ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sumsnf GIF version

Theorem sumsnf 11720
Description: A sum of a singleton is the term. A version of sumsn 11722 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
sumsnf.1 𝑘𝐵
sumsnf.2 (𝑘 = 𝑀𝐴 = 𝐵)
Assertion
Ref Expression
sumsnf ((𝑀𝑉𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵)
Distinct variable groups:   𝑘,𝑀   𝑘,𝑉
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem sumsnf
Dummy variables 𝑚 𝑛 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2348 . . . . 5 𝑚𝐴
2 nfcsb1v 3126 . . . . 5 𝑘𝑚 / 𝑘𝐴
3 csbeq1a 3102 . . . . 5 (𝑘 = 𝑚𝐴 = 𝑚 / 𝑘𝐴)
41, 2, 3cbvsumi 11673 . . . 4 Σ𝑘 ∈ {𝑀}𝐴 = Σ𝑚 ∈ {𝑀}𝑚 / 𝑘𝐴
5 csbeq1 3096 . . . . 5 (𝑚 = ({⟨1, 𝑀⟩}‘𝑛) → 𝑚 / 𝑘𝐴 = ({⟨1, 𝑀⟩}‘𝑛) / 𝑘𝐴)
6 1nn 9047 . . . . . 6 1 ∈ ℕ
76a1i 9 . . . . 5 ((𝑀𝑉𝐵 ∈ ℂ) → 1 ∈ ℕ)
8 simpl 109 . . . . . . 7 ((𝑀𝑉𝐵 ∈ ℂ) → 𝑀𝑉)
9 f1osng 5563 . . . . . . 7 ((1 ∈ ℕ ∧ 𝑀𝑉) → {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀})
106, 8, 9sylancr 414 . . . . . 6 ((𝑀𝑉𝐵 ∈ ℂ) → {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀})
11 1z 9398 . . . . . . 7 1 ∈ ℤ
12 fzsn 10188 . . . . . . 7 (1 ∈ ℤ → (1...1) = {1})
13 f1oeq2 5511 . . . . . . 7 ((1...1) = {1} → ({⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀} ↔ {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀}))
1411, 12, 13mp2b 8 . . . . . 6 ({⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀} ↔ {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀})
1510, 14sylibr 134 . . . . 5 ((𝑀𝑉𝐵 ∈ ℂ) → {⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀})
16 elsni 3651 . . . . . . . 8 (𝑚 ∈ {𝑀} → 𝑚 = 𝑀)
1716adantl 277 . . . . . . 7 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → 𝑚 = 𝑀)
1817csbeq1d 3100 . . . . . 6 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → 𝑚 / 𝑘𝐴 = 𝑀 / 𝑘𝐴)
19 sumsnf.1 . . . . . . . . . 10 𝑘𝐵
2019a1i 9 . . . . . . . . 9 (𝑀𝑉𝑘𝐵)
21 sumsnf.2 . . . . . . . . 9 (𝑘 = 𝑀𝐴 = 𝐵)
2220, 21csbiegf 3137 . . . . . . . 8 (𝑀𝑉𝑀 / 𝑘𝐴 = 𝐵)
2322ad2antrr 488 . . . . . . 7 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → 𝑀 / 𝑘𝐴 = 𝐵)
24 simplr 528 . . . . . . 7 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → 𝐵 ∈ ℂ)
2523, 24eqeltrd 2282 . . . . . 6 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → 𝑀 / 𝑘𝐴 ∈ ℂ)
2618, 25eqeltrd 2282 . . . . 5 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → 𝑚 / 𝑘𝐴 ∈ ℂ)
2722ad2antrr 488 . . . . . 6 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑛 ∈ (1...1)) → 𝑀 / 𝑘𝐴 = 𝐵)
28 elfz1eq 10157 . . . . . . . . 9 (𝑛 ∈ (1...1) → 𝑛 = 1)
2928fveq2d 5580 . . . . . . . 8 (𝑛 ∈ (1...1) → ({⟨1, 𝑀⟩}‘𝑛) = ({⟨1, 𝑀⟩}‘1))
30 fvsng 5780 . . . . . . . . 9 ((1 ∈ ℕ ∧ 𝑀𝑉) → ({⟨1, 𝑀⟩}‘1) = 𝑀)
316, 8, 30sylancr 414 . . . . . . . 8 ((𝑀𝑉𝐵 ∈ ℂ) → ({⟨1, 𝑀⟩}‘1) = 𝑀)
3229, 31sylan9eqr 2260 . . . . . . 7 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑛 ∈ (1...1)) → ({⟨1, 𝑀⟩}‘𝑛) = 𝑀)
3332csbeq1d 3100 . . . . . 6 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑛 ∈ (1...1)) → ({⟨1, 𝑀⟩}‘𝑛) / 𝑘𝐴 = 𝑀 / 𝑘𝐴)
3428fveq2d 5580 . . . . . . 7 (𝑛 ∈ (1...1) → ({⟨1, 𝐵⟩}‘𝑛) = ({⟨1, 𝐵⟩}‘1))
35 simpr 110 . . . . . . . 8 ((𝑀𝑉𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
36 fvsng 5780 . . . . . . . 8 ((1 ∈ ℕ ∧ 𝐵 ∈ ℂ) → ({⟨1, 𝐵⟩}‘1) = 𝐵)
376, 35, 36sylancr 414 . . . . . . 7 ((𝑀𝑉𝐵 ∈ ℂ) → ({⟨1, 𝐵⟩}‘1) = 𝐵)
3834, 37sylan9eqr 2260 . . . . . 6 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑛 ∈ (1...1)) → ({⟨1, 𝐵⟩}‘𝑛) = 𝐵)
3927, 33, 383eqtr4rd 2249 . . . . 5 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑛 ∈ (1...1)) → ({⟨1, 𝐵⟩}‘𝑛) = ({⟨1, 𝑀⟩}‘𝑛) / 𝑘𝐴)
405, 7, 15, 26, 39fsum3 11698 . . . 4 ((𝑀𝑉𝐵 ∈ ℂ) → Σ𝑚 ∈ {𝑀}𝑚 / 𝑘𝐴 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 0)))‘1))
414, 40eqtrid 2250 . . 3 ((𝑀𝑉𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐴 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 0)))‘1))
42 1zzd 9399 . . . 4 ((𝑀𝑉𝐵 ∈ ℂ) → 1 ∈ ℤ)
43 eqid 2205 . . . . . 6 (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 0)) = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 0))
44 breq1 4047 . . . . . . 7 (𝑛 = 𝑢 → (𝑛 ≤ 1 ↔ 𝑢 ≤ 1))
45 fveq2 5576 . . . . . . 7 (𝑛 = 𝑢 → ({⟨1, 𝐵⟩}‘𝑛) = ({⟨1, 𝐵⟩}‘𝑢))
4644, 45ifbieq1d 3593 . . . . . 6 (𝑛 = 𝑢 → if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 0) = if(𝑢 ≤ 1, ({⟨1, 𝐵⟩}‘𝑢), 0))
47 elnnuz 9685 . . . . . . . 8 (𝑢 ∈ ℕ ↔ 𝑢 ∈ (ℤ‘1))
4847biimpri 133 . . . . . . 7 (𝑢 ∈ (ℤ‘1) → 𝑢 ∈ ℕ)
4948adantl 277 . . . . . 6 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) → 𝑢 ∈ ℕ)
50 simpr 110 . . . . . . . . . . 11 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ 1) → 𝑢 ≤ 1)
51 eluzle 9660 . . . . . . . . . . . 12 (𝑢 ∈ (ℤ‘1) → 1 ≤ 𝑢)
5251ad2antlr 489 . . . . . . . . . . 11 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ 1) → 1 ≤ 𝑢)
53 eluzelre 9658 . . . . . . . . . . . . 13 (𝑢 ∈ (ℤ‘1) → 𝑢 ∈ ℝ)
5453ad2antlr 489 . . . . . . . . . . . 12 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ 1) → 𝑢 ∈ ℝ)
55 1red 8087 . . . . . . . . . . . 12 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ 1) → 1 ∈ ℝ)
5654, 55letri3d 8188 . . . . . . . . . . 11 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ 1) → (𝑢 = 1 ↔ (𝑢 ≤ 1 ∧ 1 ≤ 𝑢)))
5750, 52, 56mpbir2and 947 . . . . . . . . . 10 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ 1) → 𝑢 = 1)
5857fveq2d 5580 . . . . . . . . 9 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ 1) → ({⟨1, 𝐵⟩}‘𝑢) = ({⟨1, 𝐵⟩}‘1))
5937ad2antrr 488 . . . . . . . . 9 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ 1) → ({⟨1, 𝐵⟩}‘1) = 𝐵)
6058, 59eqtrd 2238 . . . . . . . 8 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ 1) → ({⟨1, 𝐵⟩}‘𝑢) = 𝐵)
6135ad2antrr 488 . . . . . . . 8 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ 1) → 𝐵 ∈ ℂ)
6260, 61eqeltrd 2282 . . . . . . 7 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ 1) → ({⟨1, 𝐵⟩}‘𝑢) ∈ ℂ)
63 0cnd 8065 . . . . . . 7 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) ∧ ¬ 𝑢 ≤ 1) → 0 ∈ ℂ)
6449nnzd 9494 . . . . . . . 8 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) → 𝑢 ∈ ℤ)
65 1zzd 9399 . . . . . . . 8 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) → 1 ∈ ℤ)
66 zdcle 9449 . . . . . . . 8 ((𝑢 ∈ ℤ ∧ 1 ∈ ℤ) → DECID 𝑢 ≤ 1)
6764, 65, 66syl2anc 411 . . . . . . 7 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) → DECID 𝑢 ≤ 1)
6862, 63, 67ifcldadc 3600 . . . . . 6 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) → if(𝑢 ≤ 1, ({⟨1, 𝐵⟩}‘𝑢), 0) ∈ ℂ)
6943, 46, 49, 68fvmptd3 5673 . . . . 5 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 0))‘𝑢) = if(𝑢 ≤ 1, ({⟨1, 𝐵⟩}‘𝑢), 0))
7069, 68eqeltrd 2282 . . . 4 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 0))‘𝑢) ∈ ℂ)
71 addcl 8050 . . . . 5 ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 + 𝑣) ∈ ℂ)
7271adantl 277 . . . 4 (((𝑀𝑉𝐵 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑢 + 𝑣) ∈ ℂ)
7342, 70, 72seq3-1 10607 . . 3 ((𝑀𝑉𝐵 ∈ ℂ) → (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 0)))‘1) = ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 0))‘1))
7441, 73eqtrd 2238 . 2 ((𝑀𝑉𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐴 = ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 0))‘1))
75 1le1 8645 . . . . . 6 1 ≤ 1
7675iftruei 3577 . . . . 5 if(1 ≤ 1, ({⟨1, 𝐵⟩}‘1), 0) = ({⟨1, 𝐵⟩}‘1)
7776, 37eqtrid 2250 . . . 4 ((𝑀𝑉𝐵 ∈ ℂ) → if(1 ≤ 1, ({⟨1, 𝐵⟩}‘1), 0) = 𝐵)
7877, 35eqeltrd 2282 . . 3 ((𝑀𝑉𝐵 ∈ ℂ) → if(1 ≤ 1, ({⟨1, 𝐵⟩}‘1), 0) ∈ ℂ)
79 breq1 4047 . . . . 5 (𝑛 = 1 → (𝑛 ≤ 1 ↔ 1 ≤ 1))
80 fveq2 5576 . . . . 5 (𝑛 = 1 → ({⟨1, 𝐵⟩}‘𝑛) = ({⟨1, 𝐵⟩}‘1))
8179, 80ifbieq1d 3593 . . . 4 (𝑛 = 1 → if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 0) = if(1 ≤ 1, ({⟨1, 𝐵⟩}‘1), 0))
8281, 43fvmptg 5655 . . 3 ((1 ∈ ℕ ∧ if(1 ≤ 1, ({⟨1, 𝐵⟩}‘1), 0) ∈ ℂ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 0))‘1) = if(1 ≤ 1, ({⟨1, 𝐵⟩}‘1), 0))
836, 78, 82sylancr 414 . 2 ((𝑀𝑉𝐵 ∈ ℂ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 0))‘1) = if(1 ≤ 1, ({⟨1, 𝐵⟩}‘1), 0))
8474, 83, 773eqtrd 2242 1 ((𝑀𝑉𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  DECID wdc 836   = wceq 1373  wcel 2176  wnfc 2335  csb 3093  ifcif 3571  {csn 3633  cop 3636   class class class wbr 4044  cmpt 4105  1-1-ontowf1o 5270  cfv 5271  (class class class)co 5944  cc 7923  cr 7924  0cc0 7925  1c1 7926   + caddc 7928  cle 8108  cn 9036  cz 9372  cuz 9648  ...cfz 10130  seqcseq 10592  Σcsu 11664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-irdg 6456  df-frec 6477  df-1o 6502  df-oadd 6506  df-er 6620  df-en 6828  df-dom 6829  df-fin 6830  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649  df-q 9741  df-rp 9776  df-fz 10131  df-fzo 10265  df-seqfrec 10593  df-exp 10684  df-ihash 10921  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310  df-clim 11590  df-sumdc 11665
This theorem is referenced by:  fsumsplitsn  11721  sumsn  11722
  Copyright terms: Public domain W3C validator