ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sumsnf GIF version

Theorem sumsnf 11691
Description: A sum of a singleton is the term. A version of sumsn 11693 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
sumsnf.1 𝑘𝐵
sumsnf.2 (𝑘 = 𝑀𝐴 = 𝐵)
Assertion
Ref Expression
sumsnf ((𝑀𝑉𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵)
Distinct variable groups:   𝑘,𝑀   𝑘,𝑉
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem sumsnf
Dummy variables 𝑚 𝑛 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2347 . . . . 5 𝑚𝐴
2 nfcsb1v 3125 . . . . 5 𝑘𝑚 / 𝑘𝐴
3 csbeq1a 3101 . . . . 5 (𝑘 = 𝑚𝐴 = 𝑚 / 𝑘𝐴)
41, 2, 3cbvsumi 11644 . . . 4 Σ𝑘 ∈ {𝑀}𝐴 = Σ𝑚 ∈ {𝑀}𝑚 / 𝑘𝐴
5 csbeq1 3095 . . . . 5 (𝑚 = ({⟨1, 𝑀⟩}‘𝑛) → 𝑚 / 𝑘𝐴 = ({⟨1, 𝑀⟩}‘𝑛) / 𝑘𝐴)
6 1nn 9046 . . . . . 6 1 ∈ ℕ
76a1i 9 . . . . 5 ((𝑀𝑉𝐵 ∈ ℂ) → 1 ∈ ℕ)
8 simpl 109 . . . . . . 7 ((𝑀𝑉𝐵 ∈ ℂ) → 𝑀𝑉)
9 f1osng 5562 . . . . . . 7 ((1 ∈ ℕ ∧ 𝑀𝑉) → {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀})
106, 8, 9sylancr 414 . . . . . 6 ((𝑀𝑉𝐵 ∈ ℂ) → {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀})
11 1z 9397 . . . . . . 7 1 ∈ ℤ
12 fzsn 10187 . . . . . . 7 (1 ∈ ℤ → (1...1) = {1})
13 f1oeq2 5510 . . . . . . 7 ((1...1) = {1} → ({⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀} ↔ {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀}))
1411, 12, 13mp2b 8 . . . . . 6 ({⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀} ↔ {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀})
1510, 14sylibr 134 . . . . 5 ((𝑀𝑉𝐵 ∈ ℂ) → {⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀})
16 elsni 3650 . . . . . . . 8 (𝑚 ∈ {𝑀} → 𝑚 = 𝑀)
1716adantl 277 . . . . . . 7 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → 𝑚 = 𝑀)
1817csbeq1d 3099 . . . . . 6 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → 𝑚 / 𝑘𝐴 = 𝑀 / 𝑘𝐴)
19 sumsnf.1 . . . . . . . . . 10 𝑘𝐵
2019a1i 9 . . . . . . . . 9 (𝑀𝑉𝑘𝐵)
21 sumsnf.2 . . . . . . . . 9 (𝑘 = 𝑀𝐴 = 𝐵)
2220, 21csbiegf 3136 . . . . . . . 8 (𝑀𝑉𝑀 / 𝑘𝐴 = 𝐵)
2322ad2antrr 488 . . . . . . 7 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → 𝑀 / 𝑘𝐴 = 𝐵)
24 simplr 528 . . . . . . 7 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → 𝐵 ∈ ℂ)
2523, 24eqeltrd 2281 . . . . . 6 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → 𝑀 / 𝑘𝐴 ∈ ℂ)
2618, 25eqeltrd 2281 . . . . 5 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → 𝑚 / 𝑘𝐴 ∈ ℂ)
2722ad2antrr 488 . . . . . 6 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑛 ∈ (1...1)) → 𝑀 / 𝑘𝐴 = 𝐵)
28 elfz1eq 10156 . . . . . . . . 9 (𝑛 ∈ (1...1) → 𝑛 = 1)
2928fveq2d 5579 . . . . . . . 8 (𝑛 ∈ (1...1) → ({⟨1, 𝑀⟩}‘𝑛) = ({⟨1, 𝑀⟩}‘1))
30 fvsng 5779 . . . . . . . . 9 ((1 ∈ ℕ ∧ 𝑀𝑉) → ({⟨1, 𝑀⟩}‘1) = 𝑀)
316, 8, 30sylancr 414 . . . . . . . 8 ((𝑀𝑉𝐵 ∈ ℂ) → ({⟨1, 𝑀⟩}‘1) = 𝑀)
3229, 31sylan9eqr 2259 . . . . . . 7 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑛 ∈ (1...1)) → ({⟨1, 𝑀⟩}‘𝑛) = 𝑀)
3332csbeq1d 3099 . . . . . 6 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑛 ∈ (1...1)) → ({⟨1, 𝑀⟩}‘𝑛) / 𝑘𝐴 = 𝑀 / 𝑘𝐴)
3428fveq2d 5579 . . . . . . 7 (𝑛 ∈ (1...1) → ({⟨1, 𝐵⟩}‘𝑛) = ({⟨1, 𝐵⟩}‘1))
35 simpr 110 . . . . . . . 8 ((𝑀𝑉𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
36 fvsng 5779 . . . . . . . 8 ((1 ∈ ℕ ∧ 𝐵 ∈ ℂ) → ({⟨1, 𝐵⟩}‘1) = 𝐵)
376, 35, 36sylancr 414 . . . . . . 7 ((𝑀𝑉𝐵 ∈ ℂ) → ({⟨1, 𝐵⟩}‘1) = 𝐵)
3834, 37sylan9eqr 2259 . . . . . 6 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑛 ∈ (1...1)) → ({⟨1, 𝐵⟩}‘𝑛) = 𝐵)
3927, 33, 383eqtr4rd 2248 . . . . 5 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑛 ∈ (1...1)) → ({⟨1, 𝐵⟩}‘𝑛) = ({⟨1, 𝑀⟩}‘𝑛) / 𝑘𝐴)
405, 7, 15, 26, 39fsum3 11669 . . . 4 ((𝑀𝑉𝐵 ∈ ℂ) → Σ𝑚 ∈ {𝑀}𝑚 / 𝑘𝐴 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 0)))‘1))
414, 40eqtrid 2249 . . 3 ((𝑀𝑉𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐴 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 0)))‘1))
42 1zzd 9398 . . . 4 ((𝑀𝑉𝐵 ∈ ℂ) → 1 ∈ ℤ)
43 eqid 2204 . . . . . 6 (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 0)) = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 0))
44 breq1 4046 . . . . . . 7 (𝑛 = 𝑢 → (𝑛 ≤ 1 ↔ 𝑢 ≤ 1))
45 fveq2 5575 . . . . . . 7 (𝑛 = 𝑢 → ({⟨1, 𝐵⟩}‘𝑛) = ({⟨1, 𝐵⟩}‘𝑢))
4644, 45ifbieq1d 3592 . . . . . 6 (𝑛 = 𝑢 → if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 0) = if(𝑢 ≤ 1, ({⟨1, 𝐵⟩}‘𝑢), 0))
47 elnnuz 9684 . . . . . . . 8 (𝑢 ∈ ℕ ↔ 𝑢 ∈ (ℤ‘1))
4847biimpri 133 . . . . . . 7 (𝑢 ∈ (ℤ‘1) → 𝑢 ∈ ℕ)
4948adantl 277 . . . . . 6 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) → 𝑢 ∈ ℕ)
50 simpr 110 . . . . . . . . . . 11 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ 1) → 𝑢 ≤ 1)
51 eluzle 9659 . . . . . . . . . . . 12 (𝑢 ∈ (ℤ‘1) → 1 ≤ 𝑢)
5251ad2antlr 489 . . . . . . . . . . 11 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ 1) → 1 ≤ 𝑢)
53 eluzelre 9657 . . . . . . . . . . . . 13 (𝑢 ∈ (ℤ‘1) → 𝑢 ∈ ℝ)
5453ad2antlr 489 . . . . . . . . . . . 12 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ 1) → 𝑢 ∈ ℝ)
55 1red 8086 . . . . . . . . . . . 12 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ 1) → 1 ∈ ℝ)
5654, 55letri3d 8187 . . . . . . . . . . 11 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ 1) → (𝑢 = 1 ↔ (𝑢 ≤ 1 ∧ 1 ≤ 𝑢)))
5750, 52, 56mpbir2and 946 . . . . . . . . . 10 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ 1) → 𝑢 = 1)
5857fveq2d 5579 . . . . . . . . 9 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ 1) → ({⟨1, 𝐵⟩}‘𝑢) = ({⟨1, 𝐵⟩}‘1))
5937ad2antrr 488 . . . . . . . . 9 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ 1) → ({⟨1, 𝐵⟩}‘1) = 𝐵)
6058, 59eqtrd 2237 . . . . . . . 8 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ 1) → ({⟨1, 𝐵⟩}‘𝑢) = 𝐵)
6135ad2antrr 488 . . . . . . . 8 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ 1) → 𝐵 ∈ ℂ)
6260, 61eqeltrd 2281 . . . . . . 7 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ 1) → ({⟨1, 𝐵⟩}‘𝑢) ∈ ℂ)
63 0cnd 8064 . . . . . . 7 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) ∧ ¬ 𝑢 ≤ 1) → 0 ∈ ℂ)
6449nnzd 9493 . . . . . . . 8 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) → 𝑢 ∈ ℤ)
