ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodsnf GIF version

Theorem prodsnf 11533
Description: A product of a singleton is the term. A version of prodsn 11534 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
prodsnf.1 𝑘𝐵
prodsnf.2 (𝑘 = 𝑀𝐴 = 𝐵)
Assertion
Ref Expression
prodsnf ((𝑀𝑉𝐵 ∈ ℂ) → ∏𝑘 ∈ {𝑀}𝐴 = 𝐵)
Distinct variable groups:   𝑘,𝑀   𝑘,𝑉
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem prodsnf
Dummy variables 𝑚 𝑛 𝑗 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2308 . . . 4 𝑚𝐴
2 nfcsb1v 3078 . . . 4 𝑘𝑚 / 𝑘𝐴
3 csbeq1a 3054 . . . 4 (𝑘 = 𝑚𝐴 = 𝑚 / 𝑘𝐴)
41, 2, 3cbvprodi 11501 . . 3 𝑘 ∈ {𝑀}𝐴 = ∏𝑚 ∈ {𝑀}𝑚 / 𝑘𝐴
5 csbeq1 3048 . . . 4 (𝑚 = ({⟨1, 𝑀⟩}‘𝑛) → 𝑚 / 𝑘𝐴 = ({⟨1, 𝑀⟩}‘𝑛) / 𝑘𝐴)
6 1nn 8868 . . . . 5 1 ∈ ℕ
76a1i 9 . . . 4 ((𝑀𝑉𝐵 ∈ ℂ) → 1 ∈ ℕ)
8 1z 9217 . . . . . 6 1 ∈ ℤ
9 f1osng 5473 . . . . . . 7 ((1 ∈ ℤ ∧ 𝑀𝑉) → {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀})
10 fzsn 10001 . . . . . . . . 9 (1 ∈ ℤ → (1...1) = {1})
118, 10ax-mp 5 . . . . . . . 8 (1...1) = {1}
12 f1oeq2 5422 . . . . . . . 8 ((1...1) = {1} → ({⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀} ↔ {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀}))
1311, 12ax-mp 5 . . . . . . 7 ({⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀} ↔ {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀})
149, 13sylibr 133 . . . . . 6 ((1 ∈ ℤ ∧ 𝑀𝑉) → {⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀})
158, 14mpan 421 . . . . 5 (𝑀𝑉 → {⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀})
1615adantr 274 . . . 4 ((𝑀𝑉𝐵 ∈ ℂ) → {⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀})
17 velsn 3593 . . . . . 6 (𝑚 ∈ {𝑀} ↔ 𝑚 = 𝑀)
18 csbeq1 3048 . . . . . . 7 (𝑚 = 𝑀𝑚 / 𝑘𝐴 = 𝑀 / 𝑘𝐴)
19 prodsnf.1 . . . . . . . . . 10 𝑘𝐵
2019a1i 9 . . . . . . . . 9 (𝑀𝑉𝑘𝐵)
21 prodsnf.2 . . . . . . . . 9 (𝑘 = 𝑀𝐴 = 𝐵)
2220, 21csbiegf 3088 . . . . . . . 8 (𝑀𝑉𝑀 / 𝑘𝐴 = 𝐵)
2322adantr 274 . . . . . . 7 ((𝑀𝑉𝐵 ∈ ℂ) → 𝑀 / 𝑘𝐴 = 𝐵)
2418, 23sylan9eqr 2221 . . . . . 6 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑚 = 𝑀) → 𝑚 / 𝑘𝐴 = 𝐵)
2517, 24sylan2b 285 . . . . 5 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → 𝑚 / 𝑘𝐴 = 𝐵)
26 simplr 520 . . . . 5 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → 𝐵 ∈ ℂ)
