Step | Hyp | Ref
| Expression |
1 | | ax-resscn 7903 |
. . . . . . 7
β’ β
β β |
2 | | fss 5378 |
. . . . . . 7
β’ ((πΉ:π΄βΆβ β§ β β
β) β πΉ:π΄βΆβ) |
3 | 1, 2 | mpan2 425 |
. . . . . 6
β’ (πΉ:π΄βΆβ β πΉ:π΄βΆβ) |
4 | 3 | adantr 276 |
. . . . 5
β’ ((πΉ:π΄βΆβ β§ π΄ β β) β πΉ:π΄βΆβ) |
5 | | ffdm 5387 |
. . . . . 6
β’ (πΉ:π΄βΆβ β (πΉ:dom πΉβΆβ β§ dom πΉ β π΄)) |
6 | 5 | simpld 112 |
. . . . 5
β’ (πΉ:π΄βΆβ β πΉ:dom πΉβΆβ) |
7 | 4, 6 | syl 14 |
. . . 4
β’ ((πΉ:π΄βΆβ β§ π΄ β β) β πΉ:dom πΉβΆβ) |
8 | | simpl 109 |
. . . . . 6
β’ ((πΉ:π΄βΆβ β§ π΄ β β) β πΉ:π΄βΆβ) |
9 | 8 | fdmd 5373 |
. . . . 5
β’ ((πΉ:π΄βΆβ β§ π΄ β β) β dom πΉ = π΄) |
10 | | simpr 110 |
. . . . 5
β’ ((πΉ:π΄βΆβ β§ π΄ β β) β π΄ β β) |
11 | 9, 10 | eqsstrd 3192 |
. . . 4
β’ ((πΉ:π΄βΆβ β§ π΄ β β) β dom πΉ β
β) |
12 | | cnex 7935 |
. . . . 5
β’ β
β V |
13 | | reex 7945 |
. . . . 5
β’ β
β V |
14 | 12, 13 | elpm2 6680 |
. . . 4
β’ (πΉ β (β
βpm β) β (πΉ:dom πΉβΆβ β§ dom πΉ β β)) |
15 | 7, 11, 14 | sylanbrc 417 |
. . 3
β’ ((πΉ:π΄βΆβ β§ π΄ β β) β πΉ β (β βpm
β)) |
16 | | dvfpm 14161 |
. . 3
β’ (πΉ β (β
βpm β) β (β D πΉ):dom (β D πΉ)βΆβ) |
17 | | ffn 5366 |
. . 3
β’ ((β
D πΉ):dom (β D πΉ)βΆβ β (β
D πΉ) Fn dom (β D
πΉ)) |
18 | 15, 16, 17 | 3syl 17 |
. 2
β’ ((πΉ:π΄βΆβ β§ π΄ β β) β (β D πΉ) Fn dom (β D πΉ)) |
19 | 15, 16 | syl 14 |
. . . . 5
β’ ((πΉ:π΄βΆβ β§ π΄ β β) β (β D πΉ):dom (β D πΉ)βΆβ) |
20 | 19 | ffvelcdmda 5652 |
. . . 4
β’ (((πΉ:π΄βΆβ β§ π΄ β β) β§ π₯ β dom (β D πΉ)) β ((β D πΉ)βπ₯) β β) |
21 | | fvco3 5588 |
. . . . . 6
β’
(((β D πΉ):dom
(β D πΉ)βΆβ β§ π₯ β dom (β D πΉ)) β ((β β (β D
πΉ))βπ₯) = (ββ((β D
πΉ)βπ₯))) |
22 | 19, 21 | sylan 283 |
. . . . 5
β’ (((πΉ:π΄βΆβ β§ π΄ β β) β§ π₯ β dom (β D πΉ)) β ((β β (β D
πΉ))βπ₯) = (ββ((β D
πΉ)βπ₯))) |
23 | | dvcj 14176 |
. . . . . . . . 9
β’ ((πΉ:π΄βΆβ β§ π΄ β β) β (β D
(β β πΉ)) =
(β β (β D πΉ))) |
24 | 3, 23 | sylan 283 |
. . . . . . . 8
β’ ((πΉ:π΄βΆβ β§ π΄ β β) β (β D
(β β πΉ)) =
(β β (β D πΉ))) |
25 | | ffvelcdm 5650 |
. . . . . . . . . . . . 13
β’ ((πΉ:π΄βΆβ β§ π¦ β π΄) β (πΉβπ¦) β β) |
