![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > f1osng | GIF version |
Description: A singleton of an ordered pair is one-to-one onto function. (Contributed by Mario Carneiro, 12-Jan-2013.) |
Ref | Expression |
---|---|
f1osng | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 3605 | . . . 4 ⊢ (𝑎 = 𝐴 → {𝑎} = {𝐴}) | |
2 | f1oeq2 5452 | . . . 4 ⊢ ({𝑎} = {𝐴} → ({⟨𝑎, 𝑏⟩}:{𝑎}–1-1-onto→{𝑏} ↔ {⟨𝑎, 𝑏⟩}:{𝐴}–1-1-onto→{𝑏})) | |
3 | 1, 2 | syl 14 | . . 3 ⊢ (𝑎 = 𝐴 → ({⟨𝑎, 𝑏⟩}:{𝑎}–1-1-onto→{𝑏} ↔ {⟨𝑎, 𝑏⟩}:{𝐴}–1-1-onto→{𝑏})) |
4 | opeq1 3780 | . . . . 5 ⊢ (𝑎 = 𝐴 → ⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝑏⟩) | |
5 | 4 | sneqd 3607 | . . . 4 ⊢ (𝑎 = 𝐴 → {⟨𝑎, 𝑏⟩} = {⟨𝐴, 𝑏⟩}) |
6 | f1oeq1 5451 | . . . 4 ⊢ ({⟨𝑎, 𝑏⟩} = {⟨𝐴, 𝑏⟩} → ({⟨𝑎, 𝑏⟩}:{𝐴}–1-1-onto→{𝑏} ↔ {⟨𝐴, 𝑏⟩}:{𝐴}–1-1-onto→{𝑏})) | |
7 | 5, 6 | syl 14 | . . 3 ⊢ (𝑎 = 𝐴 → ({⟨𝑎, 𝑏⟩}:{𝐴}–1-1-onto→{𝑏} ↔ {⟨𝐴, 𝑏⟩}:{𝐴}–1-1-onto→{𝑏})) |
8 | 3, 7 | bitrd 188 | . 2 ⊢ (𝑎 = 𝐴 → ({⟨𝑎, 𝑏⟩}:{𝑎}–1-1-onto→{𝑏} ↔ {⟨𝐴, 𝑏⟩}:{𝐴}–1-1-onto→{𝑏})) |
9 | sneq 3605 | . . . 4 ⊢ (𝑏 = 𝐵 → {𝑏} = {𝐵}) | |
10 | f1oeq3 5453 | . . . 4 ⊢ ({𝑏} = {𝐵} → ({⟨𝐴, 𝑏⟩}:{𝐴}–1-1-onto→{𝑏} ↔ {⟨𝐴, 𝑏⟩}:{𝐴}–1-1-onto→{𝐵})) | |
11 | 9, 10 | syl 14 | . . 3 ⊢ (𝑏 = 𝐵 → ({⟨𝐴, 𝑏⟩}:{𝐴}–1-1-onto→{𝑏} ↔ {⟨𝐴, 𝑏⟩}:{𝐴}–1-1-onto→{𝐵})) |
12 | opeq2 3781 | . . . . 5 ⊢ (𝑏 = 𝐵 → ⟨𝐴, 𝑏⟩ = ⟨𝐴, 𝐵⟩) | |
13 | 12 | sneqd 3607 | . . . 4 ⊢ (𝑏 = 𝐵 → {⟨𝐴, 𝑏⟩} = {⟨𝐴, 𝐵⟩}) |
14 | f1oeq1 5451 | . . . 4 ⊢ ({⟨𝐴, 𝑏⟩} = {⟨𝐴, 𝐵⟩} → ({⟨𝐴, 𝑏⟩}:{𝐴}–1-1-onto→{𝐵} ↔ {⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵})) | |
15 | 13, 14 | syl 14 | . . 3 ⊢ (𝑏 = 𝐵 → ({⟨𝐴, 𝑏⟩}:{𝐴}–1-1-onto→{𝐵} ↔ {⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵})) |
16 | 11, 15 | bitrd 188 | . 2 ⊢ (𝑏 = 𝐵 → ({⟨𝐴, 𝑏⟩}:{𝐴}–1-1-onto→{𝑏} ↔ {⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵})) |
17 | vex 2742 | . . 3 ⊢ 𝑎 ∈ V | |
18 | vex 2742 | . . 3 ⊢ 𝑏 ∈ V | |
19 | 17, 18 | f1osn 5503 | . 2 ⊢ {⟨𝑎, 𝑏⟩}:{𝑎}–1-1-onto→{𝑏} |
20 | 8, 16, 19 | vtocl2g 2803 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2148 {csn 3594 ⟨cop 3597 –1-1-onto→wf1o 5217 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-br 4006 df-opab 4067 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 |
This theorem is referenced by: f1sng 5505 f1oprg 5507 fsnunf 5718 dif1en 6881 1fv 10141 zfz1isolem1 10822 sumsnf 11419 prodsnf 11602 ennnfonelemhf1o 12416 |
Copyright terms: Public domain | W3C validator |