ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumf1o GIF version

Theorem fsumf1o 11400
Description: Re-index a finite sum using a bijection. (Contributed by Mario Carneiro, 20-Apr-2014.)
Hypotheses
Ref Expression
fsumf1o.1 (π‘˜ = 𝐺 β†’ 𝐡 = 𝐷)
fsumf1o.2 (πœ‘ β†’ 𝐢 ∈ Fin)
fsumf1o.3 (πœ‘ β†’ 𝐹:𝐢–1-1-onto→𝐴)
fsumf1o.4 ((πœ‘ ∧ 𝑛 ∈ 𝐢) β†’ (πΉβ€˜π‘›) = 𝐺)
fsumf1o.5 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ 𝐡 ∈ β„‚)
Assertion
Ref Expression
fsumf1o (πœ‘ β†’ Ξ£π‘˜ ∈ 𝐴 𝐡 = Σ𝑛 ∈ 𝐢 𝐷)
Distinct variable groups:   π‘˜,𝑛,𝐴   𝐡,𝑛   𝐢,𝑛   𝐷,π‘˜   𝑛,𝐹   π‘˜,𝐺   πœ‘,π‘˜,𝑛
Allowed substitution hints:   𝐡(π‘˜)   𝐢(π‘˜)   𝐷(𝑛)   𝐹(π‘˜)   𝐺(𝑛)

Proof of Theorem fsumf1o
Dummy variables 𝑓 π‘š are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sum0 11398 . . . 4 Ξ£π‘˜ ∈ βˆ… 𝐡 = 0
2 fsumf1o.3 . . . . . . . 8 (πœ‘ β†’ 𝐹:𝐢–1-1-onto→𝐴)
3 f1oeq2 5452 . . . . . . . 8 (𝐢 = βˆ… β†’ (𝐹:𝐢–1-1-onto→𝐴 ↔ 𝐹:βˆ…β€“1-1-onto→𝐴))
42, 3syl5ibcom 155 . . . . . . 7 (πœ‘ β†’ (𝐢 = βˆ… β†’ 𝐹:βˆ…β€“1-1-onto→𝐴))
54imp 124 . . . . . 6 ((πœ‘ ∧ 𝐢 = βˆ…) β†’ 𝐹:βˆ…β€“1-1-onto→𝐴)
6 f1ofo 5470 . . . . . 6 (𝐹:βˆ…β€“1-1-onto→𝐴 β†’ 𝐹:βˆ…β€“onto→𝐴)
7 fo00 5499 . . . . . . 7 (𝐹:βˆ…β€“onto→𝐴 ↔ (𝐹 = βˆ… ∧ 𝐴 = βˆ…))
87simprbi 275 . . . . . 6 (𝐹:βˆ…β€“onto→𝐴 β†’ 𝐴 = βˆ…)
95, 6, 83syl 17 . . . . 5 ((πœ‘ ∧ 𝐢 = βˆ…) β†’ 𝐴 = βˆ…)
109sumeq1d 11376 . . . 4 ((πœ‘ ∧ 𝐢 = βˆ…) β†’ Ξ£π‘˜ ∈ 𝐴 𝐡 = Ξ£π‘˜ ∈ βˆ… 𝐡)
11 simpr 110 . . . . . 6 ((πœ‘ ∧ 𝐢 = βˆ…) β†’ 𝐢 = βˆ…)
1211sumeq1d 11376 . . . . 5 ((πœ‘ ∧ 𝐢 = βˆ…) β†’ Σ𝑛 ∈ 𝐢 𝐷 = Σ𝑛 ∈ βˆ… 𝐷)
13 sum0 11398 . . . . 5 Σ𝑛 ∈ βˆ… 𝐷 = 0
1412, 13eqtrdi 2226 . . . 4 ((πœ‘ ∧ 𝐢 = βˆ…) β†’ Σ𝑛 ∈ 𝐢 𝐷 = 0)
151, 10, 143eqtr4a 2236 . . 3 ((πœ‘ ∧ 𝐢 = βˆ…) β†’ Ξ£π‘˜ ∈ 𝐴 𝐡 = Σ𝑛 ∈ 𝐢 𝐷)
1615ex 115 . 2 (πœ‘ β†’ (𝐢 = βˆ… β†’ Ξ£π‘˜ ∈ 𝐴 𝐡 = Σ𝑛 ∈ 𝐢 𝐷))
17 2fveq3 5522 . . . . . . . 8 (π‘š = (π‘“β€˜π‘›) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(πΉβ€˜π‘š)) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(πΉβ€˜(π‘“β€˜π‘›))))
18 simprl 529 . . . . . . . 8 ((πœ‘ ∧ ((β™―β€˜πΆ) ∈ β„• ∧ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢)) β†’ (β™―β€˜πΆ) ∈ β„•)
