groups:   𝑘,𝑛,𝐴   𝐵,𝑛   𝐶,𝑛   𝐷,𝑘   𝑛,𝐹   𝑘,𝐺   𝜑,𝑘,𝑛
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)   𝐷(𝑛)   𝐹(𝑘)   𝐺(𝑛)

Proof of Theorem fsumf1o
Dummy variables 𝑓 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sum0 11189 . . . 4 Σ𝑘 ∈ ∅ 𝐵 = 0
2 fsumf1o.3 . . . . . . . 8 (𝜑𝐹:𝐶1-1-onto𝐴)
3 f1oeq2 5365 . . . . . . . 8 (𝐶 = ∅ → (𝐹:𝐶1-1-onto𝐴𝐹:∅–1-1-onto𝐴))
42, 3syl5ibcom 154 . . . . . . 7 (𝜑 → (𝐶 = ∅ → 𝐹:∅–1-1-onto𝐴))
54imp 123 . . . . . 6 ((𝜑𝐶 = ∅) → 𝐹:∅–1-1-onto𝐴)
6 f1ofo 5382 . . . . . 6 (𝐹:∅–1-1-onto𝐴𝐹:∅–onto𝐴)
7 fo00 5411 . . . . . . 7 (𝐹:∅–onto𝐴 ↔ (𝐹 = ∅ ∧ 𝐴 = ∅))
87simprbi 273 . . . . . 6 (𝐹:∅–onto𝐴𝐴 = ∅)
95, 6, 83syl 17 . . . . 5 ((𝜑𝐶 = ∅) → 𝐴 = ∅)
109sumeq1d 11167 . . . 4 ((𝜑𝐶 = ∅) → Σ𝑘𝐴 𝐵 = Σ𝑘 ∈ ∅ 𝐵)
11 simpr 109 . . . . . 6 ((𝜑𝐶 = ∅) → 𝐶 = ∅)
1211sumeq1d 11167 . . . . 5 ((𝜑𝐶 = ∅) → Σ𝑛𝐶 𝐷 = Σ𝑛 ∈ ∅ 𝐷)
13 sum0 11189 . . . . 5 Σ𝑛 ∈ ∅ 𝐷 = 0
1412, 13eqtrdi 2189 . . . 4 ((𝜑𝐶 = ∅) → Σ𝑛𝐶 𝐷 = 0)
151, 10, 143eqtr4a 2199 . . 3 ((𝜑𝐶 = ∅) → Σ𝑘𝐴 𝐵 = Σ𝑛𝐶 𝐷)
1615ex 114 . 2 (𝜑 → (𝐶 = ∅ → Σ𝑘𝐴 𝐵 = Σ𝑛𝐶 𝐷))
17 2fveq3 5434 . . . . . . . 8 (𝑚 = (𝑓𝑛) → ((𝑘𝐴𝐵)‘(𝐹𝑚)) = ((𝑘𝐴𝐵)‘(𝐹‘(𝑓𝑛))))
18 simprl 521 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) → (♯‘𝐶) ∈ ℕ)
19 simprr 522 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) → 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)
20 f1of 5375 . . . . . . . . . . . 12 (𝐹:𝐶1-1-onto𝐴𝐹:𝐶𝐴)
212, 20syl 14 . . . . . . . . . . 11 (𝜑𝐹:𝐶𝐴)
2221ffvelrnda 5563 . . . . . . . . . 10 ((𝜑𝑚𝐶) → (𝐹𝑚) ∈ 𝐴)
23 fsumf1o.5 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
2423fmpttd 5583 . . . . . . . . . . 11 (𝜑 → (𝑘𝐴𝐵):𝐴⟶ℂ)
2524ffvelrnda 5563 . . . . . . . . . 10 ((𝜑 ∧ (𝐹𝑚) ∈ 𝐴) → ((𝑘𝐴𝐵)‘(𝐹𝑚)) ∈ ℂ)
2622, 25syldan 280 . . . . . . . . 9 ((𝜑𝑚𝐶) → ((𝑘𝐴𝐵)‘(𝐹𝑚)) ∈ ℂ)
2726adantlr 469 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) ∧ 𝑚𝐶) → ((𝑘𝐴𝐵)‘(𝐹𝑚)) ∈ ℂ)
282adantr 274 . . . . . . . . . . . 12 ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) → 𝐹:𝐶1-1-onto𝐴)
29 f1oco 5398 . . . . . . . . . . . 12 ((𝐹:𝐶1-1-onto𝐴𝑓:(1...(♯‘𝐶))–1-1-onto𝐶) → (𝐹𝑓):(1...(♯‘𝐶))–1-1-onto𝐴)
