ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodsnf GIF version

Theorem prodsnf 11555
Description: A product of a singleton is the term. A version of prodsn 11556 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
prodsnf.1 𝑘𝐵
prodsnf.2 (𝑘 = 𝑀𝐴 = 𝐵)
Assertion
Ref Expression
prodsnf ((𝑀𝑉𝐵 ∈ ℂ) → ∏𝑘 ∈ {𝑀}𝐴 = 𝐵)
Distinct variable groups:   𝑘,𝑀   𝑘,𝑉
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem prodsnf
Dummy variables 𝑚 𝑛 𝑗 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2312 . . . 4 𝑚𝐴
2 nfcsb1v 3082 . . . 4 𝑘𝑚 / 𝑘𝐴
3 csbeq1a 3058 . . . 4 (𝑘 = 𝑚𝐴 = 𝑚 / 𝑘𝐴)
41, 2, 3cbvprodi 11523 . . 3 𝑘 ∈ {𝑀}𝐴 = ∏𝑚 ∈ {𝑀}𝑚 / 𝑘𝐴
5 csbeq1 3052 . . . 4 (𝑚 = ({⟨1, 𝑀⟩}‘𝑛) → 𝑚 / 𝑘𝐴 = ({⟨1, 𝑀⟩}‘𝑛) / 𝑘𝐴)
6 1nn 8889 . . . . 5 1 ∈ ℕ
76a1i 9 . . . 4 ((𝑀𝑉𝐵 ∈ ℂ) → 1 ∈ ℕ)
8 1z 9238 . . . . . 6 1 ∈ ℤ
9 f1osng 5483 . . . . . . 7 ((1 ∈ ℤ ∧ 𝑀𝑉) → {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀})
10 fzsn 10022 . . . . . . . . 9 (1 ∈ ℤ → (1...1) = {1})
118, 10ax-mp 5 . . . . . . . 8 (1...1) = {1}
12 f1oeq2 5432 . . . . . . . 8 ((1...1) = {1} → ({⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀} ↔ {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀}))
1311, 12ax-mp 5 . . . . . . 7 ({⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀} ↔ {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀})
149, 13sylibr 133 . . . . . 6 ((1 ∈ ℤ ∧ 𝑀𝑉) → {⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀})
158, 14mpan 422 . . . . 5 (𝑀𝑉 → {⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀})
1615adantr 274 . . . 4 ((𝑀𝑉𝐵 ∈ ℂ) → {⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀})
17 velsn 3600 . . . . . 6 (𝑚 ∈ {𝑀} ↔ 𝑚 = 𝑀)
18 csbeq1 3052 . . . . . . 7 (𝑚 = 𝑀𝑚 / 𝑘𝐴 = 𝑀 / 𝑘𝐴)
19 prodsnf.1 . . . . . . . . . 10 𝑘𝐵
2019a1i 9 . . . . . . . . 9 (𝑀𝑉𝑘𝐵)
21 prodsnf.2 . . . . . . . . 9 (𝑘 = 𝑀𝐴 = 𝐵)
2220, 21csbiegf 3092 . . . . . . . 8 (𝑀𝑉𝑀 / 𝑘𝐴 = 𝐵)
2322adantr 274 . . . . . . 7 ((𝑀𝑉𝐵 ∈ ℂ) → 𝑀 / 𝑘𝐴 = 𝐵)
2418, 23sylan9eqr 2225 . . . . . 6 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑚 = 𝑀) → 𝑚 / 𝑘𝐴 = 𝐵)
2517, 24sylan2b 285 . . . . 5 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → 𝑚 / 𝑘𝐴 = 𝐵)
26 simplr 525 . . . . 5 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → 𝐵 ∈ ℂ)
2725, 26eqeltrd 2247 . . . 4 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → 𝑚 / 𝑘𝐴 ∈ ℂ)