19 simprr 531 . . . . . . . 8 ((πœ‘ ∧ ((β™―β€˜πΆ) ∈ β„• ∧ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢)) β†’ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢)
20 f1of 5463 . . . . . . . . . . . 12 (𝐹:𝐢–1-1-onto→𝐴 β†’ 𝐹:𝐢⟢𝐴)
212, 20syl 14 . . . . . . . . . . 11 (πœ‘ β†’ 𝐹:𝐢⟢𝐴)
2221ffvelcdmda 5653 . . . . . . . . . 10 ((πœ‘ ∧ π‘š ∈ 𝐢) β†’ (πΉβ€˜π‘š) ∈ 𝐴)
23 fsumf1o.5 . . . . . . . . . . . 12 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ 𝐡 ∈ β„‚)
2423fmpttd 5673 . . . . . . . . . . 11 (πœ‘ β†’ (π‘˜ ∈ 𝐴 ↦ 𝐡):π΄βŸΆβ„‚)
2524ffvelcdmda 5653 . . . . . . . . . 10 ((πœ‘ ∧ (πΉβ€˜π‘š) ∈ 𝐴) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(πΉβ€˜π‘š)) ∈ β„‚)
2622, 25syldan 282 . . . . . . . . 9 ((πœ‘ ∧ π‘š ∈ 𝐢) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(πΉβ€˜π‘š)) ∈ β„‚)
2726adantlr 477 . . . . . . . 8 (((πœ‘ ∧ ((β™―β€˜πΆ) ∈ β„• ∧ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢)) ∧ π‘š ∈ 𝐢) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(πΉβ€˜π‘š)) ∈ β„‚)
282adantr 276 . . . . . . . . . . . 12 ((πœ‘ ∧ ((β™―β€˜πΆ) ∈ β„• ∧ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢)) β†’ 𝐹:𝐢–1-1-onto→𝐴)
29 f1oco 5486 . . . . . . . . . . . 12 ((𝐹:𝐢–1-1-onto→𝐴 ∧ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢) β†’ (𝐹 ∘ 𝑓):(1...(β™―β€˜πΆ))–1-1-onto→𝐴)
3028, 19, 29syl2anc 411 . . . . . . . . . . 11 ((πœ‘ ∧ ((β™―β€˜πΆ) ∈ β„• ∧ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢)) β†’ (𝐹 ∘ 𝑓):(1...(β™―β€˜πΆ))–1-1-onto→𝐴)
31 f1of 5463 . . . . . . . . . . 11 ((𝐹 ∘ 𝑓):(1...(β™―β€˜πΆ))–1-1-onto→𝐴 β†’ (𝐹 ∘ 𝑓):(1...(β™―β€˜πΆ))⟢𝐴)
3230, 31syl 14 . . . . . . . . . 10 ((πœ‘ ∧ ((β™―β€˜πΆ) ∈ β„• ∧ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢)) β†’ (𝐹 ∘ 𝑓):(1...(β™―β€˜πΆ))⟢𝐴)
33 fvco3 5589 . . . . . . . . . 10 (((𝐹 ∘ 𝑓):(1...(β™―β€˜πΆ))⟢𝐴 ∧ 𝑛 ∈ (1...(β™―β€˜πΆ))) β†’ (((π‘˜ ∈ 𝐴 ↦ 𝐡) ∘ (𝐹 ∘ 𝑓))β€˜π‘›) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜((𝐹 ∘ 𝑓)β€˜π‘›)))
3432, 33sylan 283 . . . . . . . . 9 (((πœ‘ ∧ ((β™―β€˜πΆ) ∈ β„• ∧ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢)) ∧ 𝑛 ∈ (1...(β™―β€˜πΆ))) β†’ (((π‘˜ ∈ 𝐴 ↦ 𝐡) ∘ (𝐹 ∘ 𝑓))β€˜π‘›) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜((𝐹 ∘ 𝑓)β€˜π‘›)))
