ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumf1o GIF version

Theorem fsumf1o 11643
Description: Re-index a finite sum using a bijection. (Contributed by Mario Carneiro, 20-Apr-2014.)
Hypotheses
Ref Expression
fsumf1o.1 (𝑘 = 𝐺𝐵 = 𝐷)
fsumf1o.2 (𝜑𝐶 ∈ Fin)
fsumf1o.3 (𝜑𝐹:𝐶1-1-onto𝐴)
fsumf1o.4 ((𝜑𝑛𝐶) → (𝐹𝑛) = 𝐺)
fsumf1o.5 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
fsumf1o (𝜑 → Σ𝑘𝐴 𝐵 = Σ𝑛𝐶 𝐷)
Distinct variable groups:   𝑘,𝑛,𝐴   𝐵,𝑛   𝐶,𝑛   𝐷,𝑘   𝑛,𝐹   𝑘,𝐺   𝜑,𝑘,𝑛
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)   𝐷(𝑛)   𝐹(𝑘)   𝐺(𝑛)

Proof of Theorem fsumf1o
Dummy variables 𝑓 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sum0 11641 . . . 4 Σ𝑘 ∈ ∅ 𝐵 = 0
2 fsumf1o.3 . . . . . . . 8 (𝜑𝐹:𝐶1-1-onto𝐴)
3 f1oeq2 5510 . . . . . . . 8 (𝐶 = ∅ → (𝐹:𝐶1-1-onto𝐴𝐹:∅–1-1-onto𝐴))
42, 3syl5ibcom 155 . . . . . . 7 (𝜑 → (𝐶 = ∅ → 𝐹:∅–1-1-onto𝐴))
54imp 124 . . . . . 6 ((𝜑𝐶 = ∅) → 𝐹:∅–1-1-onto𝐴)
6 f1ofo 5528 . . . . . 6 (𝐹:∅–1-1-onto𝐴𝐹:∅–onto𝐴)
7 fo00 5557 . . . . . . 7 (𝐹:∅–onto𝐴 ↔ (𝐹 = ∅ ∧ 𝐴 = ∅))
87simprbi 275 . . . . . 6 (𝐹:∅–onto𝐴𝐴 = ∅)
95, 6, 83syl 17 . . . . 5 ((𝜑𝐶 = ∅) → 𝐴 = ∅)
109sumeq1d 11619 . . . 4 ((𝜑𝐶 = ∅) → Σ𝑘𝐴 𝐵 = Σ𝑘 ∈ ∅ 𝐵)
11 simpr 110 . . . . . 6 ((𝜑𝐶 = ∅) → 𝐶 = ∅)
1211sumeq1d 11619 . . . . 5 ((𝜑𝐶 = ∅) → Σ𝑛𝐶 𝐷 = Σ𝑛 ∈ ∅ 𝐷)
13 sum0 11641 . . . . 5 Σ𝑛 ∈ ∅ 𝐷 = 0
1412, 13eqtrdi 2253 . . . 4 ((𝜑𝐶 = ∅) → Σ𝑛𝐶 𝐷 = 0)
151, 10, 143eqtr4a 2263 . . 3 ((𝜑𝐶 = ∅) → Σ𝑘𝐴 𝐵 = Σ𝑛𝐶 𝐷)
1615ex 115 . 2 (𝜑 → (𝐶 = ∅ → Σ𝑘𝐴 𝐵 = Σ𝑛𝐶 𝐷))
17 2fveq3 5580 . . . . . . . 8 (𝑚 = (𝑓𝑛) → ((𝑘𝐴𝐵)‘(𝐹𝑚)) = ((𝑘𝐴𝐵)‘(𝐹‘(𝑓𝑛))))
18 simprl 529 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) → (♯‘𝐶) ∈ ℕ)
19 simprr 531 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) → 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)
20 f1of 5521 . . . . . . . . . . . 12 (𝐹:𝐶1-1-onto𝐴𝐹:𝐶𝐴)
212, 20syl 14 . . . . . . . . . . 11 (𝜑𝐹:𝐶𝐴)
2221ffvelcdmda 5714 . . . . . . . . . 10 ((𝜑𝑚𝐶) → (𝐹𝑚) ∈ 𝐴)
23 fsumf1o.5 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
2423fmpttd 5734 . . . . . . . . . . 11 (𝜑 → (𝑘𝐴𝐵):𝐴⟶ℂ)
2524ffvelcdmda 5714 . . . . . . . . . 10 ((𝜑 ∧ (𝐹𝑚) ∈ 𝐴) → ((𝑘𝐴𝐵)‘(𝐹𝑚)) ∈ ℂ)
2622, 25syldan 282 . . . . . . . . 9 ((𝜑𝑚𝐶) → ((𝑘𝐴𝐵)‘(𝐹𝑚)) ∈ ℂ)
2726adantlr 477 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) ∧ 𝑚𝐶) → ((𝑘𝐴𝐵)‘(𝐹𝑚)) ∈ ℂ)