2725, 26eqeltrd 2243 . . . 4 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → 𝑚 / 𝑘𝐴 ∈ ℂ)
2811eleq2i 2233 . . . . . 6 (𝑛 ∈ (1...1) ↔ 𝑛 ∈ {1})
29 velsn 3593 . . . . . 6 (𝑛 ∈ {1} ↔ 𝑛 = 1)
3028, 29bitri 183 . . . . 5 (𝑛 ∈ (1...1) ↔ 𝑛 = 1)
31 fvsng 5681 . . . . . . . . . . 11 ((1 ∈ ℤ ∧ 𝑀𝑉) → ({⟨1, 𝑀⟩}‘1) = 𝑀)
328, 31mpan 421 . . . . . . . . . 10 (𝑀𝑉 → ({⟨1, 𝑀⟩}‘1) = 𝑀)
3332adantr 274 . . . . . . . . 9 ((𝑀𝑉𝐵 ∈ ℂ) → ({⟨1, 𝑀⟩}‘1) = 𝑀)
3433csbeq1d 3052 . . . . . . . 8 ((𝑀𝑉𝐵 ∈ ℂ) → ({⟨1, 𝑀⟩}‘1) / 𝑘𝐴 = 𝑀 / 𝑘𝐴)
35 simpr 109 . . . . . . . . 9 ((𝑀𝑉𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
36 fvsng 5681 . . . . . . . . 9 ((1 ∈ ℤ ∧ 𝐵 ∈ ℂ) → ({⟨1, 𝐵⟩}‘1) = 𝐵)
378, 35, 36sylancr 411 . . . . . . . 8 ((𝑀𝑉𝐵 ∈ ℂ) → ({⟨1, 𝐵⟩}‘1) = 𝐵)
3823, 34, 373eqtr4rd 2209 . . . . . . 7 ((𝑀𝑉𝐵 ∈ ℂ) → ({⟨1, 𝐵⟩}‘1) = ({⟨1, 𝑀⟩}‘1) / 𝑘𝐴)
39 fveq2 5486 . . . . . . . 8 (𝑛 = 1 → ({⟨1, 𝐵⟩}‘𝑛) = ({⟨1, 𝐵⟩}‘1))
40 fveq2 5486 . . . . . . . . 9 (𝑛 = 1 → ({⟨1, 𝑀⟩}‘𝑛) = ({⟨1, 𝑀⟩}‘1))
4140csbeq1d 3052 . . . . . . . 8 (𝑛 = 1 → ({⟨1, 𝑀⟩}‘𝑛) / 𝑘𝐴 = ({⟨1, 𝑀⟩}‘1) / 𝑘𝐴)
4239, 41eqeq12d 2180 . . . . . . 7 (𝑛 = 1 → (({⟨1, 𝐵⟩}‘𝑛) = ({⟨1, 𝑀⟩}‘𝑛) / 𝑘𝐴 ↔ ({⟨1, 𝐵⟩}‘1) = ({⟨1, 𝑀⟩}‘1) / 𝑘𝐴))
4338, 42syl5ibrcom 156 . . . . . 6 ((𝑀𝑉𝐵 ∈ ℂ) → (𝑛 = 1 → ({⟨1, 𝐵⟩}‘𝑛) = ({⟨1, 𝑀⟩}‘𝑛) / 𝑘𝐴))
4443imp 123 . . . . 5 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑛 = 1) → ({⟨1, 𝐵⟩}‘𝑛) = ({⟨1, 𝑀⟩}‘𝑛) / 𝑘𝐴)
4530, 44sylan2b 285 . . . 4 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑛 ∈ (1...1)) → ({⟨1, 𝐵⟩}‘𝑛) = ({⟨1, 𝑀⟩}‘𝑛) / 𝑘𝐴)
465, 7, 16, 27, 45fprodseq 11524 . . 3 ((𝑀𝑉𝐵 ∈ ℂ) → ∏𝑚 ∈ {𝑀}𝑚 / 𝑘𝐴 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 1)))‘1))
474, 46syl5eq 2211 . 2 ((𝑀𝑉𝐵 ∈ ℂ) → ∏𝑘 ∈ {𝑀}𝐴 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 1)))‘1))
48 1zzd 9218 . . . 4 ((𝑀𝑉𝐵 ∈ ℂ) → 1 ∈ ℤ)
49 eqid 2165 . . . . . 6 (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 1))
50 breq1 3985 . . . . . . 7 (𝑛 = 𝑗 → (𝑛 ≤ 1 ↔ 𝑗 ≤ 1))
51 fveq2 5486 . . . . . . 7 (𝑛 = 𝑗 → ({⟨1, 𝐵⟩}‘𝑛) = ({⟨1, 𝐵⟩}‘𝑗))
5250, 51ifbieq1d 3542 . . . . . 6 (𝑛 = 𝑗 → if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 1) = if(𝑗 ≤ 1, ({⟨1, 𝐵⟩}‘𝑗), 1))
53 elnnuz 9502 . . . . . . . 8 (𝑗 ∈ ℕ ↔ 𝑗 ∈ (ℤ‘1))
5453biimpri 132 . . . . . . 7 (𝑗 ∈ (ℤ‘1) → 𝑗 ∈ ℕ)
5554adantl 275 . . . . . 6 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑗 ∈ (ℤ‘1)) → 𝑗 ∈ ℕ)
56 simpr 109 . . . . . . . . . . 11 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑗 ∈ (ℤ‘1)) ∧ 𝑗 ≤ 1) → 𝑗 ≤ 1)
57 eluzle 9478 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ‘1) → 1 ≤ 𝑗)
5857ad2antlr 481 . . . . . . . . . . 11 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑗 ∈ (ℤ‘1)) ∧ 𝑗 ≤ 1) → 1 ≤ 𝑗)
5954nnzd 9312 . . . . . . . . . . . . . 14 (𝑗 ∈ (ℤ‘1) → 𝑗 ∈ ℤ)
6059ad2antlr 481 . . . . . . . . . . . . 13 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑗 ∈ (ℤ‘1)) ∧ 𝑗 ≤ 1) → 𝑗 ∈ ℤ)
6160zred 9313 . . . . . . . . . . . 12 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑗 ∈ (ℤ‘1)) ∧ 𝑗 ≤ 1) → 𝑗 ∈ ℝ)
62 1red 7914 . . . . . . . . . . . 12 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑗 ∈ (ℤ‘1)) ∧ 𝑗 ≤ 1) → 1 ∈ ℝ)
6361, 62letri3d 8014 . . . . . . . . . . 11 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑗 ∈ (ℤ‘1)) ∧ 𝑗 ≤ 1) → (𝑗 = 1 ↔ (𝑗 ≤ 1 ∧ 1 ≤ 𝑗)))
6456, 58, 63mpbir2and 934 . . . . . . . . . 10 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑗 ∈ (ℤ‘1)) ∧ 𝑗 ≤ 1) → 𝑗 = 1)
6564fveq2d 5490 . . . . . . . . 9 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑗 ∈ (ℤ‘1)) ∧ 𝑗 ≤ 1) → ({⟨1, 𝐵⟩}‘𝑗) = ({⟨1, 𝐵⟩}‘1))
6637ad2antrr 480 . . . . . . . . 9 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑗 ∈ (ℤ‘1)) ∧ 𝑗 ≤ 1) → ({⟨1, 𝐵⟩}‘1) = 𝐵)
6765, 66eqtrd 2198 . . . . . . . 8 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑗 ∈ (ℤ‘1)) ∧ 𝑗 ≤ 1) → ({⟨1, 𝐵⟩}‘𝑗) = 𝐵)
6835ad2antrr 480 . . . . . . . 8 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑗 ∈ (ℤ‘1)) ∧ 𝑗 ≤ 1) → 𝐵 ∈ ℂ)
6967, 68eqeltrd 2243 . . . . . . 7 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑗 ∈ (ℤ‘1)) ∧ 𝑗 ≤ 1) → ({⟨1, 𝐵⟩}‘𝑗) ∈ ℂ)
70 1cnd 7915 . . . . . . 7 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑗 ∈ (ℤ‘1)) ∧ ¬ 𝑗 ≤ 1) → 1 ∈ ℂ)
7155nnzd 9312 . . . . . . . 8 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑗 ∈ (ℤ‘1)) → 𝑗 ∈ ℤ)
72 1zzd 9218 . . . . . . . 8 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑗 ∈ (ℤ‘1)) → 1 ∈ ℤ)
73 zdcle 9267 . . . . . . . 8 ((𝑗 ∈ ℤ ∧ 1 ∈ ℤ) → DECID 𝑗 ≤ 1)
7471, 72, 73syl2anc 409 . . . . . . 7 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑗 ∈ (ℤ‘1)) → DECID 𝑗 ≤ 1)
7569, 70, 74ifcldadc 3549 . . . . . 6 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑗 ∈ (ℤ‘1)) → if(𝑗 ≤ 1, ({⟨1, 𝐵⟩}‘𝑗), 1) ∈ ℂ)
7649, 52, 55, 75fvmptd3 5579 . . . . 5 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑗 ∈ (ℤ‘1)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 1))‘𝑗) = if(𝑗 ≤ 1, ({⟨1, 𝐵⟩}‘𝑗), 1))
7776, 75eqeltrd 2243 . . . 4 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑗 ∈ (ℤ‘1)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 1))‘𝑗) ∈ ℂ)
78 mulcl 7880 . . . . 5 ((𝑗 ∈ ℂ ∧ 𝑞 ∈ ℂ) → (𝑗 · 𝑞) ∈ ℂ)
7978adantl 275 . . . 4 (((𝑀𝑉𝐵 ∈ ℂ) ∧ (𝑗 ∈ ℂ ∧ 𝑞 ∈ ℂ)) → (𝑗 · 𝑞) ∈ ℂ)
8048, 77, 79seq3-1 10395 . . 3 ((𝑀𝑉𝐵 ∈ ℂ) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 1)))‘1) = ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 1))‘1))
81 breq1 3985 . . . . . 6 (𝑛 = 1 → (𝑛 ≤ 1 ↔ 1 ≤ 1))
8281, 39ifbieq1d 3542 . . . . 5 (𝑛 = 1 → if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 1) = if(1 ≤ 1, ({⟨1, 𝐵⟩}‘1), 1))
83 1le1 8470 . . . . . . . 8 1 ≤ 1
8483iftruei 3526 . . . . . . 7 if(1 ≤ 1, ({⟨1, 𝐵⟩}‘1), 1) = ({⟨1, 𝐵⟩}‘1)
8584, 37syl5eq 2211 . . . . . 6 ((𝑀𝑉𝐵 ∈ ℂ) → if(1 ≤ 1, ({⟨1, 𝐵⟩}‘1), 1) = 𝐵)
8685, 35eqeltrd 2243 . . . . 5 ((𝑀𝑉𝐵 ∈ ℂ) → if(1 ≤ 1, ({⟨1, 𝐵⟩}‘1), 1) ∈ ℂ)
8749, 82, 7, 86fvmptd3 5579 . . . 4 ((𝑀𝑉𝐵 ∈ ℂ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 1))‘1) = if(1 ≤ 1, ({⟨1, 𝐵⟩}‘1), 1))
8887, 85eqtrd 2198 . . 3 ((𝑀𝑉𝐵 ∈ ℂ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 1))‘1) = 𝐵)
8980, 88eqtrd 2198 . 2 ((𝑀𝑉𝐵 ∈ ℂ) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 1)))‘1) = 𝐵)
9047, 89eqtrd 2198 1 ((𝑀𝑉𝐵 ∈ ℂ) → ∏𝑘 ∈ {𝑀}𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  DECID wdc 824   = wceq 1343  wcel 2136  wnfc 2295  csb 3045  ifcif 3520  {csn 3576  cop 3579   class class class wbr 3982  cmpt 4043  1-1-ontowf1o 5187  cfv 5188  (class class class)co 5842  cc 7751  1c1 7754   · cmul 7758  cle 7934  cn 8857  cz 9191  cuz 9466  ...cfz 9944  seqcseq 10380  cprod 11491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-ihash 10689  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-proddc 11492
This theorem is referenced by:  prodsn  11534  fprodunsn  11545  fprodsplitsn  11574
  Copyright terms: Public domain W3C validator