35 f1of 5463 . . . . . . . . . . . 12 (𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢 β†’ 𝑓:(1...(β™―β€˜πΆ))⟢𝐢)
3635ad2antll 491 . . . . . . . . . . 11 ((πœ‘ ∧ ((β™―β€˜πΆ) ∈ β„• ∧ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢)) β†’ 𝑓:(1...(β™―β€˜πΆ))⟢𝐢)
37 fvco3 5589 . . . . . . . . . . 11 ((𝑓:(1...(β™―β€˜πΆ))⟢𝐢 ∧ 𝑛 ∈ (1...(β™―β€˜πΆ))) β†’ ((𝐹 ∘ 𝑓)β€˜π‘›) = (πΉβ€˜(π‘“β€˜π‘›)))
3836, 37sylan 283 . . . . . . . . . 10 (((πœ‘ ∧ ((β™―β€˜πΆ) ∈ β„• ∧ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢)) ∧ 𝑛 ∈ (1...(β™―β€˜πΆ))) β†’ ((𝐹 ∘ 𝑓)β€˜π‘›) = (πΉβ€˜(π‘“β€˜π‘›)))
3938fveq2d 5521 . . . . . . . . 9 (((πœ‘ ∧ ((β™―β€˜πΆ) ∈ β„• ∧ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢)) ∧ 𝑛 ∈ (1...(β™―β€˜πΆ))) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜((𝐹 ∘ 𝑓)β€˜π‘›)) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(πΉβ€˜(π‘“β€˜π‘›))))
4034, 39eqtrd 2210 . . . . . . . 8 (((πœ‘ ∧ ((β™―β€˜πΆ) ∈ β„• ∧ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢)) ∧ 𝑛 ∈ (1...(β™―β€˜πΆ))) β†’ (((π‘˜ ∈ 𝐴 ↦ 𝐡) ∘ (𝐹 ∘ 𝑓))β€˜π‘›) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(πΉβ€˜(π‘“β€˜π‘›))))
4117, 18, 19, 27, 40fsum3 11397 . . . . . . 7 ((πœ‘ ∧ ((β™―β€˜πΆ) ∈ β„• ∧ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢)) β†’ Ξ£π‘š ∈ 𝐢 ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(πΉβ€˜π‘š)) = (seq1( + , (𝑛 ∈ β„• ↦ if(𝑛 ≀ (β™―β€˜πΆ), (((π‘˜ ∈ 𝐴 ↦ 𝐡) ∘ (𝐹 ∘ 𝑓))β€˜π‘›), 0)))β€˜(β™―β€˜πΆ)))
42 eqid 2177 . . . . . . . . . . . . 13 (π‘˜ ∈ 𝐴 ↦ 𝐡) = (π‘˜ ∈ 𝐴 ↦ 𝐡)
43 fsumf1o.1 . . . . . . . . . . . . 13 (π‘˜ = 𝐺 β†’ 𝐡 = 𝐷)
44 fsumf1o.4 . . . . . . . . . . . . . 14 ((πœ‘ ∧ 𝑛 ∈ 𝐢) β†’ (πΉβ€˜π‘›) = 𝐺)
4521ffvelcdmda 5653 . . . . . . . . . . . . . 14 ((πœ‘ ∧ 𝑛 ∈ 𝐢) β†’ (πΉβ€˜π‘›) ∈ 𝐴)
4644, 45eqeltrrd 2255 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑛 ∈ 𝐢) β†’ 𝐺 ∈ 𝐴)
4743eleq1d 2246 . . . . . . . . . . . . . 14 (π‘˜ = 𝐺 β†’ (𝐡 ∈ β„‚ ↔ 𝐷 ∈ β„‚))
4823ralrimiva 2550 . . . . . . . . . . . . . . 15 (πœ‘ β†’ βˆ€π‘˜ ∈ 𝐴 𝐡 ∈ β„‚)
4948adantr 276 . . . . . . . . . . . . . 14 ((πœ‘ ∧ 𝑛 ∈ 𝐢) β†’ βˆ€π‘˜ ∈ 𝐴 𝐡 ∈ β„‚)
5047, 49, 46rspcdva 2848 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑛 ∈ 𝐢) β†’ 𝐷 ∈ β„‚)
