Step | Hyp | Ref
| Expression |
1 | | nfcv 2308 |
. . . . 5
⊢
Ⅎ𝑚𝐴 |
2 | | nfcsb1v 3078 |
. . . . 5
⊢
Ⅎ𝑘⦋𝑚 / 𝑘⦌𝐴 |
3 | | csbeq1a 3054 |
. . . . 5
⊢ (𝑘 = 𝑚 → 𝐴 = ⦋𝑚 / 𝑘⦌𝐴) |
4 | 1, 2, 3 | cbvsumi 11303 |
. . . 4
⊢
Σ𝑘 ∈
{𝑀}𝐴 = Σ𝑚 ∈ {𝑀}⦋𝑚 / 𝑘⦌𝐴 |
5 | | csbeq1 3048 |
. . . . 5
⊢ (𝑚 = ({〈1, 𝑀〉}‘𝑛) → ⦋𝑚 / 𝑘⦌𝐴 = ⦋({〈1, 𝑀〉}‘𝑛) / 𝑘⦌𝐴) |
6 | | 1nn 8868 |
. . . . . 6
⊢ 1 ∈
ℕ |
7 | 6 | a1i 9 |
. . . . 5
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → 1 ∈
ℕ) |
8 | | simpl 108 |
. . . . . . 7
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → 𝑀 ∈ 𝑉) |
9 | | f1osng 5473 |
. . . . . . 7
⊢ ((1
∈ ℕ ∧ 𝑀
∈ 𝑉) → {〈1,
𝑀〉}:{1}–1-1-onto→{𝑀}) |
10 | 6, 8, 9 | sylancr 411 |
. . . . . 6
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → {〈1, 𝑀〉}:{1}–1-1-onto→{𝑀}) |
11 | | 1z 9217 |
. . . . . . 7
⊢ 1 ∈
ℤ |
12 | | fzsn 10001 |
. . . . . . 7
⊢ (1 ∈
ℤ → (1...1) = {1}) |
13 | | f1oeq2 5422 |
. . . . . . 7
⊢ ((1...1)
= {1} → ({〈1, 𝑀〉}:(1...1)–1-1-onto→{𝑀} ↔ {〈1, 𝑀〉}:{1}–1-1-onto→{𝑀})) |
14 | 11, 12, 13 | mp2b 8 |
. . . . . 6
⊢
({〈1, 𝑀〉}:(1...1)–1-1-onto→{𝑀} ↔ {〈1, 𝑀〉}:{1}–1-1-onto→{𝑀}) |
15 | 10, 14 | sylibr 133 |
. . . . 5
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → {〈1, 𝑀〉}:(1...1)–1-1-onto→{𝑀}) |
16 | | elsni 3594 |
. . . . . . . 8
⊢ (𝑚 ∈ {𝑀} → 𝑚 = 𝑀) |
17 | 16 | adantl 275 |
. . . . . . 7
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → 𝑚 = 𝑀) |
18 | 17 | csbeq1d 3052 |
. . . . . 6
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → ⦋𝑚 / 𝑘⦌𝐴 = ⦋𝑀 / 𝑘⦌𝐴) |
19 | | sumsnf.1 |
. . . . . . . . . 10
⊢
Ⅎ𝑘𝐵 |
20 | 19 | a1i 9 |
. . . . . . . . 9
⊢ (𝑀 ∈ 𝑉 → Ⅎ𝑘𝐵) |
21 | | sumsnf.2 |
. . . . . . . . 9
⊢ (𝑘 = 𝑀 → 𝐴 = 𝐵) |
22 | 20, 21 | csbiegf 3088 |
. . . . . . . 8
⊢ (𝑀 ∈ 𝑉 → ⦋𝑀 / 𝑘⦌𝐴 = 𝐵) |
23 | 22 | ad2antrr 480 |
. . . . . . 7
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → ⦋𝑀 / 𝑘⦌𝐴 = 𝐵) |
24 | | simplr 520 |
. . . . . . 7
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → 𝐵 ∈ ℂ) |
25 | 23, 24 | eqeltrd 2243 |
. . . . . 6
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → ⦋𝑀 / 𝑘⦌𝐴 ∈ ℂ) |
26 | 18, 25 | eqeltrd 2243 |
. . . . 5
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → ⦋𝑚 / 𝑘⦌𝐴 ∈ ℂ) |
27 | 22 | ad2antrr 480 |
. . . . . 6
