Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  sumsnf GIF version

Theorem sumsnf 11211
 Description: A sum of a singleton is the term. A version of sumsn 11213 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
sumsnf.1 𝑘𝐵
sumsnf.2 (𝑘 = 𝑀𝐴 = 𝐵)
Assertion
Ref Expression
sumsnf ((𝑀𝑉𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵)
Distinct variable groups:   𝑘,𝑀   𝑘,𝑉
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem sumsnf
Dummy variables 𝑚 𝑛 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2282 . . . . 5 𝑚𝐴
2 nfcsb1v 3040 . . . . 5 𝑘𝑚 / 𝑘𝐴
3 csbeq1a 3016 . . . . 5 (𝑘 = 𝑚𝐴 = 𝑚 / 𝑘𝐴)
41, 2, 3cbvsumi 11164 . . . 4 Σ𝑘 ∈ {𝑀}𝐴 = Σ𝑚 ∈ {𝑀}𝑚 / 𝑘𝐴
5 csbeq1 3010 . . . . 5 (𝑚 = ({⟨1, 𝑀⟩}‘𝑛) → 𝑚 / 𝑘𝐴 = ({⟨1, 𝑀⟩}‘𝑛) / 𝑘𝐴)
6 1nn 8756 . . . . . 6 1 ∈ ℕ
76a1i 9 . . . . 5 ((𝑀𝑉𝐵 ∈ ℂ) → 1 ∈ ℕ)
8 simpl 108 . . . . . . 7 ((𝑀𝑉𝐵 ∈ ℂ) → 𝑀𝑉)
9 f1osng 5416 . . . . . . 7 ((1 ∈ ℕ ∧ 𝑀𝑉) → {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀})
106, 8, 9sylancr 411 . . . . . 6 ((𝑀𝑉𝐵 ∈ ℂ) → {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀})
11 1z 9105 . . . . . . 7 1 ∈ ℤ
12 fzsn 9878 . . . . . . 7 (1 ∈ ℤ → (1...1) = {1})
13 f1oeq2 5365 . . . . . . 7 ((1...1) = {1} → ({⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀} ↔ {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀}))
1411, 12, 13mp2b 8 . . . . . 6 ({⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀} ↔ {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀})
1510, 14sylibr 133 . . . . 5 ((𝑀𝑉𝐵 ∈ ℂ) → {⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀})
16 elsni 3550 . . . . . . . 8 (𝑚 ∈ {𝑀} → 𝑚 = 𝑀)
1716adantl 275 . . . . . . 7 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → 𝑚 = 𝑀)
1817csbeq1d 3014 . . . . . 6 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → 𝑚 / 𝑘𝐴 = 𝑀 / 𝑘𝐴)
19 sumsnf.1 . . . . . . . . . 10 𝑘𝐵
2019a1i 9 . . . . . . . . 9 (𝑀𝑉𝑘𝐵)
21 sumsnf.2 . . . . . . . . 9 (𝑘 = 𝑀𝐴 = 𝐵)
2220, 21csbiegf 3048 . . . . . . . 8 (𝑀𝑉𝑀 / 𝑘𝐴 = 𝐵)
2322ad2antrr 480 . . . . . . 7 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → 𝑀 / 𝑘𝐴 = 𝐵)
24 simplr 520 . . . . . . 7 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → 𝐵 ∈ ℂ)
2523, 24eqeltrd 2217 . . . . . 6 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → 𝑀 / 𝑘𝐴 ∈ ℂ)
2618, 25eqeltrd 2217 . . . . 5 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → 𝑚 / 𝑘𝐴 ∈ ℂ)
2722ad2antrr 480 . . . . . 6 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑛 ∈ (1...1)) → 𝑀 / 𝑘𝐴 = 𝐵)
28 elfz1eq 9847 . . . . . . . . 9 (𝑛 ∈ (1...1) → 𝑛 = 1)
2928fveq2d 5433 . . . . . . . 8 (𝑛 ∈ (1...1) → ({⟨1, 𝑀⟩}‘𝑛) = ({⟨1, 𝑀⟩}‘1))
30 fvsng 5624 . . . . . . . . 9 ((1 ∈ ℕ ∧ 𝑀𝑉) → ({⟨1, 𝑀⟩}‘1) = 𝑀)
316, 8, 30sylancr 411 . . . . . . . 8 ((𝑀𝑉𝐵 ∈ ℂ) → ({⟨1, 𝑀⟩}‘1) = 𝑀)
3229, 31sylan9eqr 2195 . . . . . . 7 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑛 ∈ (1...1)) → ({⟨1, 𝑀⟩}‘𝑛) = 𝑀)
3332csbeq1d 3014 . . . . . 6 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑛 ∈ (1...1)) → ({⟨1, 𝑀⟩}‘𝑛) / 𝑘𝐴 = 𝑀 / 𝑘𝐴)
3428fveq2d 5433 . . . . . . 7 (𝑛 ∈ (1...1) → ({⟨1, 𝐵⟩}‘𝑛) = ({⟨1, 𝐵⟩}‘1))
35 simpr 109 . . . . . . . 8 ((𝑀𝑉𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
36 fvsng 5624 . . . . . . . 8 ((1 ∈ ℕ ∧ 𝐵 ∈ ℂ) → ({⟨1, 𝐵⟩}‘1) = 𝐵)