5142, 43, 46, 50fvmptd3 5611 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑛 ∈ 𝐢) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜πΊ) = 𝐷)
5244fveq2d 5521 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑛 ∈ 𝐢) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(πΉβ€˜π‘›)) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜πΊ))
53 simpr 110 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑛 ∈ 𝐢) β†’ 𝑛 ∈ 𝐢)
54 eqid 2177 . . . . . . . . . . . . . 14 (𝑛 ∈ 𝐢 ↦ 𝐷) = (𝑛 ∈ 𝐢 ↦ 𝐷)
5554fvmpt2 5601 . . . . . . . . . . . . 13 ((𝑛 ∈ 𝐢 ∧ 𝐷 ∈ β„‚) β†’ ((𝑛 ∈ 𝐢 ↦ 𝐷)β€˜π‘›) = 𝐷)
5653, 50, 55syl2anc 411 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑛 ∈ 𝐢) β†’ ((𝑛 ∈ 𝐢 ↦ 𝐷)β€˜π‘›) = 𝐷)
5751, 52, 563eqtr4rd 2221 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑛 ∈ 𝐢) β†’ ((𝑛 ∈ 𝐢 ↦ 𝐷)β€˜π‘›) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(πΉβ€˜π‘›)))
5857ralrimiva 2550 . . . . . . . . . 10 (πœ‘ β†’ βˆ€π‘› ∈ 𝐢 ((𝑛 ∈ 𝐢 ↦ 𝐷)β€˜π‘›) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(πΉβ€˜π‘›)))
59 nffvmpt1 5528 . . . . . . . . . . . 12 Ⅎ𝑛((𝑛 ∈ 𝐢 ↦ 𝐷)β€˜π‘š)
6059nfeq1 2329 . . . . . . . . . . 11 Ⅎ𝑛((𝑛 ∈ 𝐢 ↦ 𝐷)β€˜π‘š) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(πΉβ€˜π‘š))
61 fveq2 5517 . . . . . . . . . . . 12 (𝑛 = π‘š β†’ ((𝑛 ∈ 𝐢 ↦ 𝐷)β€˜π‘›) = ((𝑛 ∈ 𝐢 ↦ 𝐷)β€˜π‘š))
62 2fveq3 5522 . . . . . . . . . . . 12 (𝑛 = π‘š β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(πΉβ€˜π‘›)) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(πΉβ€˜π‘š)))
6361, 62eqeq12d 2192 . . . . . . . . . . 11 (𝑛 = π‘š β†’ (((𝑛 ∈ 𝐢 ↦ 𝐷)β€˜π‘›) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(πΉβ€˜π‘›)) ↔ ((𝑛 ∈ 𝐢 ↦ 𝐷)β€˜π‘š) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(πΉβ€˜π‘š))))
6460, 63rspc 2837 . . . . . . . . . 10 (π‘š ∈ 𝐢 β†’ (βˆ€π‘› ∈ 𝐢 ((𝑛 ∈ 𝐢 ↦ 𝐷)β€˜π‘›) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(πΉβ€˜π‘›)) β†’ ((𝑛 ∈ 𝐢 ↦ 𝐷)β€˜π‘š) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(πΉβ€˜π‘š))))
6558, 64mpan9 281 . . . . . . . . 9 ((πœ‘ ∧ π‘š ∈ 𝐢) β†’ ((𝑛 ∈ 𝐢 ↦ 𝐷)β€˜π‘š) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(πΉβ€˜π‘š)))