282adantr 276 . . . . . . . . . . . 12 ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) → 𝐹:𝐶1-1-onto𝐴)
29 f1oco 5544 . . . . . . . . . . . 12 ((𝐹:𝐶1-1-onto𝐴𝑓:(1...(♯‘𝐶))–1-1-onto𝐶) → (𝐹𝑓):(1...(♯‘𝐶))–1-1-onto𝐴)
3028, 19, 29syl2anc 411 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) → (𝐹𝑓):(1...(♯‘𝐶))–1-1-onto𝐴)
31 f1of 5521 . . . . . . . . . . 11 ((𝐹𝑓):(1...(♯‘𝐶))–1-1-onto𝐴 → (𝐹𝑓):(1...(♯‘𝐶))⟶𝐴)
3230, 31syl 14 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) → (𝐹𝑓):(1...(♯‘𝐶))⟶𝐴)
33 fvco3 5649 . . . . . . . . . 10 (((𝐹𝑓):(1...(♯‘𝐶))⟶𝐴𝑛 ∈ (1...(♯‘𝐶))) → (((𝑘𝐴𝐵) ∘ (𝐹𝑓))‘𝑛) = ((𝑘𝐴𝐵)‘((𝐹𝑓)‘𝑛)))
3432, 33sylan 283 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) ∧ 𝑛 ∈ (1...(♯‘𝐶))) → (((𝑘𝐴𝐵) ∘ (𝐹𝑓))‘𝑛) = ((𝑘𝐴𝐵)‘((𝐹𝑓)‘𝑛)))
35 f1of 5521 . . . . . . . . . . . 12 (𝑓:(1...(♯‘𝐶))–1-1-onto𝐶𝑓:(1...(♯‘𝐶))⟶𝐶)
3635ad2antll 491 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) → 𝑓:(1...(♯‘𝐶))⟶𝐶)
37 fvco3 5649 . . . . . . . . . . 11 ((𝑓:(1...(♯‘𝐶))⟶𝐶𝑛 ∈ (1...(♯‘𝐶))) → ((𝐹𝑓)‘𝑛) = (𝐹‘(𝑓𝑛)))
3836, 37sylan 283 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) ∧ 𝑛 ∈ (1...(♯‘𝐶))) → ((𝐹𝑓)‘𝑛) = (𝐹‘(𝑓𝑛)))
3938fveq2d 5579 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) ∧ 𝑛 ∈ (1...(♯‘𝐶))) → ((𝑘𝐴𝐵)‘((𝐹𝑓)‘𝑛)) = ((𝑘𝐴𝐵)‘(𝐹‘(𝑓𝑛))))
4034, 39eqtrd 2237 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) ∧ 𝑛 ∈ (1...(♯‘𝐶))) → (((𝑘𝐴𝐵) ∘ (𝐹𝑓))‘𝑛) = ((𝑘𝐴𝐵)‘(𝐹‘(𝑓𝑛))))
4117, 18, 19, 27, 40fsum3 11640 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) → Σ𝑚𝐶 ((𝑘𝐴𝐵)‘(𝐹𝑚)) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐶), (((𝑘𝐴𝐵) ∘ (𝐹𝑓))‘𝑛), 0)))‘(♯‘𝐶)))
42 eqid 2204 . . . . . . . . . . . . 13 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
43 fsumf1o.1 . . . . . . . . . . . . 13 (𝑘 = 𝐺𝐵 = 𝐷)
44 fsumf1o.4 . . . . . . . . . . . . . 14 ((𝜑𝑛𝐶) → (𝐹𝑛) = 𝐺)
4521ffvelcdmda 5714 . . . . . . . . . . . . . 14 ((𝜑𝑛𝐶) → (𝐹𝑛) ∈ 𝐴)
4644, 45eqeltrrd 2282 . . . . . . . . . . . . 13 ((𝜑𝑛𝐶) → 𝐺𝐴)
4743eleq1d 2273 . . . . . . . . . . . . . 14 (𝑘 = 𝐺 → (𝐵 ∈ ℂ ↔ 𝐷 ∈ ℂ))
4823ralrimiva 2578 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℂ)
4948adantr 276 . . . . . . . . . . . . . 14 ((𝜑𝑛𝐶) → ∀𝑘𝐴 𝐵 ∈ ℂ)
5047, 49, 46rspcdva 2881 . . . . . . . . . . . . 13 ((𝜑𝑛𝐶) → 𝐷 ∈ ℂ)
