ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sumsnf GIF version

Theorem sumsnf 11178
Description: A sum of a singleton is the term. A version of sumsn 11180 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
sumsnf.1 𝑘𝐵
sumsnf.2 (𝑘 = 𝑀𝐴 = 𝐵)
Assertion
Ref Expression
sumsnf ((𝑀𝑉𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵)
Distinct variable groups:   𝑘,𝑀   𝑘,𝑉
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem sumsnf
Dummy variables 𝑚 𝑛 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2281 . . . . 5 𝑚𝐴
2 nfcsb1v 3035 . . . . 5 𝑘𝑚 / 𝑘𝐴
3 csbeq1a 3012 . . . . 5 (𝑘 = 𝑚𝐴 = 𝑚 / 𝑘𝐴)
41, 2, 3cbvsumi 11131 . . . 4 Σ𝑘 ∈ {𝑀}𝐴 = Σ𝑚 ∈ {𝑀}𝑚 / 𝑘𝐴
5 csbeq1 3006 . . . . 5 (𝑚 = ({⟨1, 𝑀⟩}‘𝑛) → 𝑚 / 𝑘𝐴 = ({⟨1, 𝑀⟩}‘𝑛) / 𝑘𝐴)
6 1nn 8731 . . . . . 6 1 ∈ ℕ
76a1i 9 . . . . 5 ((𝑀𝑉𝐵 ∈ ℂ) → 1 ∈ ℕ)
8 simpl 108 . . . . . . 7 ((𝑀𝑉𝐵 ∈ ℂ) → 𝑀𝑉)
9 f1osng 5408 . . . . . . 7 ((1 ∈ ℕ ∧ 𝑀𝑉) → {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀})
106, 8, 9sylancr 410 . . . . . 6 ((𝑀𝑉𝐵 ∈ ℂ) → {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀})
11 1z 9080 . . . . . . 7 1 ∈ ℤ
12 fzsn 9846 . . . . . . 7 (1 ∈ ℤ → (1...1) = {1})
13 f1oeq2 5357 . . . . . . 7 ((1...1) = {1} → ({⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀} ↔ {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀}))
1411, 12, 13mp2b 8 . . . . . 6 ({⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀} ↔ {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀})
1510, 14sylibr 133 . . . . 5 ((𝑀𝑉𝐵 ∈ ℂ) → {⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀})
16 elsni 3545 . . . . . . . 8 (𝑚 ∈ {𝑀} → 𝑚 = 𝑀)
1716adantl 275 . . . . . . 7 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → 𝑚 = 𝑀)
1817csbeq1d 3010 . . . . . 6 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → 𝑚 / 𝑘𝐴 = 𝑀 / 𝑘𝐴)
19 sumsnf.1 . . . . . . . . . 10 𝑘𝐵
2019a1i 9 . . . . . . . . 9 (𝑀𝑉𝑘𝐵)
21 sumsnf.2 . . . . . . . . 9 (𝑘 = 𝑀𝐴 = 𝐵)
2220, 21csbiegf 3043 . . . . . . . 8 (𝑀𝑉𝑀 / 𝑘𝐴 = 𝐵)
2322ad2antrr 479 . . . . . . 7 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → 𝑀 / 𝑘𝐴 = 𝐵)
24 simplr 519 . . . . . . 7 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → 𝐵 ∈ ℂ)
2523, 24eqeltrd 2216 . . . . . 6 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → 𝑀 / 𝑘𝐴 ∈ ℂ)
2618, 25eqeltrd 2216 . . . . 5 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → 𝑚 / 𝑘𝐴 ∈ ℂ)
2722ad2antrr 479 . . . . . 6 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑛 ∈ (1...1)) → 𝑀 / 𝑘𝐴 = 𝐵)
28 elfz1eq 9815 . . . . . . . . 9 (𝑛 ∈ (1...1) → 𝑛 = 1)
2928fveq2d 5425 . . . . . . . 8 (𝑛 ∈ (1...1) → ({⟨1, 𝑀⟩}‘𝑛) = ({⟨1, 𝑀⟩}‘1))
30 fvsng 5616 . . . . . . . . 9 ((1 ∈ ℕ ∧ 𝑀𝑉) → ({⟨1, 𝑀⟩}‘1) = 𝑀)
316, 8, 30sylancr 410 . . . . . . . 8 ((𝑀𝑉𝐵 ∈ ℂ) → ({⟨1, 𝑀⟩}‘1) = 𝑀)
3229, 31sylan9eqr 2194 . . . . . . 7 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑛 ∈ (1...1)) → ({⟨1, 𝑀⟩}‘𝑛) = 𝑀)
3332csbeq1d 3010 . . . . . 6 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑛 ∈ (1...1)) → ({⟨1, 𝑀⟩}‘𝑛) / 𝑘𝐴 = 𝑀 / 𝑘𝐴)
3428fveq2d 5425 . . . . . . 7 (𝑛 ∈ (1...1) → ({⟨1, 𝐵⟩}‘𝑛) = ({⟨1, 𝐵⟩}‘1))
35 simpr 109 . . . . . . . 8 ((𝑀𝑉𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
36 fvsng 5616 . . . . . . . 8 ((1 ∈ ℕ ∧ 𝐵 ∈ ℂ) → ({⟨1, 𝐵⟩}‘1) = 𝐵)
376, 35, 36sylancr 410 . . . . . . 7 ((𝑀𝑉𝐵 ∈ ℂ) → ({⟨1, 𝐵⟩}‘1) = 𝐵)
3834, 37sylan9eqr 2194 . . . . . 6 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑛 ∈ (1...1)) → ({⟨1, 𝐵⟩}‘𝑛) = 𝐵)
3927, 33, 383eqtr4rd 2183 . . . . 5 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑛 ∈ (1...1)) → ({⟨1, 𝐵⟩}‘𝑛) = ({⟨1, 𝑀⟩}‘𝑛) / 𝑘𝐴)
405, 7, 15, 26, 39fsum3 11156 . . . 4 ((𝑀𝑉𝐵 ∈ ℂ) → Σ𝑚 ∈ {𝑀}𝑚 / 𝑘𝐴 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 0)))‘1))
414, 40syl5eq 2184 . . 3 ((𝑀𝑉𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐴 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 0)))‘1))
42 1zzd 9081 . . . 4 ((𝑀𝑉𝐵 ∈ ℂ) → 1 ∈ ℤ)
43 eqid 2139 . . . . . 6 (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 0)) = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 0))
44 breq1 3932 . . . . . . 7 (𝑛 = 𝑢 → (𝑛 ≤ 1 ↔ 𝑢 ≤ 1))
45 fveq2 5421 . . . . . . 7 (𝑛 = 𝑢 → ({⟨1, 𝐵⟩}‘𝑛) = ({⟨1, 𝐵⟩}‘𝑢))
4644, 45ifbieq1d 3494 . . . . . 6 (𝑛 = 𝑢 → if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 0) = if(𝑢 ≤ 1, ({⟨1, 𝐵⟩}‘𝑢), 0))
47 elnnuz 9362 . . . . . . . 8 (𝑢 ∈ ℕ ↔ 𝑢 ∈ (ℤ‘1))
4847biimpri 132 . . . . . . 7 (𝑢 ∈ (ℤ‘1) → 𝑢 ∈ ℕ)
4948adantl 275 . . . . . 6 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) → 𝑢 ∈ ℕ)
50 simpr 109 . . . . . . . . . . 11 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ 1) → 𝑢 ≤ 1)
51 eluzle 9338 . . . . . . . . . . . 12 (𝑢 ∈ (ℤ‘1) → 1 ≤ 𝑢)
5251ad2antlr 480 . . . . . . . . . . 11 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ 1) → 1 ≤ 𝑢)
53 eluzelre 9336 . . . . . . . . . . . . 13 (𝑢 ∈ (ℤ‘1) → 𝑢 ∈ ℝ)
5453ad2antlr 480 . . . . . . . . . . . 12 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ 1) → 𝑢 ∈ ℝ)
55 1red 7781 . . . . . . . . . . . 12 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ 1) → 1 ∈ ℝ)
5654, 55letri3d 7879 . . . . . . . . . . 11 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ 1) → (𝑢 = 1 ↔ (𝑢 ≤ 1 ∧ 1 ≤ 𝑢)))
5750, 52, 56mpbir2and 928 . . . . . . . . . 10 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ 1) → 𝑢 = 1)
5857fveq2d 5425 . . . . . . . . 9 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ 1) → ({⟨1, 𝐵⟩}‘𝑢) = ({⟨1, 𝐵⟩}‘1))
5937ad2antrr 479 . . . . . . . . 9 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ 1) → ({⟨1, 𝐵⟩}‘1) = 𝐵)
6058, 59eqtrd 2172 . . . . . . . 8 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ 1) → ({⟨1, 𝐵⟩}‘𝑢) = 𝐵)
6135ad2antrr 479 . . . . . . . 8 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ 1) → 𝐵 ∈ ℂ)
6260, 61eqeltrd 2216 . . . . . . 7 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ 1) → ({⟨1, 𝐵⟩}‘𝑢) ∈ ℂ)