6665adantlr 477 . . . . . . . 8 (((πœ‘ ∧ ((β™―β€˜πΆ) ∈ β„• ∧ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢)) ∧ π‘š ∈ 𝐢) β†’ ((𝑛 ∈ 𝐢 ↦ 𝐷)β€˜π‘š) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(πΉβ€˜π‘š)))
6766sumeq2dv 11378 . . . . . . 7 ((πœ‘ ∧ ((β™―β€˜πΆ) ∈ β„• ∧ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢)) β†’ Ξ£π‘š ∈ 𝐢 ((𝑛 ∈ 𝐢 ↦ 𝐷)β€˜π‘š) = Ξ£π‘š ∈ 𝐢 ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(πΉβ€˜π‘š)))
68 fveq2 5517 . . . . . . . 8 (π‘š = ((𝐹 ∘ 𝑓)β€˜π‘›) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘š) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜((𝐹 ∘ 𝑓)β€˜π‘›)))
6924adantr 276 . . . . . . . . 9 ((πœ‘ ∧ ((β™―β€˜πΆ) ∈ β„• ∧ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢)) β†’ (π‘˜ ∈ 𝐴 ↦ 𝐡):π΄βŸΆβ„‚)
7069ffvelcdmda 5653 . . . . . . . 8 (((πœ‘ ∧ ((β™―β€˜πΆ) ∈ β„• ∧ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢)) ∧ π‘š ∈ 𝐴) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘š) ∈ β„‚)
7168, 18, 30, 70, 34fsum3 11397 . . . . . . 7 ((πœ‘ ∧ ((β™―β€˜πΆ) ∈ β„• ∧ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢)) β†’ Ξ£π‘š ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘š) = (seq1( + , (𝑛 ∈ β„• ↦ if(𝑛 ≀ (β™―β€˜πΆ), (((π‘˜ ∈ 𝐴 ↦ 𝐡) ∘ (𝐹 ∘ 𝑓))β€˜π‘›), 0)))β€˜(β™―β€˜πΆ)))
7241, 67, 713eqtr4rd 2221 . . . . . 6 ((πœ‘ ∧ ((β™―β€˜πΆ) ∈ β„• ∧ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢)) β†’ Ξ£π‘š ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘š) = Ξ£π‘š ∈ 𝐢 ((𝑛 ∈ 𝐢 ↦ 𝐷)β€˜π‘š))
73 sumfct 11384 . . . . . . . 8 (βˆ€π‘˜ ∈ 𝐴 𝐡 ∈ β„‚ β†’ Ξ£π‘š ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘š) = Ξ£π‘˜ ∈ 𝐴 𝐡)
7448, 73syl 14 . . . . . . 7 (πœ‘ β†’ Ξ£π‘š ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘š) = Ξ£π‘˜ ∈ 𝐴 𝐡)
7574adantr 276 . . . . . 6 ((πœ‘ ∧ ((β™―β€˜πΆ) ∈ β„• ∧ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢)) β†’ Ξ£π‘š ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘š) = Ξ£π‘˜ ∈ 𝐴 𝐡)
7650ralrimiva 2550 . . . . . . . 8 (πœ‘ β†’ βˆ€π‘› ∈ 𝐢 𝐷 ∈ β„‚)
77 sumfct 11384 . . . . . . . 8 (βˆ€π‘› ∈ 𝐢 𝐷 ∈ β„‚ β†’ Ξ£π‘š ∈ 𝐢 ((𝑛 ∈ 𝐢 ↦ 𝐷)β€˜π‘š) = Σ𝑛 ∈ 𝐢 𝐷)
7876, 77syl 14 . . . . . . 7 (πœ‘ β†’ Ξ£π‘š ∈ 𝐢 ((𝑛 ∈ 𝐢 ↦ 𝐷)β€˜π‘š) = Σ𝑛 ∈ 𝐢 𝐷)