65 1zzd 9398 . . . . . . . 8 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) → 1 ∈ ℤ)
66 zdcle 9448 . . . . . . . 8 ((𝑢 ∈ ℤ ∧ 1 ∈ ℤ) → DECID 𝑢 ≤ 1)
6764, 65, 66syl2anc 411 . . . . . . 7 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) → DECID 𝑢 ≤ 1)
6862, 63, 67ifcldadc 3599 . . . . . 6 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) → if(𝑢 ≤ 1, ({⟨1, 𝐵⟩}‘𝑢), 0) ∈ ℂ)
6943, 46, 49, 68fvmptd3 5672 . . . . 5 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 0))‘𝑢) = if(𝑢 ≤ 1, ({⟨1, 𝐵⟩}‘𝑢), 0))
7069, 68eqeltrd 2281 . . . 4 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 0))‘𝑢) ∈ ℂ)
71 addcl 8049 . . . . 5 ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 + 𝑣) ∈ ℂ)
7271adantl 277 . . . 4 (((𝑀𝑉𝐵 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑢 + 𝑣) ∈ ℂ)
7342, 70, 72seq3-1 10605 . . 3 ((𝑀𝑉𝐵 ∈ ℂ) → (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 0)))‘1) = ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 0))‘1))
7441, 73eqtrd 2237 . 2 ((𝑀𝑉𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐴 = ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 0))‘1))
75 1le1 8644 . . . . . 6 1 ≤ 1
7675iftruei 3576 . . . . 5 if(1 ≤ 1, ({⟨1, 𝐵⟩}‘1), 0) = ({⟨1, 𝐵⟩}‘1)
7776, 37eqtrid 2249 . . . 4 ((𝑀𝑉𝐵 ∈ ℂ) → if(1 ≤ 1, ({⟨1, 𝐵⟩}‘1), 0) = 𝐵)
7877, 35eqeltrd 2281 . . 3 ((𝑀𝑉𝐵 ∈ ℂ) → if(1 ≤ 1, ({⟨1, 𝐵⟩}‘1), 0) ∈ ℂ)
79 breq1 4046 . . . . 5 (𝑛 = 1 → (𝑛 ≤ 1 ↔ 1 ≤ 1))
80 fveq2 5575 . . . . 5 (𝑛 = 1 → ({⟨1, 𝐵⟩}‘𝑛) = ({⟨1, 𝐵⟩}‘1))
8179, 80ifbieq1d 3592 . . . 4 (𝑛 = 1 → if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 0) = if(1 ≤ 1, ({⟨1, 𝐵⟩}‘1), 0))
8281, 43fvmptg 5654 . . 3 ((1 ∈ ℕ ∧ if(1 ≤ 1, ({⟨1, 𝐵⟩}‘1), 0) ∈ ℂ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 0))‘1) = if(1 ≤ 1, ({⟨1, 𝐵⟩}‘1), 0))
836, 78, 82sylancr 414 . 2 ((𝑀𝑉𝐵 ∈ ℂ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 0))‘1) = if(1 ≤ 1, ({⟨1, 𝐵⟩}‘1), 0))
8474, 83, 773eqtrd 2241 1 ((𝑀𝑉𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  DECID wdc 835   = wceq 1372  wcel 2175  wnfc 2334  csb 3092  ifcif 3570  {csn 3632  cop 3635   class class class wbr 4043  cmpt 4104  1-1-ontowf1o 5269  cfv 5270  (class class class)co 5943  cc 7922  cr 7923  0cc0 7924  1c1 7925   + caddc 7927  cle 8107  cn 9035  cz 9371  cuz 9647  ...cfz 10129  seqcseq 10590  Σcsu 11635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042  ax-arch 8043  ax-caucvg 8044
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-isom 5279  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-irdg 6455  df-frec 6476  df-1o 6501  df-oadd 6505  df-er 6619  df-en 6827  df-dom 6828  df-fin 6829  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-n0 9295  df-z 9372  df-uz 9648  df-q 9740  df-rp 9775  df-fz 10130  df-fzo 10264  df-seqfrec 10591  df-exp 10682  df-ihash 10919  df-cj 11124  df-re 11125  df-im 11126  df-rsqrt 11280  df-abs 11281  df-clim 11561  df-sumdc 11636
This theorem is referenced by:  fsumsplitsn  11692  sumsn  11693
  Copyright terms: Public domain W3C validator