5142, 43, 46, 50fvmptd3 5672 . . . . . . . . . . . 12 ((𝜑𝑛𝐶) → ((𝑘𝐴𝐵)‘𝐺) = 𝐷)
5244fveq2d 5579 . . . . . . . . . . . 12 ((𝜑𝑛𝐶) → ((𝑘𝐴𝐵)‘(𝐹𝑛)) = ((𝑘𝐴𝐵)‘𝐺))
53 simpr 110 . . . . . . . . . . . . 13 ((𝜑𝑛𝐶) → 𝑛𝐶)
54 eqid 2204 . . . . . . . . . . . . . 14 (𝑛𝐶𝐷) = (𝑛𝐶𝐷)
5554fvmpt2 5662 . . . . . . . . . . . . 13 ((𝑛𝐶𝐷 ∈ ℂ) → ((𝑛𝐶𝐷)‘𝑛) = 𝐷)
5653, 50, 55syl2anc 411 . . . . . . . . . . . 12 ((𝜑𝑛𝐶) → ((𝑛𝐶𝐷)‘𝑛) = 𝐷)
5751, 52, 563eqtr4rd 2248 . . . . . . . . . . 11 ((𝜑𝑛𝐶) → ((𝑛𝐶𝐷)‘𝑛) = ((𝑘𝐴𝐵)‘(𝐹𝑛)))
5857ralrimiva 2578 . . . . . . . . . 10 (𝜑 → ∀𝑛𝐶 ((𝑛𝐶𝐷)‘𝑛) = ((𝑘𝐴𝐵)‘(𝐹𝑛)))
59 nffvmpt1 5586 . . . . . . . . . . . 12 𝑛((𝑛𝐶𝐷)‘𝑚)
6059nfeq1 2357 . . . . . . . . . . 11 𝑛((𝑛𝐶𝐷)‘𝑚) = ((𝑘𝐴𝐵)‘(𝐹𝑚))
61 fveq2 5575 . . . . . . . . . . . 12 (𝑛 = 𝑚 → ((𝑛𝐶𝐷)‘𝑛) = ((𝑛𝐶𝐷)‘𝑚))
62 2fveq3 5580 . . . . . . . . . . . 12 (𝑛 = 𝑚 → ((𝑘𝐴𝐵)‘(𝐹𝑛)) = ((𝑘𝐴𝐵)‘(𝐹𝑚)))
6361, 62eqeq12d 2219 . . . . . . . . . . 11 (𝑛 = 𝑚 → (((𝑛𝐶𝐷)‘𝑛) = ((𝑘𝐴𝐵)‘(𝐹𝑛)) ↔ ((𝑛𝐶𝐷)‘𝑚) = ((𝑘𝐴𝐵)‘(𝐹𝑚))))
6460, 63rspc 2870 . . . . . . . . . 10 (𝑚𝐶 → (∀𝑛𝐶 ((𝑛𝐶𝐷)‘𝑛) = ((𝑘𝐴𝐵)‘(𝐹𝑛)) → ((𝑛𝐶𝐷)‘𝑚) = ((𝑘𝐴𝐵)‘(𝐹𝑚))))
6558, 64mpan9 281 . . . . . . . . 9 ((𝜑𝑚𝐶) → ((𝑛𝐶𝐷)‘𝑚) = ((𝑘𝐴𝐵)‘(𝐹𝑚)))
6665adantlr 477 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) ∧ 𝑚𝐶) → ((𝑛𝐶𝐷)‘𝑚) = ((𝑘𝐴𝐵)‘(𝐹𝑚)))
6766sumeq2dv 11621 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) → Σ𝑚𝐶 ((𝑛𝐶𝐷)‘𝑚) = Σ𝑚𝐶 ((𝑘𝐴𝐵)‘(𝐹𝑚)))
68 fveq2 5575 . . . . . . . 8 (𝑚 = ((𝐹𝑓)‘𝑛) → ((𝑘𝐴𝐵)‘𝑚) = ((𝑘𝐴𝐵)‘((𝐹𝑓)‘𝑛)))
6924adantr 276 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) → (𝑘𝐴𝐵):𝐴⟶ℂ)
7069ffvelcdmda 5714 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) ∧ 𝑚𝐴) → ((𝑘𝐴𝐵)‘𝑚) ∈ ℂ)
7168, 18, 30, 70, 34fsum3 11640 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) → Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐶), (((𝑘𝐴𝐵) ∘ (𝐹𝑓))‘𝑛), 0)))‘(♯‘𝐶)))
7241, 67, 713eqtr4rd 2248 . . . . . 6 ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) → Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = Σ𝑚𝐶 ((𝑛𝐶𝐷)‘𝑚))
73 sumfct 11627 . . . . . . . 8 (∀𝑘𝐴 𝐵 ∈ ℂ → Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = Σ𝑘𝐴 𝐵)
7448, 73syl 14 . . . . . . 7 (𝜑 → Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = Σ𝑘𝐴 𝐵)
7574adantr 276 . . . . . 6 ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) → Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = Σ𝑘𝐴 𝐵)
7650ralrimiva 2578 . . . . . . . 8 (𝜑 → ∀𝑛𝐶 𝐷 ∈ ℂ)
77 sumfct 11627 . . . . . . . 8 (∀𝑛𝐶 𝐷 ∈ ℂ → Σ𝑚𝐶 ((𝑛𝐶𝐷)‘𝑚) = Σ𝑛𝐶 𝐷)
7876, 77syl 14 . . . . . . 7 (𝜑 → Σ𝑚𝐶 ((𝑛𝐶𝐷)‘𝑚) = Σ𝑛𝐶 𝐷)
7978adantr 276 . . . . . 6 ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) → Σ𝑚𝐶 ((𝑛𝐶𝐷)‘𝑚) = Σ𝑛𝐶 𝐷)
8072, 75, 793eqtr3d 2245 . . . . 5 ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) → Σ𝑘𝐴 𝐵 = Σ𝑛𝐶 𝐷)
8180expr 375 . . . 4 ((𝜑 ∧ (♯‘𝐶) ∈ ℕ) → (𝑓:(1...(♯‘𝐶))–1-1-onto𝐶 → Σ𝑘𝐴 𝐵 = Σ𝑛𝐶 𝐷))
8281exlimdv 1841 . . 3 ((𝜑 ∧ (♯‘𝐶) ∈ ℕ) → (∃𝑓 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶 → Σ𝑘𝐴 𝐵 = Σ𝑛𝐶 𝐷))
8382expimpd 363 . 2 (𝜑 → (((♯‘𝐶) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶) → Σ𝑘𝐴 𝐵 = Σ𝑛𝐶 𝐷))
84 fsumf1o.2 . . 3 (𝜑𝐶 ∈ Fin)
85 fz1f1o 11628 . . 3 (𝐶 ∈ Fin → (𝐶 = ∅ ∨ ((♯‘𝐶) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)))
8684, 85syl 14 . 2 (𝜑 → (𝐶 = ∅ ∨ ((♯‘𝐶) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)))
8716, 83, 86mpjaod 719 1 (𝜑 → Σ𝑘𝐴 𝐵 = Σ𝑛𝐶 𝐷)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709   = wceq 1372  wex 1514  wcel 2175  wral 2483  c0 3459  ifcif 3570   class class class wbr 4043  cmpt 4104  ccom 4678  wf 5266  ontowfo 5268  1-1-ontowf1o 5269  cfv 5270  (class class class)co 5943  Fincfn 6826  cc 7922  0cc0 7924  1c1 7925   + caddc 7927  cle 8107  cn 9035  ...cfz 10129  seqcseq 10590  chash 10918  Σcsu 11606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042  ax-arch 8043  ax-caucvg 8044
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-isom 5279  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-irdg 6455  df-frec 6476  df-1o 6501  df-oadd 6505  df-er 6619  df-en 6827  df-dom 6828  df-fin 6829  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-n0 9295  df-z 9372  df-uz 9648  df-q 9740  df-rp 9775  df-fz 10130  df-fzo 10264  df-seqfrec 10591  df-exp 10682  df-ihash 10919  df-cj 11095  df-re 11096  df-im 11097  df-rsqrt 11251  df-abs 11252  df-clim 11532  df-sumdc 11607
This theorem is referenced by:  fisumss  11645  fsum2dlemstep  11687  fsumcnv  11690  fsumrev  11696  fsumshft  11697  phisum  12505  fsumdvdsmul  15405  sgmppw  15406
  Copyright terms: Public domain W3C validator