2811eleq2i 2237 . . . . . 6 (𝑛 ∈ (1...1) ↔ 𝑛 ∈ {1})
29 velsn 3600 . . . . . 6 (𝑛 ∈ {1} ↔ 𝑛 = 1)
3028, 29bitri 183 . . . . 5 (𝑛 ∈ (1...1) ↔ 𝑛 = 1)
31 fvsng 5692 . . . . . . . . . . 11 ((1 ∈ ℤ ∧ 𝑀𝑉) → ({⟨1, 𝑀⟩}‘1) = 𝑀)
328, 31mpan 422 . . . . . . . . . 10 (𝑀𝑉 → ({⟨1, 𝑀⟩}‘1) = 𝑀)
3332adantr 274 . . . . . . . . 9 ((𝑀𝑉𝐵 ∈ ℂ) → ({⟨1, 𝑀⟩}‘1) = 𝑀)
3433csbeq1d 3056 . . . . . . . 8 ((𝑀𝑉𝐵 ∈ ℂ) → ({⟨1, 𝑀⟩}‘1) / 𝑘𝐴 = 𝑀 / 𝑘𝐴)
35 simpr 109 . . . . . . . . 9 ((𝑀𝑉𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
36 fvsng 5692 . . . . . . . . 9 ((1 ∈ ℤ ∧ 𝐵 ∈ ℂ) → ({⟨1, 𝐵⟩}‘1) = 𝐵)
378, 35, 36sylancr 412 . . . . . . . 8 ((𝑀𝑉𝐵 ∈ ℂ) → ({⟨1, 𝐵⟩}‘1) = 𝐵)
3823, 34, 373eqtr4rd 2214 . . . . . . 7 ((𝑀𝑉𝐵 ∈ ℂ) → ({⟨1, 𝐵⟩}‘1) = ({⟨1, 𝑀⟩}‘1) / 𝑘𝐴)
39 fveq2 5496 . . . . . . . 8 (𝑛 = 1 → ({⟨1, 𝐵⟩}‘𝑛) = ({⟨1, 𝐵⟩}‘1))
40 fveq2 5496 . . . . . . . . 9 (𝑛 = 1 → ({⟨1, 𝑀⟩}‘𝑛) = ({⟨1, 𝑀⟩}‘1))
4140csbeq1d 3056 . . . . . . . 8 (𝑛 = 1 → ({⟨1, 𝑀⟩}‘𝑛) / 𝑘𝐴 = ({⟨1, 𝑀⟩}‘1) / 𝑘𝐴)
4239, 41eqeq12d 2185 . . . . . . 7 (𝑛 = 1 → (({⟨1, 𝐵⟩}‘𝑛) = ({⟨1, 𝑀⟩}‘𝑛) / 𝑘𝐴 ↔ ({⟨1, 𝐵⟩}‘1) = ({⟨1, 𝑀⟩}‘1) / 𝑘𝐴))
4338, 42syl5ibrcom 156 . . . . . 6 ((𝑀𝑉𝐵 ∈ ℂ) → (𝑛 = 1 → ({⟨1, 𝐵⟩}‘𝑛) = ({⟨1, 𝑀⟩}‘𝑛) / 𝑘𝐴))
4443imp 123 . . . . 5 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑛 = 1) → ({⟨1, 𝐵⟩}‘𝑛) = ({⟨1, 𝑀⟩}‘𝑛) / 𝑘𝐴)
4530, 44sylan2b 285 . . . 4 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑛 ∈ (1...1)) → ({⟨1, 𝐵⟩}‘𝑛) = ({⟨1, 𝑀⟩}‘𝑛) / 𝑘𝐴)
465, 7, 16, 27, 45fprodseq 11546 . . 3 ((𝑀𝑉𝐵 ∈ ℂ) → ∏𝑚 ∈ {𝑀}𝑚 / 𝑘𝐴 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 1)))‘1))
474, 46eqtrid 2215 . 2 ((𝑀𝑉𝐵 ∈ ℂ) → ∏𝑘 ∈ {𝑀}𝐴 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 1)))‘1))
48 1zzd 9239 . . . 4 ((𝑀𝑉𝐵 ∈ ℂ) → 1 ∈ ℤ)
49 eqid 2170 . . . . . 6 (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 1))
50 breq1 3992 . . . . . . 7 (𝑛 = 𝑗 → (𝑛 ≤ 1 ↔ 𝑗 ≤ 1))
51 fveq2 5496 . . . . . . 7 (𝑛 = 𝑗 → ({⟨1, 𝐵⟩}‘𝑛) = ({⟨1, 𝐵⟩}‘𝑗))
5250, 51ifbieq1d 3548 . . . . . 6 (𝑛 = 𝑗 → if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 1) = if(𝑗 ≤ 1, ({⟨1, 𝐵⟩}‘𝑗), 1))
53 elnnuz 9523 . . . . . . . 8 (𝑗 ∈ ℕ ↔ 𝑗 ∈ (ℤ‘1))
5453biimpri 132 . . . . . . 7 (𝑗 ∈ (ℤ‘1) → 𝑗 ∈ ℕ)
5554adantl 275 . . . . . 6 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑗 ∈ (ℤ‘1)) → 𝑗 ∈ ℕ)
