ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodsnf GIF version

Theorem prodsnf 11489
Description: A product of a singleton is the term. A version of prodsn 11490 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
prodsnf.1 𝑘𝐵
prodsnf.2 (𝑘 = 𝑀𝐴 = 𝐵)
Assertion
Ref Expression
prodsnf ((𝑀𝑉𝐵 ∈ ℂ) → ∏𝑘 ∈ {𝑀}𝐴 = 𝐵)
Distinct variable groups:   𝑘,𝑀   𝑘,𝑉
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem prodsnf
Dummy variables 𝑚 𝑛 𝑗 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2299 . . . 4 𝑚𝐴
2 nfcsb1v 3064 . . . 4 𝑘𝑚 / 𝑘𝐴
3 csbeq1a 3040 . . . 4 (𝑘 = 𝑚𝐴 = 𝑚 / 𝑘𝐴)
41, 2, 3cbvprodi 11457 . . 3 𝑘 ∈ {𝑀}𝐴 = ∏𝑚 ∈ {𝑀}𝑚 / 𝑘𝐴
5 csbeq1 3034 . . . 4 (𝑚 = ({⟨1, 𝑀⟩}‘𝑛) → 𝑚 / 𝑘𝐴 = ({⟨1, 𝑀⟩}‘𝑛) / 𝑘𝐴)
6 1nn 8844 . . . . 5 1 ∈ ℕ
76a1i 9 . . . 4 ((𝑀𝑉𝐵 ∈ ℂ) → 1 ∈ ℕ)
8 1z 9193 . . . . . 6 1 ∈ ℤ
9 f1osng 5455 . . . . . . 7 ((1 ∈ ℤ ∧ 𝑀𝑉) → {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀})
10 fzsn 9968 . . . . . . . . 9 (1 ∈ ℤ → (1...1) = {1})
118, 10ax-mp 5 . . . . . . . 8 (1...1) = {1}
12 f1oeq2 5404 . . . . . . . 8 ((1...1) = {1} → ({⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀} ↔ {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀}))
1311, 12ax-mp 5 . . . . . . 7 ({⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀} ↔ {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀})
149, 13sylibr 133 . . . . . 6 ((1 ∈ ℤ ∧ 𝑀𝑉) → {⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀})
158, 14mpan 421 . . . . 5 (𝑀𝑉 → {⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀})
1615adantr 274 . . . 4 ((𝑀𝑉𝐵 ∈ ℂ) → {⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀})
17 velsn 3577 . . . . . 6 (𝑚 ∈ {𝑀} ↔ 𝑚 = 𝑀)
18 csbeq1 3034 . . . . . . 7 (𝑚 = 𝑀𝑚 / 𝑘𝐴 = 𝑀 / 𝑘𝐴)
19 prodsnf.1 . . . . . . . . . 10 𝑘𝐵
2019a1i 9 . . . . . . . . 9 (𝑀𝑉𝑘𝐵)
21 prodsnf.2 . . . . . . . . 9 (𝑘 = 𝑀𝐴 = 𝐵)
2220, 21csbiegf 3074 . . . . . . . 8 (𝑀𝑉𝑀 / 𝑘𝐴 = 𝐵)
2322adantr 274 . . . . . . 7 ((𝑀𝑉𝐵 ∈ ℂ) → 𝑀 / 𝑘𝐴 = 𝐵)
2418, 23sylan9eqr 2212 . . . . . 6 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑚 = 𝑀) → 𝑚 / 𝑘𝐴 = 𝐵)
2517, 24sylan2b 285 . . . . 5 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → 𝑚 / 𝑘𝐴 = 𝐵)
26 simplr 520 . . . . 5 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → 𝐵 ∈ ℂ)
2725, 26eqeltrd 2234 . . . 4 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → 𝑚 / 𝑘𝐴 ∈ ℂ)
2811eleq2i 2224 . . . . . 6 (𝑛 ∈ (1...1) ↔ 𝑛 ∈ {1})
29 velsn 3577 . . . . . 6 (𝑛 ∈ {1} ↔ 𝑛 = 1)
3028, 29bitri 183 . . . . 5 (𝑛 ∈ (1...1) ↔ 𝑛 = 1)
31 fvsng 5663 . . . . . . . . . . 11 ((1 ∈ ℤ ∧ 𝑀𝑉) → ({⟨1, 𝑀⟩}‘1) = 𝑀)
328, 31mpan 421 . . . . . . . . . 10 (𝑀𝑉 → ({⟨1, 𝑀⟩}‘1) = 𝑀)
3332adantr 274 . . . . . . . . 9 ((𝑀𝑉𝐵 ∈ ℂ) → ({⟨1, 𝑀⟩}‘1) = 𝑀)
3433csbeq1d 3038 . . . . . . . 8 ((𝑀𝑉𝐵 ∈ ℂ) → ({⟨1, 𝑀⟩}‘1) / 𝑘𝐴 = 𝑀 / 𝑘𝐴)
35 simpr 109 . . . . . . . . 9 ((𝑀𝑉𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
36 fvsng 5663 . . . . . . . . 9 ((1 ∈ ℤ ∧ 𝐵 ∈ ℂ) → ({⟨1, 𝐵⟩}‘1) = 𝐵)
378, 35, 36sylancr 411 . . . . . . . 8 ((𝑀𝑉𝐵 ∈ ℂ) → ({⟨1, 𝐵⟩}‘1) = 𝐵)
3823, 34, 373eqtr4rd 2201 . . . . . . 7 ((𝑀𝑉𝐵 ∈ ℂ) → ({⟨1, 𝐵⟩}‘1) = ({⟨1, 𝑀⟩}‘1) / 𝑘𝐴)
39 fveq2 5468 . . . . . . . 8 (𝑛 = 1 → ({⟨1, 𝐵⟩}‘𝑛) = ({⟨1, 𝐵⟩}‘1))
40 fveq2 5468 . . . . . . . . 9 (𝑛 = 1 → ({⟨1, 𝑀⟩}‘𝑛) = ({⟨1, 𝑀⟩}‘1))
4140csbeq1d 3038 . . . . . . . 8 (𝑛 = 1 → ({⟨1, 𝑀⟩}‘𝑛) / 𝑘𝐴 = ({⟨1, 𝑀⟩}‘1) / 𝑘𝐴)
4239, 41eqeq12d 2172 . . . . . . 7 (𝑛 = 1 → (({⟨1, 𝐵⟩}‘𝑛) = ({⟨1, 𝑀⟩}‘𝑛) / 𝑘𝐴 ↔ ({⟨1, 𝐵⟩}‘1) = ({⟨1, 𝑀⟩}‘1) / 𝑘𝐴))
4338, 42syl5ibrcom 156 . . . . . 6 ((𝑀𝑉𝐵 ∈ ℂ) → (𝑛 = 1 → ({⟨1, 𝐵⟩}‘𝑛) = ({⟨1, 𝑀⟩}‘𝑛) / 𝑘𝐴))
4443imp 123 . . . . 5 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑛 = 1) → ({⟨1, 𝐵⟩}‘𝑛) = ({⟨1, 𝑀⟩}‘𝑛) / 𝑘𝐴)
4530, 44sylan2b 285 . . . 4 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑛 ∈ (1...1)) → ({⟨1, 𝐵⟩}‘𝑛) = ({⟨1, 𝑀⟩}‘𝑛) / 𝑘𝐴)
465, 7, 16, 27, 45fprodseq 11480 . . 3 ((𝑀𝑉𝐵 ∈ ℂ) → ∏𝑚 ∈ {𝑀}𝑚 / 𝑘𝐴 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 1)))‘1))
474, 46syl5eq 2202 . 2 ((𝑀𝑉𝐵 ∈ ℂ) → ∏𝑘 ∈ {𝑀}𝐴 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 1)))‘1))
48 1zzd 9194 . . . 4 ((𝑀𝑉𝐵 ∈ ℂ) → 1 ∈ ℤ)
49 eqid 2157 . . . . . 6 (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 1))
50 breq1 3968 . . . . . . 7 (𝑛 = 𝑗 → (𝑛 ≤ 1 ↔ 𝑗 ≤ 1))
51 fveq2 5468 . . . . . . 7 (𝑛 = 𝑗 → ({⟨1, 𝐵⟩}‘𝑛) = ({⟨1, 𝐵⟩}‘𝑗))
5250, 51ifbieq1d 3527 . . . . . 6 (𝑛 = 𝑗 → if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 1) = if(𝑗 ≤ 1, ({⟨1, 𝐵⟩}‘𝑗), 1))
53 elnnuz 9475 . . . . . . . 8 (𝑗 ∈ ℕ ↔ 𝑗 ∈ (ℤ‘1))
5453biimpri 132 . . . . . . 7 (𝑗 ∈ (ℤ‘1) → 𝑗 ∈ ℕ)
5554adantl 275 . . . . . 6 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑗 ∈ (ℤ‘1)) → 𝑗 ∈ ℕ)
56 simpr 109 . . . . . . . . . . 11 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑗 ∈ (ℤ‘1)) ∧ 𝑗 ≤ 1) → 𝑗 ≤ 1)
57 eluzle 9451 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ‘1) → 1 ≤ 𝑗)
5857ad2antlr 481 . . . . . . . . . . 11 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑗 ∈ (ℤ‘1)) ∧ 𝑗 ≤ 1) → 1 ≤ 𝑗)
5954nnzd 9285 . . . . . . . . . . . . . 14 (𝑗 ∈ (ℤ‘1) → 𝑗 ∈ ℤ)
6059ad2antlr 481 . . . . . . . . . . . . 13 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑗 ∈ (ℤ‘1)) ∧ 𝑗 ≤ 1) → 𝑗 ∈ ℤ)
6160zred 9286 . . . . . . . . . . . 12 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑗 ∈ (ℤ‘1)) ∧ 𝑗 ≤ 1) → 𝑗 ∈ ℝ)
62 1red 7893 . . . . . . . . . . . 12 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑗 ∈ (ℤ‘1)) ∧ 𝑗 ≤ 1) → 1 ∈ ℝ)
6361, 62letri3d 7992 . . . . . . . . . . 11 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑗 ∈ (ℤ‘1)) ∧ 𝑗 ≤ 1) → (𝑗 = 1 ↔ (𝑗 ≤ 1 ∧ 1 ≤ 𝑗)))
6456, 58, 63mpbir2and 929 . . . . . . . . . 10 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑗 ∈ (ℤ‘1)) ∧ 𝑗 ≤ 1) → 𝑗 = 1)
6564fveq2d 5472 . . . . . . . . 9 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑗 ∈ (ℤ‘1)) ∧ 𝑗 ≤ 1) → ({⟨1, 𝐵⟩}‘𝑗) = ({⟨1, 𝐵⟩}‘1))
6637ad2antrr 480 . . . . . . . . 9 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑗 ∈ (ℤ‘1)) ∧ 𝑗 ≤ 1) → ({⟨1, 𝐵⟩}‘1) = 𝐵)
6765, 66eqtrd 2190 . . . . . . . 8 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑗 ∈ (ℤ‘1)) ∧ 𝑗 ≤ 1) → ({⟨1, 𝐵⟩}‘𝑗) = 𝐵)
6835ad2antrr 480 . . . . . . . 8 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑗 ∈ (ℤ‘1)) ∧ 𝑗 ≤ 1) → 𝐵 ∈ ℂ)
6967, 68eqeltrd 2234 . . . . . . 7 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑗 ∈ (ℤ‘1)) ∧ 𝑗 ≤ 1) → ({⟨1, 𝐵⟩}‘𝑗) ∈ ℂ)
70 1cnd 7894 . . . . . . 7 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑗 ∈ (ℤ‘1)) ∧ ¬ 𝑗 ≤ 1) → 1 ∈ ℂ)
7155nnzd 9285 . . . . . . . 8 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑗 ∈ (ℤ‘1)) → 𝑗 ∈ ℤ)
72 1zzd 9194 . . . . . . . 8 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑗 ∈ (ℤ‘1)) → 1 ∈ ℤ)
73 zdcle 9240 . . . . . . . 8 ((𝑗 ∈ ℤ ∧ 1 ∈ ℤ) → DECID 𝑗 ≤ 1)
7471, 72, 73syl2anc 409 . . . . . . 7 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑗 ∈ (ℤ‘1)) → DECID 𝑗 ≤ 1)
7569, 70, 74ifcldadc 3534 . . . . . 6 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑗 ∈ (ℤ‘1)) → if(𝑗 ≤ 1, ({⟨1, 𝐵⟩}‘𝑗), 1) ∈ ℂ)
7649, 52, 55, 75fvmptd3 5561 . . . . 5 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑗 ∈ (ℤ‘1)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 1))‘𝑗) = if(𝑗 ≤ 1, ({⟨1, 𝐵⟩}‘𝑗), 1))
7776, 75eqeltrd 2234 . . . 4 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑗 ∈ (ℤ‘1)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 1))‘𝑗) ∈ ℂ)
78 mulcl 7859 . . . . 5 ((𝑗 ∈ ℂ ∧ 𝑞 ∈ ℂ) → (𝑗 · 𝑞) ∈ ℂ)
7978adantl 275 . . . 4 (((𝑀𝑉𝐵 ∈ ℂ) ∧ (𝑗 ∈ ℂ ∧ 𝑞 ∈ ℂ)) → (𝑗 · 𝑞) ∈ ℂ)
8048, 77, 79seq3-1 10359 . . 3 ((𝑀𝑉𝐵 ∈ ℂ) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 1)))‘1) = ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 1))‘1))
81 breq1 3968 . . . . . 6 (𝑛 = 1 → (𝑛 ≤ 1 ↔ 1 ≤ 1))
8281, 39ifbieq1d 3527 . . . . 5 (𝑛 = 1 → if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 1) = if(1 ≤ 1, ({⟨1, 𝐵⟩}‘1), 1))
83 1le1 8447 . . . . . . . 8 1 ≤ 1
8483iftruei 3511 . . . . . . 7 if(1 ≤ 1, ({⟨1, 𝐵⟩}‘1), 1) = ({⟨1, 𝐵⟩}‘1)
8584, 37syl5eq 2202 . . . . . 6 ((𝑀𝑉𝐵 ∈ ℂ) → if(1 ≤ 1, ({⟨1, 𝐵⟩}‘1), 1) = 𝐵)
8685, 35eqeltrd 2234 . . . . 5 ((𝑀𝑉𝐵 ∈ ℂ) → if(1 ≤ 1, ({⟨1, 𝐵⟩}‘1), 1) ∈ ℂ)
8749, 82, 7, 86fvmptd3 5561 . . . 4 ((𝑀𝑉𝐵 ∈ ℂ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 1))‘1) = if(1 ≤ 1, ({⟨1, 𝐵⟩}‘1), 1))
8887, 85eqtrd 2190 . . 3 ((𝑀𝑉𝐵 ∈ ℂ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 1))‘1) = 𝐵)
8980, 88eqtrd 2190 . 2 ((𝑀𝑉𝐵 ∈ ℂ) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 1)))‘1) = 𝐵)
9047, 89eqtrd 2190 1 ((𝑀𝑉𝐵 ∈ ℂ) → ∏𝑘 ∈ {𝑀}𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  DECID wdc 820   = wceq 1335  wcel 2128  wnfc 2286  csb 3031  ifcif 3505  {csn 3560  cop 3563   class class class wbr 3965  cmpt 4025  1-1-ontowf1o 5169  cfv 5170  (class class class)co 5824  cc 7730  1c1 7733   · cmul 7737  cle 7913  cn 8833  cz 9167  cuz 9439  ...cfz 9912  seqcseq 10344  cprod 11447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4496  ax-iinf 4547  ax-cnex 7823  ax-resscn 7824  ax-1cn 7825  ax-1re 7826  ax-icn 7827  ax-addcl 7828  ax-addrcl 7829  ax-mulcl 7830  ax-mulrcl 7831  ax-addcom 7832  ax-mulcom 7833  ax-addass 7834  ax-mulass 7835  ax-distr 7836  ax-i2m1 7837  ax-0lt1 7838  ax-1rid 7839  ax-0id 7840  ax-rnegex 7841  ax-precex 7842  ax-cnre 7843  ax-pre-ltirr 7844  ax-pre-ltwlin 7845  ax-pre-lttrn 7846  ax-pre-apti 7847  ax-pre-ltadd 7848  ax-pre-mulgt0 7849  ax-pre-mulext 7850  ax-arch 7851  ax-caucvg 7852
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4253  df-po 4256  df-iso 4257  df-iord 4326  df-on 4328  df-ilim 4329  df-suc 4331  df-iom 4550  df-xp 4592  df-rel 4593  df-cnv 4594  df-co 4595  df-dm 4596  df-rn 4597  df-res 4598  df-ima 4599  df-iota 5135  df-fun 5172  df-fn 5173  df-f 5174  df-f1 5175  df-fo 5176  df-f1o 5177  df-fv 5178  df-isom 5179  df-riota 5780  df-ov 5827  df-oprab 5828  df-mpo 5829  df-1st 6088  df-2nd 6089  df-recs 6252  df-irdg 6317  df-frec 6338  df-1o 6363  df-oadd 6367  df-er 6480  df-en 6686  df-dom 6687  df-fin 6688  df-pnf 7914  df-mnf 7915  df-xr 7916  df-ltxr 7917  df-le 7918  df-sub 8048  df-neg 8049  df-reap 8450  df-ap 8457  df-div 8546  df-inn 8834  df-2 8892  df-3 8893  df-4 8894  df-n0 9091  df-z 9168  df-uz 9440  df-q 9529  df-rp 9561  df-fz 9913  df-fzo 10042  df-seqfrec 10345  df-exp 10419  df-ihash 10650  df-cj 10742  df-re 10743  df-im 10744  df-rsqrt 10898  df-abs 10899  df-clim 11176  df-proddc 11448
This theorem is referenced by:  prodsn  11490  fprodunsn  11501  fprodsplitsn  11530
  Copyright terms: Public domain W3C validator