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (1...1)) → ⦋𝑀 / 𝑘⦌𝐴 = 𝐵) |
28 | | elfz1eq 9970 |
. . . . . . . . 9
⊢ (𝑛 ∈ (1...1) → 𝑛 = 1) |
29 | 28 | fveq2d 5490 |
. . . . . . . 8
⊢ (𝑛 ∈ (1...1) →
({〈1, 𝑀〉}‘𝑛) = ({〈1, 𝑀〉}‘1)) |
30 | | fvsng 5681 |
. . . . . . . . 9
⊢ ((1
∈ ℕ ∧ 𝑀
∈ 𝑉) → ({〈1,
𝑀〉}‘1) = 𝑀) |
31 | 6, 8, 30 | sylancr 411 |
. . . . . . . 8
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → ({〈1, 𝑀〉}‘1) = 𝑀) |
32 | 29, 31 | sylan9eqr 2221 |
. . . . . . 7
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (1...1)) → ({〈1, 𝑀〉}‘𝑛) = 𝑀) |
33 | 32 | csbeq1d 3052 |
. . . . . 6
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (1...1)) →
⦋({〈1, 𝑀〉}‘𝑛) / 𝑘⦌𝐴 = ⦋𝑀 / 𝑘⦌𝐴) |
34 | 28 | fveq2d 5490 |
. . . . . . 7
⊢ (𝑛 ∈ (1...1) →
({〈1, 𝐵〉}‘𝑛) = ({〈1, 𝐵〉}‘1)) |
35 | | simpr 109 |
. . . . . . . 8
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ) |
36 | | fvsng 5681 |
. . . . . . . 8
⊢ ((1
∈ ℕ ∧ 𝐵
∈ ℂ) → ({〈1, 𝐵〉}‘1) = 𝐵) |
37 | 6, 35, 36 | sylancr 411 |
. . . . . . 7
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → ({〈1, 𝐵〉}‘1) = 𝐵) |
38 | 34, 37 | sylan9eqr 2221 |
. . . . . 6
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (1...1)) → ({〈1, 𝐵〉}‘𝑛) = 𝐵) |
39 | 27, 33, 38 | 3eqtr4rd 2209 |
. . . . 5
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (1...1)) → ({〈1, 𝐵〉}‘𝑛) = ⦋({〈1, 𝑀〉}‘𝑛) / 𝑘⦌𝐴) |
40 | 5, 7, 15, 26, 39 | fsum3 11328 |
. . . 4
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → Σ𝑚 ∈ {𝑀}⦋𝑚 / 𝑘⦌𝐴 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({〈1, 𝐵〉}‘𝑛), 0)))‘1)) |
41 | 4, 40 | syl5eq 2211 |
. . 3
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐴 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({〈1, 𝐵〉}‘𝑛), 0)))‘1)) |
42 | | 1zzd 9218 |
. . . 4
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → 1 ∈
ℤ) |
43 | | eqid 2165 |
. . . . . 6
⊢ (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({〈1, 𝐵〉}‘𝑛), 0)) = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({〈1, 𝐵〉}‘𝑛), 0)) |
44 | | breq1 3985 |
. . . . . . 7
⊢ (𝑛 = 𝑢 → (𝑛 ≤ 1 ↔ 𝑢 ≤ 1)) |
45 | | fveq2 5486 |
. . . . . . 7
⊢ (𝑛 = 𝑢 → ({〈1, 𝐵〉}‘𝑛) = ({〈1, 𝐵〉}‘𝑢)) |
46 | 44, 45 | ifbieq1d 3542 |
. . . . . 6
⊢ (𝑛 = 𝑢 → if(𝑛 ≤ 1, ({〈1, 𝐵〉}‘𝑛), 0) = if(𝑢 ≤ 1, ({〈1, 𝐵〉}‘𝑢), 0)) |