3028, 19, 29syl2anc 409 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) → (𝐹𝑓):(1...(♯‘𝐶))–1-1-onto𝐴)
31 f1of 5375 . . . . . . . . . . 11 ((𝐹𝑓):(1...(♯‘𝐶))–1-1-onto𝐴 → (𝐹𝑓):(1...(♯‘𝐶))⟶𝐴)
3230, 31syl 14 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) → (𝐹𝑓):(1...(♯‘𝐶))⟶𝐴)
33 fvco3 5500 . . . . . . . . . 10 (((𝐹𝑓):(1...(♯‘𝐶))⟶𝐴𝑛 ∈ (1...(♯‘𝐶))) → (((𝑘𝐴𝐵) ∘ (𝐹𝑓))‘𝑛) = ((𝑘𝐴𝐵)‘((𝐹𝑓)‘𝑛)))
3432, 33sylan 281 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) ∧ 𝑛 ∈ (1...(♯‘𝐶))) → (((𝑘𝐴𝐵) ∘ (𝐹𝑓))‘𝑛) = ((𝑘𝐴𝐵)‘((𝐹𝑓)‘𝑛)))
35 f1of 5375 . . . . . . . . . . . 12 (𝑓:(1...(♯‘𝐶))–1-1-onto𝐶𝑓:(1...(♯‘𝐶))⟶𝐶)
3635ad2antll 483 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) → 𝑓:(1...(♯‘𝐶))⟶𝐶)
37 fvco3 5500 . . . . . . . . . . 11 ((𝑓:(1...(♯‘𝐶))⟶𝐶𝑛 ∈ (1...(♯‘𝐶))) → ((𝐹𝑓)‘𝑛) = (𝐹‘(𝑓𝑛)))
3836, 37sylan 281 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) ∧ 𝑛 ∈ (1...(♯‘𝐶))) → ((𝐹𝑓)‘𝑛) = (𝐹‘(𝑓𝑛)))
3938fveq2d 5433 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) ∧ 𝑛 ∈ (1...(♯‘𝐶))) → ((𝑘𝐴𝐵)‘((𝐹𝑓)‘𝑛)) = ((𝑘𝐴𝐵)‘(𝐹‘(𝑓𝑛))))
4034, 39eqtrd 2173 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) ∧ 𝑛 ∈ (1...(♯‘𝐶))) → (((𝑘𝐴𝐵) ∘ (𝐹𝑓))‘𝑛) = ((𝑘𝐴𝐵)‘(𝐹‘(𝑓𝑛))))
4117, 18, 19, 27, 40fsum3 11188 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) → Σ𝑚𝐶 ((𝑘𝐴𝐵)‘(𝐹𝑚)) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐶), (((𝑘𝐴𝐵) ∘ (𝐹𝑓))‘𝑛), 0)))‘(♯‘𝐶)))
42 eqid 2140 . . . . . . . . . . . . 13 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
43 fsumf1o.1 . . . . . . . . . . . . 13 (𝑘 = 𝐺𝐵 = 𝐷)
44 fsumf1o.4 . . . . . . . . . . . . . 14 ((𝜑𝑛𝐶) → (𝐹𝑛) = 𝐺)
4521ffvelrnda 5563 . . . . . . . . . . . . . 14 ((𝜑𝑛𝐶) → (𝐹𝑛) ∈ 𝐴)
4644, 45eqeltrrd 2218 . . . . . . . . . . . . 13 ((𝜑𝑛𝐶) → 𝐺𝐴)
4743eleq1d 2209 . . . . . . . . . . . . . 14 (𝑘 = 𝐺 → (𝐵 ∈ ℂ ↔ 𝐷 ∈ ℂ))
4823ralrimiva 2508 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℂ)
4948adantr 274 . . . . . . . . . . . . . 14 ((𝜑𝑛𝐶) → ∀𝑘𝐴 𝐵 ∈ ℂ)
5047, 49, 46rspcdva 2798 . . . . . . . . . . . . 13 ((𝜑𝑛𝐶) → 𝐷 ∈ ℂ)
5142, 43, 46, 50fvmptd3 5522 . . . . . . . . . . . 12 ((𝜑𝑛𝐶) → ((𝑘𝐴𝐵)‘𝐺) = 𝐷)
