ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funssxp GIF version

Theorem funssxp 5260
Description: Two ways of specifying a partial function from 𝐴 to 𝐵. (Contributed by NM, 13-Nov-2007.)
Assertion
Ref Expression
funssxp ((Fun 𝐹𝐹 ⊆ (𝐴 × 𝐵)) ↔ (𝐹:dom 𝐹𝐵 ∧ dom 𝐹𝐴))

Proof of Theorem funssxp
StepHypRef Expression
1 funfn 5121 . . . . . 6 (Fun 𝐹𝐹 Fn dom 𝐹)
21biimpi 119 . . . . 5 (Fun 𝐹𝐹 Fn dom 𝐹)
3 rnss 4737 . . . . . 6 (𝐹 ⊆ (𝐴 × 𝐵) → ran 𝐹 ⊆ ran (𝐴 × 𝐵))
4 rnxpss 4938 . . . . . 6 ran (𝐴 × 𝐵) ⊆ 𝐵
53, 4syl6ss 3077 . . . . 5 (𝐹 ⊆ (𝐴 × 𝐵) → ran 𝐹𝐵)
62, 5anim12i 334 . . . 4 ((Fun 𝐹𝐹 ⊆ (𝐴 × 𝐵)) → (𝐹 Fn dom 𝐹 ∧ ran 𝐹𝐵))
7 df-f 5095 . . . 4 (𝐹:dom 𝐹𝐵 ↔ (𝐹 Fn dom 𝐹 ∧ ran 𝐹𝐵))
86, 7sylibr 133 . . 3 ((Fun 𝐹𝐹 ⊆ (𝐴 × 𝐵)) → 𝐹:dom 𝐹𝐵)
9 dmss 4706 . . . . 5 (𝐹 ⊆ (𝐴 × 𝐵) → dom 𝐹 ⊆ dom (𝐴 × 𝐵))
10 dmxpss 4937 . . . . 5 dom (𝐴 × 𝐵) ⊆ 𝐴
119, 10syl6ss 3077 . . . 4 (𝐹 ⊆ (𝐴 × 𝐵) → dom 𝐹𝐴)
1211adantl 273 . . 3 ((Fun 𝐹𝐹 ⊆ (𝐴 × 𝐵)) → dom 𝐹𝐴)
138, 12jca 302 . 2 ((Fun 𝐹𝐹 ⊆ (𝐴 × 𝐵)) → (𝐹:dom 𝐹𝐵 ∧ dom 𝐹𝐴))
14 ffun 5243 . . . 4 (𝐹:dom 𝐹𝐵 → Fun 𝐹)
1514adantr 272 . . 3 ((𝐹:dom 𝐹𝐵 ∧ dom 𝐹𝐴) → Fun 𝐹)
16 fssxp 5258 . . . 4 (𝐹:dom 𝐹𝐵𝐹 ⊆ (dom 𝐹 × 𝐵))
17 xpss1 4617 . . . 4 (dom 𝐹𝐴 → (dom 𝐹 × 𝐵) ⊆ (𝐴 × 𝐵))
1816, 17sylan9ss 3078 . . 3 ((𝐹:dom 𝐹𝐵 ∧ dom 𝐹𝐴) → 𝐹 ⊆ (𝐴 × 𝐵))
1915, 18jca 302 . 2 ((𝐹:dom 𝐹𝐵 ∧ dom 𝐹𝐴) → (Fun 𝐹𝐹 ⊆ (𝐴 × 𝐵)))
2013, 19impbii 125 1 ((Fun 𝐹𝐹 ⊆ (𝐴 × 𝐵)) ↔ (𝐹:dom 𝐹𝐵 ∧ dom 𝐹𝐴))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  wss 3039   × cxp 4505  dom cdm 4507  ran crn 4508  Fun wfun 5085   Fn wfn 5086  wf 5087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ral 2396  df-rex 2397  df-v 2660  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-br 3898  df-opab 3958  df-xp 4513  df-rel 4514  df-cnv 4515  df-dm 4517  df-rn 4518  df-fun 5093  df-fn 5094  df-f 5095
This theorem is referenced by:  elpm2g  6525  casef  6939
  Copyright terms: Public domain W3C validator