56 simpr 109 . . . . . . . . . . 11 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑗 ∈ (ℤ‘1)) ∧ 𝑗 ≤ 1) → 𝑗 ≤ 1)
57 eluzle 9499 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ‘1) → 1 ≤ 𝑗)
5857ad2antlr 486 . . . . . . . . . . 11 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑗 ∈ (ℤ‘1)) ∧ 𝑗 ≤ 1) → 1 ≤ 𝑗)
5954nnzd 9333 . . . . . . . . . . . . . 14 (𝑗 ∈ (ℤ‘1) → 𝑗 ∈ ℤ)
6059ad2antlr 486 . . . . . . . . . . . . 13 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑗 ∈ (ℤ‘1)) ∧ 𝑗 ≤ 1) → 𝑗 ∈ ℤ)
6160zred 9334 . . . . . . . . . . . 12 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑗 ∈ (ℤ‘1)) ∧ 𝑗 ≤ 1) → 𝑗 ∈ ℝ)
62 1red 7935 . . . . . . . . . . . 12 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑗 ∈ (ℤ‘1)) ∧ 𝑗 ≤ 1) → 1 ∈ ℝ)
6361, 62letri3d 8035 . . . . . . . . . . 11 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑗 ∈ (ℤ‘1)) ∧ 𝑗 ≤ 1) → (𝑗 = 1 ↔ (𝑗 ≤ 1 ∧ 1 ≤ 𝑗)))
6456, 58, 63mpbir2and 939 . . . . . . . . . 10 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑗 ∈ (ℤ‘1)) ∧ 𝑗 ≤ 1) → 𝑗 = 1)
6564fveq2d 5500 . . . . . . . . 9 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑗 ∈ (ℤ‘1)) ∧ 𝑗 ≤ 1) → ({⟨1, 𝐵⟩}‘𝑗) = ({⟨1, 𝐵⟩}‘1))
6637ad2antrr 485 . . . . . . . . 9 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑗 ∈ (ℤ‘1)) ∧ 𝑗 ≤ 1) → ({⟨1, 𝐵⟩}‘1) = 𝐵)
6765, 66eqtrd 2203 . . . . . . . 8 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑗 ∈ (ℤ‘1)) ∧ 𝑗 ≤ 1) → ({⟨1, 𝐵⟩}‘𝑗) = 𝐵)
6835ad2antrr 485 . . . . . . . 8 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑗 ∈ (ℤ‘1)) ∧ 𝑗 ≤ 1) → 𝐵 ∈ ℂ)
6967, 68eqeltrd 2247 . . . . . . 7 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑗 ∈ (ℤ‘1)) ∧ 𝑗 ≤ 1) → ({⟨1, 𝐵⟩}‘𝑗) ∈ ℂ)
70 1cnd 7936 . . . . . . 7 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑗 ∈ (ℤ‘1)) ∧ ¬ 𝑗 ≤ 1) → 1 ∈ ℂ)
7155nnzd 9333 . . . . . . . 8 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑗 ∈ (ℤ‘1)) → 𝑗 ∈ ℤ)
72 1zzd 9239 . . . . . . . 8 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑗 ∈ (ℤ‘1)) → 1 ∈ ℤ)
73 zdcle 9288 . . . . . . . 8 ((𝑗 ∈ ℤ ∧ 1 ∈ ℤ) → DECID 𝑗 ≤ 1)
7471, 72, 73syl2anc 409 . . . . . . 7 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑗 ∈ (ℤ‘1)) → DECID 𝑗 ≤ 1)
7569, 70, 74ifcldadc 3555 . . . . . 6 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑗 ∈ (ℤ‘1)) → if(𝑗 ≤ 1, ({⟨1, 𝐵⟩}‘𝑗), 1) ∈ ℂ)
