| Step | Hyp | Ref
 | Expression | 
| 1 |   | ax-resscn 7971 | 
. . . . . . 7
⊢ ℝ
⊆ ℂ | 
| 2 |   | fss 5419 | 
. . . . . . 7
⊢ ((𝐹:𝐴⟶ℝ ∧ ℝ ⊆
ℂ) → 𝐹:𝐴⟶ℂ) | 
| 3 | 1, 2 | mpan2 425 | 
. . . . . 6
⊢ (𝐹:𝐴⟶ℝ → 𝐹:𝐴⟶ℂ) | 
| 4 | 3 | adantr 276 | 
. . . . 5
⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → 𝐹:𝐴⟶ℂ) | 
| 5 |   | ffdm 5428 | 
. . . . . 6
⊢ (𝐹:𝐴⟶ℂ → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ 𝐴)) | 
| 6 | 5 | simpld 112 | 
. . . . 5
⊢ (𝐹:𝐴⟶ℂ → 𝐹:dom 𝐹⟶ℂ) | 
| 7 | 4, 6 | syl 14 | 
. . . 4
⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → 𝐹:dom 𝐹⟶ℂ) | 
| 8 |   | simpl 109 | 
. . . . . 6
⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → 𝐹:𝐴⟶ℝ) | 
| 9 | 8 | fdmd 5414 | 
. . . . 5
⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → dom 𝐹 = 𝐴) | 
| 10 |   | simpr 110 | 
. . . . 5
⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → 𝐴 ⊆ ℝ) | 
| 11 | 9, 10 | eqsstrd 3219 | 
. . . 4
⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → dom 𝐹 ⊆
ℝ) | 
| 12 |   | cnex 8003 | 
. . . . 5
⊢ ℂ
∈ V | 
| 13 |   | reex 8013 | 
. . . . 5
⊢ ℝ
∈ V | 
| 14 | 12, 13 | elpm2 6739 | 
. . . 4
⊢ (𝐹 ∈ (ℂ
↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℝ)) | 
| 15 | 7, 11, 14 | sylanbrc 417 | 
. . 3
⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → 𝐹 ∈ (ℂ ↑pm
ℝ)) | 
| 16 |   | dvfpm 14925 | 
. . 3
⊢ (𝐹 ∈ (ℂ
↑pm ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ) | 
| 17 |   | ffn 5407 | 
. . 3
⊢ ((ℝ
D 𝐹):dom (ℝ D 𝐹)⟶ℂ → (ℝ
D 𝐹) Fn dom (ℝ D
𝐹)) | 
| 18 | 15, 16, 17 | 3syl 17 | 
. 2
⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (ℝ D 𝐹) Fn dom (ℝ D 𝐹)) | 
| 19 | 15, 16 | syl 14 | 
. . . . 5
⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ) | 
| 20 | 19 | ffvelcdmda 5697 | 
. . . 4
⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ) | 
| 21 |   | fvco3 5632 | 
. . . . . 6
⊢
(((ℝ D 𝐹):dom
(ℝ D 𝐹)⟶ℂ ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → ((∗ ∘ (ℝ D
𝐹))‘𝑥) = (∗‘((ℝ D
𝐹)‘𝑥))) | 
| 22 | 19, 21 | sylan 283 | 
. . . . 5
⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → ((∗ ∘ (ℝ D
𝐹))‘𝑥) = (∗‘((ℝ D
𝐹)‘𝑥))) | 
| 23 |   | dvcj 14945 | 
. . . . . . . . 9
⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (ℝ D
(∗ ∘ 𝐹)) =
(∗ ∘ (ℝ D 𝐹))) | 
| 24 | 3, 23 | sylan 283 | 
. . . . . . . 8
⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (ℝ D
(∗ ∘ 𝐹)) =
(∗ ∘ (ℝ D 𝐹))) | 
| 25 |   | ffvelcdm 5695 | 
. . . . . . . . . . . . 13
