ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvfre GIF version

Theorem dvfre 14314
Description: The derivative of a real function is real. (Contributed by Mario Carneiro, 1-Sep-2014.)
Assertion
Ref Expression
dvfre ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)

Proof of Theorem dvfre
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-resscn 7906 . . . . . . 7 ℝ ⊆ ℂ
2 fss 5379 . . . . . . 7 ((𝐹:𝐴⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:𝐴⟶ℂ)
31, 2mpan2 425 . . . . . 6 (𝐹:𝐴⟶ℝ → 𝐹:𝐴⟶ℂ)
43adantr 276 . . . . 5 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → 𝐹:𝐴⟶ℂ)
5 ffdm 5388 . . . . . 6 (𝐹:𝐴⟶ℂ → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹𝐴))
65simpld 112 . . . . 5 (𝐹:𝐴⟶ℂ → 𝐹:dom 𝐹⟶ℂ)
74, 6syl 14 . . . 4 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → 𝐹:dom 𝐹⟶ℂ)
8 simpl 109 . . . . . 6 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → 𝐹:𝐴⟶ℝ)
98fdmd 5374 . . . . 5 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → dom 𝐹 = 𝐴)
10 simpr 110 . . . . 5 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → 𝐴 ⊆ ℝ)
119, 10eqsstrd 3193 . . . 4 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → dom 𝐹 ⊆ ℝ)
12 cnex 7938 . . . . 5 ℂ ∈ V
13 reex 7948 . . . . 5 ℝ ∈ V
1412, 13elpm2 6683 . . . 4 (𝐹 ∈ (ℂ ↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℝ))
157, 11, 14sylanbrc 417 . . 3 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → 𝐹 ∈ (ℂ ↑pm ℝ))
16 dvfpm 14298 . . 3 (𝐹 ∈ (ℂ ↑pm ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ)
17 ffn 5367 . . 3 ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ → (ℝ D 𝐹) Fn dom (ℝ D 𝐹))
1815, 16, 173syl 17 . 2 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (ℝ D 𝐹) Fn dom (ℝ D 𝐹))
1915, 16syl 14 . . . . 5 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ)
2019ffvelcdmda 5654 . . . 4 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ)
21 fvco3 5590 . . . . . 6 (((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → ((∗ ∘ (ℝ D 𝐹))‘𝑥) = (∗‘((ℝ D 𝐹)‘𝑥)))
2219, 21sylan 283 . . . . 5 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → ((∗ ∘ (ℝ D 𝐹))‘𝑥) = (∗‘((ℝ D 𝐹)‘𝑥)))
23 dvcj 14313 . . . . . . . . 9 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (ℝ D (∗ ∘ 𝐹)) = (∗ ∘ (ℝ D 𝐹)))
243, 23sylan 283 . . . . . . . 8 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (ℝ D (∗ ∘ 𝐹)) = (∗ ∘ (ℝ D 𝐹)))
25 ffvelcdm 5652 . . . . . . . . . . . . 13 ((𝐹:𝐴⟶ℝ ∧ 𝑦𝐴) → (𝐹𝑦) ∈ ℝ)
2625adantlr 477 . . . . . . . . . . . 12 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ 𝑦𝐴) → (𝐹𝑦) ∈ ℝ)
2726cjred 10983 . . . . . . . . . . 11 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ 𝑦𝐴) → (∗‘(𝐹𝑦)) = (𝐹𝑦))
2827mpteq2dva 4095 . . . . . . . . . 10 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (𝑦𝐴 ↦ (∗‘(𝐹𝑦))) = (𝑦𝐴 ↦ (𝐹𝑦)))
2926recnd 7989 . . . . . . . . . . 11 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ 𝑦𝐴) → (𝐹𝑦) ∈ ℂ)
308feqmptd 5572 . . . . . . . . . . 11 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → 𝐹 = (𝑦𝐴 ↦ (𝐹𝑦)))