7649, 52, 55, 75fvmptd3 5589 . . . . 5 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑗 ∈ (ℤ‘1)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 1))‘𝑗) = if(𝑗 ≤ 1, ({⟨1, 𝐵⟩}‘𝑗), 1))
7776, 75eqeltrd 2247 . . . 4 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑗 ∈ (ℤ‘1)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 1))‘𝑗) ∈ ℂ)
78 mulcl 7901 . . . . 5 ((𝑗 ∈ ℂ ∧ 𝑞 ∈ ℂ) → (𝑗 · 𝑞) ∈ ℂ)
7978adantl 275 . . . 4 (((𝑀𝑉𝐵 ∈ ℂ) ∧ (𝑗 ∈ ℂ ∧ 𝑞 ∈ ℂ)) → (𝑗 · 𝑞) ∈ ℂ)
8048, 77, 79seq3-1 10416 . . 3 ((𝑀𝑉𝐵 ∈ ℂ) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 1)))‘1) = ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 1))‘1))
81 breq1 3992 . . . . . 6 (𝑛 = 1 → (𝑛 ≤ 1 ↔ 1 ≤ 1))
8281, 39ifbieq1d 3548 . . . . 5 (𝑛 = 1 → if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 1) = if(1 ≤ 1, ({⟨1, 𝐵⟩}‘1), 1))
83 1le1 8491 . . . . . . . 8 1 ≤ 1
8483iftruei 3532 . . . . . . 7 if(1 ≤ 1, ({⟨1, 𝐵⟩}‘1), 1) = ({⟨1, 𝐵⟩}‘1)
8584, 37eqtrid 2215 . . . . . 6 ((𝑀𝑉𝐵 ∈ ℂ) → if(1 ≤ 1, ({⟨1, 𝐵⟩}‘1), 1) = 𝐵)
8685, 35eqeltrd 2247 . . . . 5 ((𝑀𝑉𝐵 ∈ ℂ) → if(1 ≤ 1, ({⟨1, 𝐵⟩}‘1), 1) ∈ ℂ)
8749, 82, 7, 86fvmptd3 5589 . . . 4 ((𝑀𝑉𝐵 ∈ ℂ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 1))‘1) = if(1 ≤ 1, ({⟨1, 𝐵⟩}‘1), 1))
8887, 85eqtrd 2203 . . 3 ((𝑀𝑉𝐵 ∈ ℂ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 1))‘1) = 𝐵)
8980, 88eqtrd 2203 . 2 ((𝑀𝑉𝐵 ∈ ℂ) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 1)))‘1) = 𝐵)
9047, 89eqtrd 2203 1 ((𝑀𝑉𝐵 ∈ ℂ) → ∏𝑘 ∈ {𝑀}𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  DECID wdc 829   = wceq 1348  wcel 2141  wnfc 2299  csb 3049  ifcif 3526  {csn 3583  cop 3586   class class class wbr 3989  cmpt 4050  1-1-ontowf1o 5197  cfv 5198  (class class class)co 5853  cc 7772  1c1 7775   · cmul 7779  cle 7955  cn 8878  cz 9212  cuz 9487  ...cfz 9965  seqcseq 10401  cprod 11513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-frec 6370  df-1o 6395  df-oadd 6399  df-er 6513  df-en 6719  df-dom 6720  df-fin 6721  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fzo 10099  df-seqfrec 10402  df-exp 10476  df-ihash 10710  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-clim 11242  df-proddc 11514
This theorem is referenced by:  prodsn  11556  fprodunsn  11567  fprodsplitsn  11596
  Copyright terms: Public domain W3C validator