63 0cnd 7759 . . . . . . 7 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) ∧ ¬ 𝑢 ≤ 1) → 0 ∈ ℂ)
6449nnzd 9172 . . . . . . . 8 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) → 𝑢 ∈ ℤ)
65 1zzd 9081 . . . . . . . 8 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) → 1 ∈ ℤ)
66 zdcle 9127 . . . . . . . 8 ((𝑢 ∈ ℤ ∧ 1 ∈ ℤ) → DECID 𝑢 ≤ 1)
6764, 65, 66syl2anc 408 . . . . . . 7 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) → DECID 𝑢 ≤ 1)
6862, 63, 67ifcldadc 3501 . . . . . 6 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) → if(𝑢 ≤ 1, ({⟨1, 𝐵⟩}‘𝑢), 0) ∈ ℂ)
6943, 46, 49, 68fvmptd3 5514 . . . . 5 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 0))‘𝑢) = if(𝑢 ≤ 1, ({⟨1, 𝐵⟩}‘𝑢), 0))
7069, 68eqeltrd 2216 . . . 4 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 0))‘𝑢) ∈ ℂ)
71 addcl 7745 . . . . 5 ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 + 𝑣) ∈ ℂ)
7271adantl 275 . . . 4 (((𝑀𝑉𝐵 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑢 + 𝑣) ∈ ℂ)
7342, 70, 72seq3-1 10233 . . 3 ((𝑀𝑉𝐵 ∈ ℂ) → (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 0)))‘1) = ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 0))‘1))
7441, 73eqtrd 2172 . 2 ((𝑀𝑉𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐴 = ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 0))‘1))
75 1le1 8334 . . . . . 6 1 ≤ 1
7675iftruei 3480 . . . . 5 if(1 ≤ 1, ({⟨1, 𝐵⟩}‘1), 0) = ({⟨1, 𝐵⟩}‘1)
7776, 37syl5eq 2184 . . . 4 ((𝑀𝑉𝐵 ∈ ℂ) → if(1 ≤ 1, ({⟨1, 𝐵⟩}‘1), 0) = 𝐵)
7877, 35eqeltrd 2216 . . 3 ((𝑀𝑉𝐵 ∈ ℂ) → if(1 ≤ 1, ({⟨1, 𝐵⟩}‘1), 0) ∈ ℂ)
79 breq1 3932 . . . . 5 (𝑛 = 1 → (𝑛 ≤ 1 ↔ 1 ≤ 1))
80 fveq2 5421 . . . . 5 (𝑛 = 1 → ({⟨1, 𝐵⟩}‘𝑛) = ({⟨1, 𝐵⟩}‘1))
8179, 80ifbieq1d 3494 . . . 4 (𝑛 = 1 → if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 0) = if(1 ≤ 1, ({⟨1, 𝐵⟩}‘1), 0))
8281, 43fvmptg 5497 . . 3 ((1 ∈ ℕ ∧ if(1 ≤ 1, ({⟨1, 𝐵⟩}‘1), 0) ∈ ℂ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 0))‘1) = if(1 ≤ 1, ({⟨1, 𝐵⟩}‘1), 0))
836, 78, 82sylancr 410 . 2 ((𝑀𝑉𝐵 ∈ ℂ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 0))‘1) = if(1 ≤ 1, ({⟨1, 𝐵⟩}‘1), 0))
8474, 83, 773eqtrd 2176 1 ((𝑀𝑉𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  DECID wdc 819   = wceq 1331  wcel 1480  wnfc 2268  csb 3003  ifcif 3474  {csn 3527  cop 3530   class class class wbr 3929  cmpt 3989  1-1-ontowf1o 5122  cfv 5123  (class class class)co 5774  cc 7618  cr 7619  0cc0 7620  1c1 7621   + caddc 7623  cle 7801  cn 8720  cz 9054  cuz 9326  ...cfz 9790  seqcseq 10218  Σcsu 11122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-en 6635  df-dom 6636  df-fin 6637  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-fz 9791  df-fzo 9920  df-seqfrec 10219  df-exp 10293  df-ihash 10522  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-clim 11048  df-sumdc 11123
This theorem is referenced by:  fsumsplitsn  11179  sumsn  11180
  Copyright terms: Public domain W3C validator