7978adantr 276 . . . . . 6 ((πœ‘ ∧ ((β™―β€˜πΆ) ∈ β„• ∧ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢)) β†’ Ξ£π‘š ∈ 𝐢 ((𝑛 ∈ 𝐢 ↦ 𝐷)β€˜π‘š) = Σ𝑛 ∈ 𝐢 𝐷)
8072, 75, 793eqtr3d 2218 . . . . 5 ((πœ‘ ∧ ((β™―β€˜πΆ) ∈ β„• ∧ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢)) β†’ Ξ£π‘˜ ∈ 𝐴 𝐡 = Σ𝑛 ∈ 𝐢 𝐷)
8180expr 375 . . . 4 ((πœ‘ ∧ (β™―β€˜πΆ) ∈ β„•) β†’ (𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢 β†’ Ξ£π‘˜ ∈ 𝐴 𝐡 = Σ𝑛 ∈ 𝐢 𝐷))
8281exlimdv 1819 . . 3 ((πœ‘ ∧ (β™―β€˜πΆ) ∈ β„•) β†’ (βˆƒπ‘“ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢 β†’ Ξ£π‘˜ ∈ 𝐴 𝐡 = Σ𝑛 ∈ 𝐢 𝐷))
8382expimpd 363 . 2 (πœ‘ β†’ (((β™―β€˜πΆ) ∈ β„• ∧ βˆƒπ‘“ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢) β†’ Ξ£π‘˜ ∈ 𝐴 𝐡 = Σ𝑛 ∈ 𝐢 𝐷))
84 fsumf1o.2 . . 3 (πœ‘ β†’ 𝐢 ∈ Fin)
85 fz1f1o 11385 . . 3 (𝐢 ∈ Fin β†’ (𝐢 = βˆ… ∨ ((β™―β€˜πΆ) ∈ β„• ∧ βˆƒπ‘“ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢)))
8684, 85syl 14 . 2 (πœ‘ β†’ (𝐢 = βˆ… ∨ ((β™―β€˜πΆ) ∈ β„• ∧ βˆƒπ‘“ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢)))
8716, 83, 86mpjaod 718 1 (πœ‘ β†’ Ξ£π‘˜ ∈ 𝐴 𝐡 = Σ𝑛 ∈ 𝐢 𝐷)
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   ∨ wo 708   = wceq 1353  βˆƒwex 1492   ∈ wcel 2148  βˆ€wral 2455  βˆ…c0 3424  ifcif 3536   class class class wbr 4005   ↦ cmpt 4066   ∘ ccom 4632  βŸΆwf 5214  β€“ontoβ†’wfo 5216  β€“1-1-ontoβ†’wf1o 5217  β€˜cfv 5218  (class class class)co 5877  Fincfn 6742  β„‚cc 7811  0cc0 7813  1c1 7814   + caddc 7816   ≀ cle 7995  β„•cn 8921  ...cfz 10010  seqcseq 10447  β™―chash 10757  Ξ£csu 11363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931  ax-arch 7932  ax-caucvg 7933
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-frec 6394  df-1o 6419  df-oadd 6423  df-er 6537  df-en 6743  df-dom 6744  df-fin 6745  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-n0 9179  df-z 9256  df-uz 9531  df-q 9622  df-rp 9656  df-fz 10011  df-fzo 10145  df-seqfrec 10448  df-exp 10522  df-ihash 10758  df-cj 10853  df-re 10854  df-im 10855  df-rsqrt 11009  df-abs 11010  df-clim 11289  df-sumdc 11364
This theorem is referenced by:  fisumss  11402  fsum2dlemstep  11444  fsumcnv  11447  fsumrev  11453  fsumshft  11454  phisum  12242
  Copyright terms: Public domain W3C validator