5244fveq2d 5433 . . . . . . . . . . . 12 ((𝜑𝑛𝐶) → ((𝑘𝐴𝐵)‘(𝐹𝑛)) = ((𝑘𝐴𝐵)‘𝐺))
53 simpr 109 . . . . . . . . . . . . 13 ((𝜑𝑛𝐶) → 𝑛𝐶)
54 eqid 2140 . . . . . . . . . . . . . 14 (𝑛𝐶𝐷) = (𝑛𝐶𝐷)
5554fvmpt2 5512 . . . . . . . . . . . . 13 ((𝑛𝐶𝐷 ∈ ℂ) → ((𝑛𝐶𝐷)‘𝑛) = 𝐷)
5653, 50, 55syl2anc 409 . . . . . . . . . . . 12 ((𝜑𝑛𝐶) → ((𝑛𝐶𝐷)‘𝑛) = 𝐷)
5751, 52, 563eqtr4rd 2184 . . . . . . . . . . 11 ((𝜑𝑛𝐶) → ((𝑛𝐶𝐷)‘𝑛) = ((𝑘𝐴𝐵)‘(𝐹𝑛)))
5857ralrimiva 2508 . . . . . . . . . 10 (𝜑 → ∀𝑛𝐶 ((𝑛𝐶𝐷)‘𝑛) = ((𝑘𝐴𝐵)‘(𝐹𝑛)))
59 nffvmpt1 5440 . . . . . . . . . . . 12 𝑛((𝑛𝐶𝐷)‘𝑚)
6059nfeq1 2292 . . . . . . . . . . 11 𝑛((𝑛𝐶𝐷)‘𝑚) = ((𝑘𝐴𝐵)‘(𝐹𝑚))
61 fveq2 5429 . . . . . . . . . . . 12 (𝑛 = 𝑚 → ((𝑛𝐶𝐷)‘𝑛) = ((𝑛𝐶𝐷)‘𝑚))
62 2fveq3 5434 . . . . . . . . . . . 12 (𝑛 = 𝑚 → ((𝑘𝐴𝐵)‘(𝐹𝑛)) = ((𝑘𝐴𝐵)‘(𝐹𝑚)))
6361, 62eqeq12d 2155 . . . . . . . . . . 11 (𝑛 = 𝑚 → (((𝑛𝐶𝐷)‘𝑛) = ((𝑘𝐴𝐵)‘(𝐹𝑛)) ↔ ((𝑛𝐶𝐷)‘𝑚) = ((𝑘𝐴𝐵)‘(𝐹𝑚))))
6460, 63rspc 2787 . . . . . . . . . 10 (𝑚𝐶 → (∀𝑛𝐶 ((𝑛𝐶𝐷)‘𝑛) = ((𝑘𝐴𝐵)‘(𝐹𝑛)) → ((𝑛𝐶𝐷)‘𝑚) = ((𝑘𝐴𝐵)‘(𝐹𝑚))))
6558, 64mpan9 279 . . . . . . . . 9 ((𝜑𝑚𝐶) → ((𝑛𝐶𝐷)‘𝑚) = ((𝑘𝐴𝐵)‘(𝐹𝑚)))
6665adantlr 469 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) ∧ 𝑚𝐶) → ((𝑛𝐶𝐷)‘𝑚) = ((𝑘𝐴𝐵)‘(𝐹𝑚)))
6766sumeq2dv 11169 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) → Σ𝑚𝐶 ((𝑛𝐶𝐷)‘𝑚) = Σ𝑚𝐶 ((𝑘𝐴𝐵)‘(𝐹𝑚)))
68 fveq2 5429 . . . . . . . 8 (𝑚 = ((𝐹𝑓)‘𝑛) → ((𝑘𝐴𝐵)‘𝑚) = ((𝑘𝐴𝐵)‘((𝐹𝑓)‘𝑛)))
6924adantr 274 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) → (𝑘𝐴𝐵):𝐴⟶ℂ)
7069ffvelrnda 5563 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) ∧ 𝑚𝐴) → ((𝑘𝐴𝐵)‘𝑚) ∈ ℂ)
7168, 18, 30, 70, 34fsum3 11188 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) → Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐶), (((𝑘𝐴𝐵) ∘ (𝐹𝑓))‘𝑛), 0)))‘(♯‘𝐶)))
7241, 67, 713eqtr4rd 2184 . . . . . 6 ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) → Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = Σ𝑚𝐶 ((𝑛𝐶𝐷)‘𝑚))
73 sumfct 11175 . . . . . . . 8 (∀𝑘𝐴 𝐵 ∈ ℂ → Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = Σ𝑘𝐴 𝐵)
7448, 73syl 14 . . . . . . 7 (𝜑 → Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = Σ𝑘𝐴 𝐵)