376, 35, 36sylancr 411 . . . . . . 7 ((𝑀𝑉𝐵 ∈ ℂ) → ({⟨1, 𝐵⟩}‘1) = 𝐵)
3834, 37sylan9eqr 2195 . . . . . 6 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑛 ∈ (1...1)) → ({⟨1, 𝐵⟩}‘𝑛) = 𝐵)
3927, 33, 383eqtr4rd 2184 . . . . 5 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑛 ∈ (1...1)) → ({⟨1, 𝐵⟩}‘𝑛) = ({⟨1, 𝑀⟩}‘𝑛) / 𝑘𝐴)
405, 7, 15, 26, 39fsum3 11189 . . . 4 ((𝑀𝑉𝐵 ∈ ℂ) → Σ𝑚 ∈ {𝑀}𝑚 / 𝑘𝐴 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 0)))‘1))
414, 40syl5eq 2185 . . 3 ((𝑀𝑉𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐴 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 0)))‘1))
42 1zzd 9106 . . . 4 ((𝑀𝑉𝐵 ∈ ℂ) → 1 ∈ ℤ)
43 eqid 2140 . . . . . 6 (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 0)) = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 0))
44 breq1 3940 . . . . . . 7 (𝑛 = 𝑢 → (𝑛 ≤ 1 ↔ 𝑢 ≤ 1))
45 fveq2 5429 . . . . . . 7 (𝑛 = 𝑢 → ({⟨1, 𝐵⟩}‘𝑛) = ({⟨1, 𝐵⟩}‘𝑢))
4644, 45ifbieq1d 3499 . . . . . 6 (𝑛 = 𝑢 → if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 0) = if(𝑢 ≤ 1, ({⟨1, 𝐵⟩}‘𝑢), 0))
47 elnnuz 9387 . . . . . . . 8 (𝑢 ∈ ℕ ↔ 𝑢 ∈ (ℤ‘1))
4847biimpri 132 . . . . . . 7 (𝑢 ∈ (ℤ‘1) → 𝑢 ∈ ℕ)
4948adantl 275 . . . . . 6 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) → 𝑢 ∈ ℕ)
50 simpr 109 . . . . . . . . . . 11 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ 1) → 𝑢 ≤ 1)
51 eluzle 9363 . . . . . . . . . . . 12 (𝑢 ∈ (ℤ‘1) → 1 ≤ 𝑢)
5251ad2antlr 481 . . . . . . . . . . 11 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ 1) → 1 ≤ 𝑢)
53 eluzelre 9361 . . . . . . . . . . . . 13 (𝑢 ∈ (ℤ‘1) → 𝑢 ∈ ℝ)
5453ad2antlr 481 . . . . . . . . . . . 12 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ 1) → 𝑢 ∈ ℝ)
55 1red 7806 . . . . . . . . . . . 12 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ 1) → 1 ∈ ℝ)
5654, 55letri3d 7904 . . . . . . . . . . 11 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ 1) → (𝑢 = 1 ↔ (𝑢 ≤ 1 ∧ 1 ≤ 𝑢)))
5750, 52, 56mpbir2and 929 . . . . . . . . . 10 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ 1) → 𝑢 = 1)
5857fveq2d 5433 . . . . . . . . 9 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ 1) → ({⟨1, 𝐵⟩}‘𝑢) = ({⟨1, 𝐵⟩}‘1))
5937ad2antrr 480 . . . . . . . . 9 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ 1) → ({⟨1, 𝐵⟩}‘1) = 𝐵)
6058, 59eqtrd 2173 . . . . . . . 8 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ 1) → ({⟨1, 𝐵⟩}‘𝑢) = 𝐵)
6135ad2antrr 480 . . . . . . . 8 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ 1) → 𝐵 ∈ ℂ)
6260, 61eqeltrd 2217 . . . . . . 7 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ 1) → ({⟨1, 𝐵⟩}‘𝑢) ∈ ℂ)
63 0cnd 7784 . . . . . . 7 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) ∧ ¬ 𝑢 ≤ 1) → 0 ∈ ℂ)
6449nnzd 9197 . . . . . . . 8 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) → 𝑢 ∈ ℤ)
65 1zzd 9106 . . . . . . . 8 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) → 1 ∈ ℤ)
66 zdcle 9152 . . . . . . . 8 ((𝑢 ∈ ℤ ∧ 1 ∈ ℤ) → DECID 𝑢 ≤ 1)
6764, 65, 66syl2anc 409 . . . . . . 7 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) → DECID 𝑢 ≤ 1)
6862, 63, 67ifcldadc 3506 . . . . . 6 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) → if(𝑢 ≤ 1, ({⟨1, 𝐵⟩}‘𝑢), 0) ∈ ℂ)
6943, 46, 49, 68fvmptd3 5522 . . . . 5 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 0))‘𝑢) = if(𝑢 ≤ 1, ({⟨1, 𝐵⟩}‘𝑢), 0))
7069, 68eqeltrd 2217 . . . 4 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 0))‘𝑢) ∈ ℂ)
71 addcl 7770 . . . . 5 ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 + 𝑣) ∈ ℂ)
7271adantl 275 . . . 4 (((𝑀𝑉𝐵 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑢 + 𝑣) ∈ ℂ)
7342, 70, 72seq3-1 10265 . . 3 ((𝑀𝑉𝐵 ∈ ℂ) → (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 0)))‘1) = ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 0))‘1))
7441, 73eqtrd 2173 . 2 ((𝑀𝑉𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐴 = ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 0))‘1))
75 1le1 8359 . . . . . 6 1 ≤ 1
7675iftruei 3485 . . . . 5 if(1 ≤ 1, ({⟨1, 𝐵⟩}‘1), 0) = ({⟨1, 𝐵⟩}‘1)
7776, 37syl5eq 2185 . . . 4 ((𝑀𝑉𝐵 ∈ ℂ) → if(1 ≤ 1, ({⟨1, 𝐵⟩}‘1), 0) = 𝐵)
7877, 35eqeltrd 2217 . . 3 ((𝑀𝑉𝐵 ∈ ℂ) → if(1 ≤ 1, ({⟨1, 𝐵⟩}‘1), 0) ∈ ℂ)
79 breq1 3940 . . . . 5 (𝑛 = 1 → (𝑛 ≤ 1 ↔ 1 ≤ 1))
80 fveq2 5429 . . . . 5 (𝑛 = 1 → ({⟨1, 𝐵⟩}‘𝑛) = ({⟨1, 𝐵⟩}‘1))
8179, 80ifbieq1d 3499 . . . 4 (𝑛 = 1 → if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 0) = if(1 ≤ 1, ({⟨1, 𝐵⟩}‘1), 0))
8281, 43fvmptg 5505 . . 3 ((1 ∈ ℕ ∧ if(1 ≤ 1, ({⟨1, 𝐵⟩}‘1), 0) ∈ ℂ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 0))‘1) = if(1 ≤ 1, ({⟨1, 𝐵⟩}‘1), 0))
836, 78, 82sylancr 411 . 2 ((𝑀𝑉𝐵 ∈ ℂ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 0))‘1) = if(1 ≤ 1, ({⟨1, 𝐵⟩}‘1), 0))
8474, 83, 773eqtrd 2177 1 ((𝑀𝑉𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵)
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 103   ↔ wb 104  DECID wdc 820   = wceq 1332   ∈ wcel 1481  Ⅎwnfc 2269  ⦋csb 3007  ifcif 3479  {csn 3532  ⟨cop 3535   class class class wbr 3937   ↦ cmpt 3997  –1-1-onto→wf1o 5130  ‘cfv 5131  (class class class)co 5782  ℂcc 7643  ℝcr 7644  0cc0 7645  1c1 7646   + caddc 7648   ≤ cle 7826  ℕcn 8745  ℤcz 9079  ℤ≥cuz 9351  ...cfz 9822  seqcseq 10250  Σcsu 11155 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7736  ax-resscn 7737  ax-1cn 7738  ax-1re 7739  ax-icn 7740  ax-addcl 7741  ax-addrcl 7742  ax-mulcl 7743  ax-mulrcl 7744  ax-addcom 7745  ax-mulcom 7746  ax-addass 7747  ax-mulass 7748  ax-distr 7749  ax-i2m1 7750  ax-0lt1 7751  ax-1rid 7752  ax-0id 7753  ax-rnegex 7754  ax-precex 7755  ax-cnre 7756  ax-pre-ltirr 7757  ax-pre-ltwlin 7758  ax-pre-lttrn 7759  ax-pre-apti 7760  ax-pre-ltadd 7761  ax-pre-mulgt0 7762  ax-pre-mulext 7763  ax-arch 7764  ax-caucvg 7765 This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-isom 5140  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-frec 6296  df-1o 6321  df-oadd 6325  df-er 6437  df-en 6643  df-dom 6644  df-fin 6645  df-pnf 7827  df-mnf 7828  df-xr 7829  df-ltxr 7830  df-le 7831  df-sub 7960  df-neg 7961  df-reap 8362  df-ap 8369  df-div 8458  df-inn 8746  df-2 8804  df-3 8805  df-4 8806  df-n0 9003  df-z 9080  df-uz 9352  df-q 9440  df-rp 9472  df-fz 9823  df-fzo 9952  df-seqfrec 10251  df-exp 10325  df-ihash 10555  df-cj 10647  df-re 10648  df-im 10649  df-rsqrt 10803  df-abs 10804  df-clim 11081  df-sumdc 11156 This theorem is referenced by:  fsumsplitsn  11212  sumsn  11213
 Copyright terms: Public domain W3C validator