31 cjf 10859 . . . . . . . . . . . . 13 ∗:ℂ⟶ℂ
3231a1i 9 . . . . . . . . . . . 12 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ∗:ℂ⟶ℂ)
3332feqmptd 5572 . . . . . . . . . . 11 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ∗ = (𝑧 ∈ ℂ ↦ (∗‘𝑧)))
34 fveq2 5517 . . . . . . . . . . 11 (𝑧 = (𝐹𝑦) → (∗‘𝑧) = (∗‘(𝐹𝑦)))
3529, 30, 33, 34fmptco 5685 . . . . . . . . . 10 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (∗ ∘ 𝐹) = (𝑦𝐴 ↦ (∗‘(𝐹𝑦))))
3628, 35, 303eqtr4d 2220 . . . . . . . . 9 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (∗ ∘ 𝐹) = 𝐹)
3736oveq2d 5894 . . . . . . . 8 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (ℝ D (∗ ∘ 𝐹)) = (ℝ D 𝐹))
3824, 37eqtr3d 2212 . . . . . . 7 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (∗ ∘ (ℝ D 𝐹)) = (ℝ D 𝐹))
3938fveq1d 5519 . . . . . 6 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((∗ ∘ (ℝ D 𝐹))‘𝑥) = ((ℝ D 𝐹)‘𝑥))
4039adantr 276 . . . . 5 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → ((∗ ∘ (ℝ D 𝐹))‘𝑥) = ((ℝ D 𝐹)‘𝑥))
4122, 40eqtr3d 2212 . . . 4 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → (∗‘((ℝ D 𝐹)‘𝑥)) = ((ℝ D 𝐹)‘𝑥))
4220, 41cjrebd 10958 . . 3 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → ((ℝ D 𝐹)‘𝑥) ∈ ℝ)
4342ralrimiva 2550 . 2 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ∀𝑥 ∈ dom (ℝ D 𝐹)((ℝ D 𝐹)‘𝑥) ∈ ℝ)
44 ffnfv 5677 . 2 ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ ↔ ((ℝ D 𝐹) Fn dom (ℝ D 𝐹) ∧ ∀𝑥 ∈ dom (ℝ D 𝐹)((ℝ D 𝐹)‘𝑥) ∈ ℝ))
4518, 43, 44sylanbrc 417 1 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  wral 2455  wss 3131  cmpt 4066  dom cdm 4628  ccom 4632   Fn wfn 5213  wf 5214  cfv 5218  (class class class)co 5878  pm cpm 6652  cc 7812  cr 7813  ccj 10851   D cdv 14264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-mulrcl 7913  ax-addcom 7914  ax-mulcom 7915  ax-addass 7916  ax-mulass 7917  ax-distr 7918  ax-i2m1 7919  ax-0lt1 7920  ax-1rid 7921  ax-0id 7922  ax-rnegex 7923  ax-precex 7924  ax-cnre 7925  ax-pre-ltirr 7926  ax-pre-ltwlin 7927  ax-pre-lttrn 7928  ax-pre-apti 7929  ax-pre-ltadd 7930  ax-pre-mulgt0 7931  ax-pre-mulext 7932  ax-arch 7933  ax-caucvg 7934
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-1st 6144  df-2nd 6145  df-recs 6309  df-frec 6395  df-map 6653  df-pm 6654  df-sup 6986  df-inf 6987  df-pnf 7997  df-mnf 7998  df-xr 7999  df-ltxr 8000  df-le 8001  df-sub 8133  df-neg 8134  df-reap 8535  df-ap 8542  df-div 8633  df-inn 8923  df-2 8981  df-3 8982  df-4 8983  df-n0 9180  df-z 9257  df-uz 9532  df-q 9623  df-rp 9657  df-xneg 9775  df-xadd 9776  df-ioo 9895  df-seqfrec 10449  df-exp 10523  df-cj 10854  df-re 10855  df-im 10856  df-rsqrt 11010  df-abs 11011  df-rest 12696  df-topgen 12715  df-psmet 13587  df-xmet 13588  df-met 13589  df-bl 13590  df-mopn 13591  df-top 13638  df-topon 13651  df-bases 13683  df-ntr 13736  df-cn 13828  df-cnp 13829  df-cncf 14198  df-limced 14265  df-dvap 14266
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator