| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1oeq123d | GIF version | ||
| Description: Equality deduction for one-to-one onto functions. (Contributed by Mario Carneiro, 27-Jan-2017.) |
| Ref | Expression |
|---|---|
| f1eq123d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
| f1eq123d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| f1eq123d.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| f1oeq123d | ⊢ (𝜑 → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐺:𝐵–1-1-onto→𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1eq123d.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
| 2 | f1oeq1 5504 | . . 3 ⊢ (𝐹 = 𝐺 → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐺:𝐴–1-1-onto→𝐶)) | |
| 3 | 1, 2 | syl 14 | . 2 ⊢ (𝜑 → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐺:𝐴–1-1-onto→𝐶)) |
| 4 | f1eq123d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 5 | f1oeq2 5505 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐺:𝐴–1-1-onto→𝐶 ↔ 𝐺:𝐵–1-1-onto→𝐶)) | |
| 6 | 4, 5 | syl 14 | . 2 ⊢ (𝜑 → (𝐺:𝐴–1-1-onto→𝐶 ↔ 𝐺:𝐵–1-1-onto→𝐶)) |
| 7 | f1eq123d.3 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 8 | f1oeq3 5506 | . . 3 ⊢ (𝐶 = 𝐷 → (𝐺:𝐵–1-1-onto→𝐶 ↔ 𝐺:𝐵–1-1-onto→𝐷)) | |
| 9 | 7, 8 | syl 14 | . 2 ⊢ (𝜑 → (𝐺:𝐵–1-1-onto→𝐶 ↔ 𝐺:𝐵–1-1-onto→𝐷)) |
| 10 | 3, 6, 9 | 3bitrd 214 | 1 ⊢ (𝜑 → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐺:𝐵–1-1-onto→𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1372 –1-1-onto→wf1o 5267 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 df-opab 4105 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-fun 5270 df-fn 5271 df-f 5272 df-f1 5273 df-fo 5274 df-f1o 5275 |
| This theorem is referenced by: f1oprg 5560 ennnfonelemhf1o 12703 rhmf1o 13848 |
| Copyright terms: Public domain | W3C validator |