ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sumsnf GIF version

Theorem sumsnf 11915
Description: A sum of a singleton is the term. A version of sumsn 11917 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
sumsnf.1 𝑘𝐵
sumsnf.2 (𝑘 = 𝑀𝐴 = 𝐵)
Assertion
Ref Expression
sumsnf ((𝑀𝑉𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵)
Distinct variable groups:   𝑘,𝑀   𝑘,𝑉
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem sumsnf
Dummy variables 𝑚 𝑛 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2372 . . . . 5 𝑚𝐴
2 nfcsb1v 3157 . . . . 5 𝑘𝑚 / 𝑘𝐴
3 csbeq1a 3133 . . . . 5 (𝑘 = 𝑚𝐴 = 𝑚 / 𝑘𝐴)
41, 2, 3cbvsumi 11868 . . . 4 Σ𝑘 ∈ {𝑀}𝐴 = Σ𝑚 ∈ {𝑀}𝑚 / 𝑘𝐴
5 csbeq1 3127 . . . . 5 (𝑚 = ({⟨1, 𝑀⟩}‘𝑛) → 𝑚 / 𝑘𝐴 = ({⟨1, 𝑀⟩}‘𝑛) / 𝑘𝐴)
6 1nn 9117 . . . . . 6 1 ∈ ℕ
76a1i 9 . . . . 5 ((𝑀𝑉𝐵 ∈ ℂ) → 1 ∈ ℕ)
8 simpl 109 . . . . . . 7 ((𝑀𝑉𝐵 ∈ ℂ) → 𝑀𝑉)
9 f1osng 5613 . . . . . . 7 ((1 ∈ ℕ ∧ 𝑀𝑉) → {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀})
106, 8, 9sylancr 414 . . . . . 6 ((𝑀𝑉𝐵 ∈ ℂ) → {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀})
11 1z 9468 . . . . . . 7 1 ∈ ℤ
12 fzsn 10258 . . . . . . 7 (1 ∈ ℤ → (1...1) = {1})
13 f1oeq2 5560 . . . . . . 7 ((1...1) = {1} → ({⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀} ↔ {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀}))
1411, 12, 13mp2b 8 . . . . . 6 ({⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀} ↔ {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀})
1510, 14sylibr 134 . . . . 5 ((𝑀𝑉𝐵 ∈ ℂ) → {⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀})
16 elsni 3684 . . . . . . . 8 (𝑚 ∈ {𝑀} → 𝑚 = 𝑀)
1716adantl 277 . . . . . . 7 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → 𝑚 = 𝑀)
1817csbeq1d 3131 . . . . . 6 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → 𝑚 / 𝑘𝐴 = 𝑀 / 𝑘𝐴)
19 sumsnf.1 . . . . . . . . . 10 𝑘𝐵
2019a1i 9 . . . . . . . . 9 (𝑀𝑉𝑘𝐵)
21 sumsnf.2 . . . . . . . . 9 (𝑘 = 𝑀𝐴 = 𝐵)
2220, 21csbiegf 3168 . . . . . . . 8 (𝑀𝑉𝑀 / 𝑘𝐴 = 𝐵)
2322ad2antrr 488 . . . . . . 7 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → 𝑀 / 𝑘𝐴 = 𝐵)
24 simplr 528 . . . . . . 7 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → 𝐵 ∈ ℂ)
2523, 24eqeltrd 2306 . . . . . 6 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → 𝑀 / 𝑘𝐴 ∈ ℂ)
2618, 25eqeltrd 2306 . . . . 5 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → 𝑚 / 𝑘𝐴 ∈ ℂ)
2722ad2antrr 488 . . . . . 6 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑛 ∈ (1...1)) → 𝑀 / 𝑘𝐴 = 𝐵)
28 elfz1eq 10227 . . . . . . . . 9 (𝑛 ∈ (1...1) → 𝑛 = 1)
2928fveq2d 5630 . . . . . . . 8 (𝑛 ∈ (1...1) → ({⟨1, 𝑀⟩}‘𝑛) = ({⟨1, 𝑀⟩}‘1))
30 fvsng 5834 . . . . . . . . 9 ((1 ∈ ℕ ∧ 𝑀𝑉) → ({⟨1, 𝑀⟩}‘1) = 𝑀)
316, 8, 30sylancr 414 . . . . . . . 8 ((𝑀𝑉𝐵 ∈ ℂ) → ({⟨1, 𝑀⟩}‘1) = 𝑀)
3229, 31sylan9eqr 2284 . . . . . . 7 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑛 ∈ (1...1)) → ({⟨1, 𝑀⟩}‘𝑛) = 𝑀)
3332csbeq1d 3131 . . . . . 6 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑛 ∈ (1...1)) → ({⟨1, 𝑀⟩}‘𝑛) / 𝑘𝐴 = 𝑀 / 𝑘𝐴)
3428fveq2d 5630 . . . . . . 7 (𝑛 ∈ (1...1) → ({⟨1, 𝐵⟩}‘𝑛) = ({⟨1, 𝐵⟩}‘1))
35 simpr 110 . . . . . . . 8 ((𝑀𝑉𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
36 fvsng 5834 . . . . . . . 8 ((1 ∈ ℕ ∧ 𝐵 ∈ ℂ) → ({⟨1, 𝐵⟩}‘1) = 𝐵)
376, 35, 36sylancr 414 . . . . . . 7 ((𝑀𝑉𝐵 ∈ ℂ) → ({⟨1, 𝐵⟩}‘1) = 𝐵)
3834, 37sylan9eqr 2284 . . . . . 6 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑛 ∈ (1...1)) → ({⟨1, 𝐵⟩}‘𝑛) = 𝐵)
3927, 33, 383eqtr4rd 2273 . . . . 5 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑛 ∈ (1...1)) → ({⟨1, 𝐵⟩}‘𝑛) = ({⟨1, 𝑀⟩}‘𝑛) / 𝑘𝐴)
405, 7, 15, 26, 39fsum3 11893 . . . 4 ((𝑀𝑉𝐵 ∈ ℂ) → Σ𝑚 ∈ {𝑀}𝑚 / 𝑘𝐴 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 0)))‘1))
414, 40eqtrid 2274 . . 3 ((𝑀𝑉𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐴 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 0)))‘1))
42 1zzd 9469 . . . 4 ((𝑀𝑉𝐵 ∈ ℂ) → 1 ∈ ℤ)
43 eqid 2229 . . . . . 6 (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 0)) = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 0))
44 breq1 4085 . . . . . . 7 (𝑛 = 𝑢 → (𝑛 ≤ 1 ↔ 𝑢 ≤ 1))
45 fveq2 5626 . . . . . . 7 (𝑛 = 𝑢 → ({⟨1, 𝐵⟩}‘𝑛) = ({⟨1, 𝐵⟩}‘𝑢))
4644, 45ifbieq1d 3625 . . . . . 6 (𝑛 = 𝑢 → if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 0) = if(𝑢 ≤ 1, ({⟨1, 𝐵⟩}‘𝑢), 0))
47 elnnuz 9755 . . . . . . . 8 (𝑢 ∈ ℕ ↔ 𝑢 ∈ (ℤ‘1))
4847biimpri 133 . . . . . . 7 (𝑢 ∈ (ℤ‘1) → 𝑢 ∈ ℕ)
4948adantl 277 . . . . . 6 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) → 𝑢 ∈ ℕ)
50 simpr 110 . . . . . . . . . . 11 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ 1) → 𝑢 ≤ 1)
51 eluzle 9730 . . . . . . . . . . . 12 (𝑢 ∈ (ℤ‘1) → 1 ≤ 𝑢)
5251ad2antlr 489 . . . . . . . . . . 11 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ 1) → 1 ≤ 𝑢)
53 eluzelre 9728 . . . . . . . . . . . . 13 (𝑢 ∈ (ℤ‘1) → 𝑢 ∈ ℝ)
5453ad2antlr 489 . . . . . . . . . . . 12 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ 1) → 𝑢 ∈ ℝ)
55 1red 8157 . . . . . . . . . . . 12 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ 1) → 1 ∈ ℝ)
5654, 55letri3d 8258 . . . . . . . . . . 11 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ 1) → (𝑢 = 1 ↔ (𝑢 ≤ 1 ∧ 1 ≤ 𝑢)))
5750, 52, 56mpbir2and 950 . . . . . . . . . 10 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ 1) → 𝑢 = 1)
5857fveq2d 5630 . . . . . . . . 9 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ 1) → ({⟨1, 𝐵⟩}‘𝑢) = ({⟨1, 𝐵⟩}‘1))
5937ad2antrr 488 . . . . . . . . 9 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ 1) → ({⟨1, 𝐵⟩}‘1) = 𝐵)
6058, 59eqtrd 2262 . . . . . . . 8 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ 1) → ({⟨1, 𝐵⟩}‘𝑢) = 𝐵)
6135ad2antrr 488 . . . . . . . 8 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ 1) → 𝐵 ∈ ℂ)
6260, 61eqeltrd 2306 . . . . . . 7 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ 1) → ({⟨1, 𝐵⟩}‘𝑢) ∈ ℂ)
63 0cnd 8135 . . . . . . 7 ((((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) ∧ ¬ 𝑢 ≤ 1) → 0 ∈ ℂ)
6449nnzd 9564 . . . . . . . 8 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) → 𝑢 ∈ ℤ)
65 1zzd 9469 . . . . . . . 8 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) → 1 ∈ ℤ)
66 zdcle 9519 . . . . . . . 8 ((𝑢 ∈ ℤ ∧ 1 ∈ ℤ) → DECID 𝑢 ≤ 1)
6764, 65, 66syl2anc 411 . . . . . . 7 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) → DECID 𝑢 ≤ 1)
6862, 63, 67ifcldadc 3632 . . . . . 6 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) → if(𝑢 ≤ 1, ({⟨1, 𝐵⟩}‘𝑢), 0) ∈ ℂ)
6943, 46, 49, 68fvmptd3 5727 . . . . 5 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 0))‘𝑢) = if(𝑢 ≤ 1, ({⟨1, 𝐵⟩}‘𝑢), 0))
7069, 68eqeltrd 2306 . . . 4 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ‘1)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 0))‘𝑢) ∈ ℂ)
71 addcl 8120 . . . . 5 ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 + 𝑣) ∈ ℂ)
7271adantl 277 . . . 4 (((𝑀𝑉𝐵 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑢 + 𝑣) ∈ ℂ)
7342, 70, 72seq3-1 10679 . . 3 ((𝑀𝑉𝐵 ∈ ℂ) → (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 0)))‘1) = ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 0))‘1))
7441, 73eqtrd 2262 . 2 ((𝑀𝑉𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐴 = ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 0))‘1))
75 1le1 8715 . . . . . 6 1 ≤ 1
7675iftruei 3608 . . . . 5 if(1 ≤ 1, ({⟨1, 𝐵⟩}‘1), 0) = ({⟨1, 𝐵⟩}‘1)
7776, 37eqtrid 2274 . . . 4 ((𝑀𝑉𝐵 ∈ ℂ) → if(1 ≤ 1, ({⟨1, 𝐵⟩}‘1), 0) = 𝐵)
7877, 35eqeltrd 2306 . . 3 ((𝑀𝑉𝐵 ∈ ℂ) → if(1 ≤ 1, ({⟨1, 𝐵⟩}‘1), 0) ∈ ℂ)
79 breq1 4085 . . . . 5 (𝑛 = 1 → (𝑛 ≤ 1 ↔ 1 ≤ 1))
80 fveq2 5626 . . . . 5 (𝑛 = 1 → ({⟨1, 𝐵⟩}‘𝑛) = ({⟨1, 𝐵⟩}‘1))
8179, 80ifbieq1d 3625 . . . 4 (𝑛 = 1 → if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 0) = if(1 ≤ 1, ({⟨1, 𝐵⟩}‘1), 0))
8281, 43fvmptg 5709 . . 3 ((1 ∈ ℕ ∧ if(1 ≤ 1, ({⟨1, 𝐵⟩}‘1), 0) ∈ ℂ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 0))‘1) = if(1 ≤ 1, ({⟨1, 𝐵⟩}‘1), 0))
836, 78, 82sylancr 414 . 2 ((𝑀𝑉𝐵 ∈ ℂ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({⟨1, 𝐵⟩}‘𝑛), 0))‘1) = if(1 ≤ 1, ({⟨1, 𝐵⟩}‘1), 0))
8474, 83, 773eqtrd 2266 1 ((𝑀𝑉𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  DECID wdc 839   = wceq 1395  wcel 2200  wnfc 2359  csb 3124  ifcif 3602  {csn 3666  cop 3669   class class class wbr 4082  cmpt 4144  1-1-ontowf1o 5316  cfv 5317  (class class class)co 6000  cc 7993  cr 7994  0cc0 7995  1c1 7996   + caddc 7998  cle 8178  cn 9106  cz 9442  cuz 9718  ...cfz 10200  seqcseq 10664  Σcsu 11859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114  ax-caucvg 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-isom 5326  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-frec 6535  df-1o 6560  df-oadd 6564  df-er 6678  df-en 6886  df-dom 6887  df-fin 6888  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-fz 10201  df-fzo 10335  df-seqfrec 10665  df-exp 10756  df-ihash 10993  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505  df-clim 11785  df-sumdc 11860
This theorem is referenced by:  fsumsplitsn  11916  sumsn  11917
  Copyright terms: Public domain W3C validator