⊢ ((𝐹:𝐴⟶ℝ ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ ℝ) | 
| 26 | 25 | adantlr 477 | 
. . . . . . . . . . . 12
⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ ℝ) | 
| 27 | 26 | cjred 11136 | 
. . . . . . . . . . 11
⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ 𝑦 ∈ 𝐴) → (∗‘(𝐹‘𝑦)) = (𝐹‘𝑦)) | 
| 28 | 27 | mpteq2dva 4123 | 
. . . . . . . . . 10
⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (𝑦 ∈ 𝐴 ↦ (∗‘(𝐹‘𝑦))) = (𝑦 ∈ 𝐴 ↦ (𝐹‘𝑦))) | 
| 29 | 26 | recnd 8055 | 
. . . . . . . . . . 11
⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ ℂ) | 
| 30 | 8 | feqmptd 5614 | 
. . . . . . . . . . 11
⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → 𝐹 = (𝑦 ∈ 𝐴 ↦ (𝐹‘𝑦))) | 
| 31 |   | cjf 11012 | 
. . . . . . . . . . . . 13
⊢
∗:ℂ⟶ℂ | 
| 32 | 31 | a1i 9 | 
. . . . . . . . . . . 12
⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) →
∗:ℂ⟶ℂ) | 
| 33 | 32 | feqmptd 5614 | 
. . . . . . . . . . 11
⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ∗ = (𝑧 ∈ ℂ ↦
(∗‘𝑧))) | 
| 34 |   | fveq2 5558 | 
. . . . . . . . . . 11
⊢ (𝑧 = (𝐹‘𝑦) → (∗‘𝑧) = (∗‘(𝐹‘𝑦))) | 
| 35 | 29, 30, 33, 34 | fmptco 5728 | 
. . . . . . . . . 10
⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (∗ ∘
𝐹) = (𝑦 ∈ 𝐴 ↦ (∗‘(𝐹‘𝑦)))) | 
| 36 | 28, 35, 30 | 3eqtr4d 2239 | 
. . . . . . . . 9
⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (∗ ∘
𝐹) = 𝐹) | 
| 37 | 36 | oveq2d 5938 | 
. . . . . . . 8
⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (ℝ D
(∗ ∘ 𝐹)) =
(ℝ D 𝐹)) | 
| 38 | 24, 37 | eqtr3d 2231 | 
. . . . . . 7
⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (∗ ∘
(ℝ D 𝐹)) = (ℝ D
𝐹)) | 
| 39 | 38 | fveq1d 5560 | 
. . . . . 6
⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((∗ ∘
(ℝ D 𝐹))‘𝑥) = ((ℝ D 𝐹)‘𝑥)) | 
| 40 | 39 | adantr 276 | 
. . . . 5
⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → ((∗ ∘ (ℝ D
𝐹))‘𝑥) = ((ℝ D 𝐹)‘𝑥)) | 
| 41 | 22, 40 | eqtr3d 2231 | 
. . . 4
⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → (∗‘((ℝ D 𝐹)‘𝑥)) = ((ℝ D 𝐹)‘𝑥)) | 
| 42 | 20, 41 | cjrebd 11111 | 
. . 3
⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → ((ℝ D 𝐹)‘𝑥) ∈ ℝ) | 
| 43 | 42 | ralrimiva 2570 | 
. 2
⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ∀𝑥 ∈ dom (ℝ D 𝐹)((ℝ D 𝐹)‘𝑥) ∈ ℝ) | 
| 44 |   | ffnfv 5720 | 
. 2
⊢ ((ℝ
D 𝐹):dom (ℝ D 𝐹)⟶ℝ ↔
((ℝ D 𝐹) Fn dom
(ℝ D 𝐹) ∧
∀𝑥 ∈ dom
(ℝ D 𝐹)((ℝ D
𝐹)‘𝑥) ∈ ℝ)) | 
| 45 | 18, 43, 44 | sylanbrc 417 | 
1
⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ) |