47 | | elnnuz 9502 |
. . . . . . . 8
⊢ (𝑢 ∈ ℕ ↔ 𝑢 ∈
(ℤ≥‘1)) |
48 | 47 | biimpri 132 |
. . . . . . 7
⊢ (𝑢 ∈
(ℤ≥‘1) → 𝑢 ∈ ℕ) |
49 | 48 | adantl 275 |
. . . . . 6
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ≥‘1))
→ 𝑢 ∈
ℕ) |
50 | | simpr 109 |
. . . . . . . . . . 11
⊢ ((((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ≥‘1))
∧ 𝑢 ≤ 1) →
𝑢 ≤ 1) |
51 | | eluzle 9478 |
. . . . . . . . . . . 12
⊢ (𝑢 ∈
(ℤ≥‘1) → 1 ≤ 𝑢) |
52 | 51 | ad2antlr 481 |
. . . . . . . . . . 11
⊢ ((((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ≥‘1))
∧ 𝑢 ≤ 1) → 1
≤ 𝑢) |
53 | | eluzelre 9476 |
. . . . . . . . . . . . 13
⊢ (𝑢 ∈
(ℤ≥‘1) → 𝑢 ∈ ℝ) |
54 | 53 | ad2antlr 481 |
. . . . . . . . . . . 12
⊢ ((((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ≥‘1))
∧ 𝑢 ≤ 1) →
𝑢 ∈
ℝ) |
55 | | 1red 7914 |
. . . . . . . . . . . 12
⊢ ((((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ≥‘1))
∧ 𝑢 ≤ 1) → 1
∈ ℝ) |
56 | 54, 55 | letri3d 8014 |
. . . . . . . . . . 11
⊢ ((((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ≥‘1))
∧ 𝑢 ≤ 1) →
(𝑢 = 1 ↔ (𝑢 ≤ 1 ∧ 1 ≤ 𝑢))) |
57 | 50, 52, 56 | mpbir2and 934 |
. . . . . . . . . 10
⊢ ((((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ≥‘1))
∧ 𝑢 ≤ 1) →
𝑢 = 1) |
58 | 57 | fveq2d 5490 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ≥‘1))
∧ 𝑢 ≤ 1) →
({〈1, 𝐵〉}‘𝑢) = ({〈1, 𝐵〉}‘1)) |
59 | 37 | ad2antrr 480 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ≥‘1))
∧ 𝑢 ≤ 1) →
({〈1, 𝐵〉}‘1) = 𝐵) |
60 | 58, 59 | eqtrd 2198 |
. . . . . . . 8
⊢ ((((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ≥‘1))
∧ 𝑢 ≤ 1) →
({〈1, 𝐵〉}‘𝑢) = 𝐵) |
61 | 35 | ad2antrr 480 |
. . . . . . . 8
⊢ ((((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ≥‘1))
∧ 𝑢 ≤ 1) →
𝐵 ∈
ℂ) |
62 | 60, 61 | eqeltrd 2243 |
. . . . . . 7
⊢ ((((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ≥‘1))
∧ 𝑢 ≤ 1) →
({〈1, 𝐵〉}‘𝑢) ∈ ℂ) |
63 | | 0cnd 7892 |
. . . . . . 7
⊢ ((((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ≥‘1))
∧ ¬ 𝑢 ≤ 1)
→ 0 ∈ ℂ) |
64 | 49 | nnzd 9312 |
. . . . . . . 8
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ≥‘1))
→ 𝑢 ∈
ℤ) |
65 | | 1zzd 9218 |
. . . . . . . 8
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ≥‘1))
→ 1 ∈ ℤ) |
66 | | zdcle 9267 |