26 | 25 | adantlr 477 |
. . . . . . . . . . . 12
β’ (((πΉ:π΄βΆβ β§ π΄ β β) β§ π¦ β π΄) β (πΉβπ¦) β β) |
27 | 26 | cjred 10980 |
. . . . . . . . . . 11
β’ (((πΉ:π΄βΆβ β§ π΄ β β) β§ π¦ β π΄) β (ββ(πΉβπ¦)) = (πΉβπ¦)) |
28 | 27 | mpteq2dva 4094 |
. . . . . . . . . 10
β’ ((πΉ:π΄βΆβ β§ π΄ β β) β (π¦ β π΄ β¦ (ββ(πΉβπ¦))) = (π¦ β π΄ β¦ (πΉβπ¦))) |
29 | 26 | recnd 7986 |
. . . . . . . . . . 11
β’ (((πΉ:π΄βΆβ β§ π΄ β β) β§ π¦ β π΄) β (πΉβπ¦) β β) |
30 | 8 | feqmptd 5570 |
. . . . . . . . . . 11
β’ ((πΉ:π΄βΆβ β§ π΄ β β) β πΉ = (π¦ β π΄ β¦ (πΉβπ¦))) |
31 | | cjf 10856 |
. . . . . . . . . . . . 13
β’
β:ββΆβ |
32 | 31 | a1i 9 |
. . . . . . . . . . . 12
β’ ((πΉ:π΄βΆβ β§ π΄ β β) β
β:ββΆβ) |
33 | 32 | feqmptd 5570 |
. . . . . . . . . . 11
β’ ((πΉ:π΄βΆβ β§ π΄ β β) β β = (π§ β β β¦
(ββπ§))) |
34 | | fveq2 5516 |
. . . . . . . . . . 11
β’ (π§ = (πΉβπ¦) β (ββπ§) = (ββ(πΉβπ¦))) |
35 | 29, 30, 33, 34 | fmptco 5683 |
. . . . . . . . . 10
β’ ((πΉ:π΄βΆβ β§ π΄ β β) β (β β
πΉ) = (π¦ β π΄ β¦ (ββ(πΉβπ¦)))) |
36 | 28, 35, 30 | 3eqtr4d 2220 |
. . . . . . . . 9
β’ ((πΉ:π΄βΆβ β§ π΄ β β) β (β β
πΉ) = πΉ) |
37 | 36 | oveq2d 5891 |
. . . . . . . 8
β’ ((πΉ:π΄βΆβ β§ π΄ β β) β (β D
(β β πΉ)) =
(β D πΉ)) |
38 | 24, 37 | eqtr3d 2212 |
. . . . . . 7
β’ ((πΉ:π΄βΆβ β§ π΄ β β) β (β β
(β D πΉ)) = (β D
πΉ)) |
39 | 38 | fveq1d 5518 |
. . . . . 6
β’ ((πΉ:π΄βΆβ β§ π΄ β β) β ((β β
(β D πΉ))βπ₯) = ((β D πΉ)βπ₯)) |
40 | 39 | adantr 276 |
. . . . 5
β’ (((πΉ:π΄βΆβ β§ π΄ β β) β§ π₯ β dom (β D πΉ)) β ((β β (β D
πΉ))βπ₯) = ((β D πΉ)βπ₯)) |
41 | 22, 40 | eqtr3d 2212 |
. . . 4
β’ (((πΉ:π΄βΆβ β§ π΄ β β) β§ π₯ β dom (β D πΉ)) β (ββ((β D πΉ)βπ₯)) = ((β D πΉ)βπ₯)) |
42 | 20, 41 | cjrebd 10955 |
. . 3
β’ (((πΉ:π΄βΆβ β§ π΄ β β) β§ π₯ β dom (β D πΉ)) β ((β D πΉ)βπ₯) β β) |
43 | 42 | ralrimiva 2550 |
. 2
β’ ((πΉ:π΄βΆβ β§ π΄ β β) β βπ₯ β dom (β D πΉ)((β D πΉ)βπ₯) β β) |
44 | | ffnfv 5675 |
. 2
β’ ((β
D πΉ):dom (β D πΉ)βΆβ β
((β D πΉ) Fn dom
(β D πΉ) β§
βπ₯ β dom
(β D πΉ)((β D
πΉ)βπ₯) β β)) |
45 | 18, 43, 44 | sylanbrc 417 |
1
β’ ((πΉ:π΄βΆβ β§ π΄ β β) β (β D πΉ):dom (β D πΉ)βΆβ) |