7574adantr 274 . . . . . 6 ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) → Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = Σ𝑘𝐴 𝐵)
7650ralrimiva 2508 . . . . . . . 8 (𝜑 → ∀𝑛𝐶 𝐷 ∈ ℂ)
77 sumfct 11175 . . . . . . . 8 (∀𝑛𝐶 𝐷 ∈ ℂ → Σ𝑚𝐶 ((𝑛𝐶𝐷)‘𝑚) = Σ𝑛𝐶 𝐷)
7876, 77syl 14 . . . . . . 7 (𝜑 → Σ𝑚𝐶 ((𝑛𝐶𝐷)‘𝑚) = Σ𝑛𝐶 𝐷)
7978adantr 274 . . . . . 6 ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) → Σ𝑚𝐶 ((𝑛𝐶𝐷)‘𝑚) = Σ𝑛𝐶 𝐷)
8072, 75, 793eqtr3d 2181 . . . . 5 ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) → Σ𝑘𝐴 𝐵 = Σ𝑛𝐶 𝐷)
8180expr 373 . . . 4 ((𝜑 ∧ (♯‘𝐶) ∈ ℕ) → (𝑓:(1...(♯‘𝐶))–1-1-onto𝐶 → Σ𝑘𝐴 𝐵 = Σ𝑛𝐶 𝐷))
8281exlimdv 1792 . . 3 ((𝜑 ∧ (♯‘𝐶) ∈ ℕ) → (∃𝑓 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶 → Σ𝑘𝐴 𝐵 = Σ𝑛𝐶 𝐷))
8382expimpd 361 . 2 (𝜑 → (((♯‘𝐶) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶) → Σ𝑘𝐴 𝐵 = Σ𝑛𝐶 𝐷))
84 fsumf1o.2 . . 3 (𝜑𝐶 ∈ Fin)
85 fz1f1o 11176 . . 3 (𝐶 ∈ Fin → (𝐶 = ∅ ∨ ((♯‘𝐶) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)))
8684, 85syl 14 . 2 (𝜑 → (𝐶 = ∅ ∨ ((♯‘𝐶) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)))
8716, 83, 86mpjaod 708 1 (𝜑 → Σ𝑘𝐴 𝐵 = Σ𝑛𝐶 𝐷)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 698   = wceq 1332  wex 1469  wcel 1481  wral 2417  c0 3368  ifcif 3479   class class class wbr 3937  cmpt 3997  ccom 4551  wf 5127  ontowfo 5129  1-1-ontowf1o 5130  cfv 5131  (class class class)co 5782  Fincfn 6642  cc 7642  0cc0 7644  1c1 7645   + caddc 7647  cle 7825  cn 8744  ...cfz 9821  seqcseq 10249  chash 10553  Σcsu 11154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-isom 5140  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-frec 6296  df-1o 6321  df-oadd 6325  df-er 6437  df-en 6643  df-dom 6644  df-fin 6645  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-fz 9822  df-fzo 9951  df-seqfrec 10250  df-exp 10324  df-ihash 10554  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803  df-clim 11080  df-sumdc 11155
This theorem is referenced by:  fisumss  11193  fsum2dlemstep  11235  fsumcnv  11238  fsumrev  11244  fsumshft  11245
  Copyright terms: Public domain W3C validator