. . . . . . . 8
⊢ ((𝑢 ∈ ℤ ∧ 1 ∈
ℤ) → DECID 𝑢 ≤ 1) |
67 | 64, 65, 66 | syl2anc 409 |
. . . . . . 7
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ≥‘1))
→ DECID 𝑢 ≤ 1) |
68 | 62, 63, 67 | ifcldadc 3549 |
. . . . . 6
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ≥‘1))
→ if(𝑢 ≤ 1,
({〈1, 𝐵〉}‘𝑢), 0) ∈ ℂ) |
69 | 43, 46, 49, 68 | fvmptd3 5579 |
. . . . 5
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ≥‘1))
→ ((𝑛 ∈ ℕ
↦ if(𝑛 ≤ 1,
({〈1, 𝐵〉}‘𝑛), 0))‘𝑢) = if(𝑢 ≤ 1, ({〈1, 𝐵〉}‘𝑢), 0)) |
70 | 69, 68 | eqeltrd 2243 |
. . . 4
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) ∧ 𝑢 ∈ (ℤ≥‘1))
→ ((𝑛 ∈ ℕ
↦ if(𝑛 ≤ 1,
({〈1, 𝐵〉}‘𝑛), 0))‘𝑢) ∈ ℂ) |
71 | | addcl 7878 |
. . . . 5
⊢ ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 + 𝑣) ∈ ℂ) |
72 | 71 | adantl 275 |
. . . 4
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑢 + 𝑣) ∈ ℂ) |
73 | 42, 70, 72 | seq3-1 10395 |
. . 3
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({〈1, 𝐵〉}‘𝑛), 0)))‘1) = ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({〈1, 𝐵〉}‘𝑛), 0))‘1)) |
74 | 41, 73 | eqtrd 2198 |
. 2
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐴 = ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({〈1, 𝐵〉}‘𝑛), 0))‘1)) |
75 | | 1le1 8470 |
. . . . . 6
⊢ 1 ≤
1 |
76 | 75 | iftruei 3526 |
. . . . 5
⊢ if(1 ≤
1, ({〈1, 𝐵〉}‘1), 0) = ({〈1, 𝐵〉}‘1) |
77 | 76, 37 | syl5eq 2211 |
. . . 4
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → if(1 ≤ 1,
({〈1, 𝐵〉}‘1), 0) = 𝐵) |
78 | 77, 35 | eqeltrd 2243 |
. . 3
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → if(1 ≤ 1,
({〈1, 𝐵〉}‘1), 0) ∈
ℂ) |
79 | | breq1 3985 |
. . . . 5
⊢ (𝑛 = 1 → (𝑛 ≤ 1 ↔ 1 ≤ 1)) |
80 | | fveq2 5486 |
. . . . 5
⊢ (𝑛 = 1 → ({〈1, 𝐵〉}‘𝑛) = ({〈1, 𝐵〉}‘1)) |
81 | 79, 80 | ifbieq1d 3542 |
. . . 4
⊢ (𝑛 = 1 → if(𝑛 ≤ 1, ({〈1, 𝐵〉}‘𝑛), 0) = if(1 ≤ 1, ({〈1, 𝐵〉}‘1),
0)) |
82 | 81, 43 | fvmptg 5562 |
. . 3
⊢ ((1
∈ ℕ ∧ if(1 ≤ 1, ({〈1, 𝐵〉}‘1), 0) ∈ ℂ) →
((𝑛 ∈ ℕ ↦
if(𝑛 ≤ 1, ({〈1,
𝐵〉}‘𝑛), 0))‘1) = if(1 ≤ 1,
({〈1, 𝐵〉}‘1), 0)) |
83 | 6, 78, 82 | sylancr 411 |
. 2
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ 1, ({〈1, 𝐵〉}‘𝑛), 0))‘1) = if(1 ≤ 1, ({〈1,
𝐵〉}‘1),
0)) |
84 | 74, 83, 77 | 3eqtrd 2202 |
1
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵) |