ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1osng GIF version

Theorem f1osng 5517
Description: A singleton of an ordered pair is one-to-one onto function. (Contributed by Mario Carneiro, 12-Jan-2013.)
Assertion
Ref Expression
f1osng ((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵})

Proof of Theorem f1osng
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sneq 3618 . . . 4 (𝑎 = 𝐴 → {𝑎} = {𝐴})
2 f1oeq2 5465 . . . 4 ({𝑎} = {𝐴} → ({⟨𝑎, 𝑏⟩}:{𝑎}–1-1-onto→{𝑏} ↔ {⟨𝑎, 𝑏⟩}:{𝐴}–1-1-onto→{𝑏}))
31, 2syl 14 . . 3 (𝑎 = 𝐴 → ({⟨𝑎, 𝑏⟩}:{𝑎}–1-1-onto→{𝑏} ↔ {⟨𝑎, 𝑏⟩}:{𝐴}–1-1-onto→{𝑏}))
4 opeq1 3793 . . . . 5 (𝑎 = 𝐴 → ⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝑏⟩)
54sneqd 3620 . . . 4 (𝑎 = 𝐴 → {⟨𝑎, 𝑏⟩} = {⟨𝐴, 𝑏⟩})
6 f1oeq1 5464 . . . 4 ({⟨𝑎, 𝑏⟩} = {⟨𝐴, 𝑏⟩} → ({⟨𝑎, 𝑏⟩}:{𝐴}–1-1-onto→{𝑏} ↔ {⟨𝐴, 𝑏⟩}:{𝐴}–1-1-onto→{𝑏}))
75, 6syl 14 . . 3 (𝑎 = 𝐴 → ({⟨𝑎, 𝑏⟩}:{𝐴}–1-1-onto→{𝑏} ↔ {⟨𝐴, 𝑏⟩}:{𝐴}–1-1-onto→{𝑏}))
83, 7bitrd 188 . 2 (𝑎 = 𝐴 → ({⟨𝑎, 𝑏⟩}:{𝑎}–1-1-onto→{𝑏} ↔ {⟨𝐴, 𝑏⟩}:{𝐴}–1-1-onto→{𝑏}))
9 sneq 3618 . . . 4 (𝑏 = 𝐵 → {𝑏} = {𝐵})
10 f1oeq3 5466 . . . 4 ({𝑏} = {𝐵} → ({⟨𝐴, 𝑏⟩}:{𝐴}–1-1-onto→{𝑏} ↔ {⟨𝐴, 𝑏⟩}:{𝐴}–1-1-onto→{𝐵}))
119, 10syl 14 . . 3 (𝑏 = 𝐵 → ({⟨𝐴, 𝑏⟩}:{𝐴}–1-1-onto→{𝑏} ↔ {⟨𝐴, 𝑏⟩}:{𝐴}–1-1-onto→{𝐵}))
12 opeq2 3794 . . . . 5 (𝑏 = 𝐵 → ⟨𝐴, 𝑏⟩ = ⟨𝐴, 𝐵⟩)
1312sneqd 3620 . . . 4 (𝑏 = 𝐵 → {⟨𝐴, 𝑏⟩} = {⟨𝐴, 𝐵⟩})
14 f1oeq1 5464 . . . 4 ({⟨𝐴, 𝑏⟩} = {⟨𝐴, 𝐵⟩} → ({⟨𝐴, 𝑏⟩}:{𝐴}–1-1-onto→{𝐵} ↔ {⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵}))
1513, 14syl 14 . . 3 (𝑏 = 𝐵 → ({⟨𝐴, 𝑏⟩}:{𝐴}–1-1-onto→{𝐵} ↔ {⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵}))
1611, 15bitrd 188 . 2 (𝑏 = 𝐵 → ({⟨𝐴, 𝑏⟩}:{𝐴}–1-1-onto→{𝑏} ↔ {⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵}))
17 vex 2755 . . 3 𝑎 ∈ V
18 vex 2755 . . 3 𝑏 ∈ V
1917, 18f1osn 5516 . 2 {⟨𝑎, 𝑏⟩}:{𝑎}–1-1-onto→{𝑏}
208, 16, 19vtocl2g 2816 1 ((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2160  {csn 3607  cop 3610  1-1-ontowf1o 5230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-br 4019  df-opab 4080  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-fun 5233  df-fn 5234  df-f 5235  df-f1 5236  df-fo 5237  df-f1o 5238
This theorem is referenced by:  f1sng  5518  f1oprg  5520  fsnunf  5732  dif1en  6897  1fv  10157  zfz1isolem1  10838  sumsnf  11435  prodsnf  11618  ennnfonelemhf1o  12432
  Copyright terms: Public domain W3C validator