![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ifbieq1d | GIF version |
Description: Equivalence/equality deduction for conditional operators. (Contributed by JJ, 25-Sep-2018.) |
Ref | Expression |
---|---|
ifbieq1d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
ifbieq1d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
ifbieq1d | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜒, 𝐵, 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifbieq1d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | ifbid 3567 | . 2 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜒, 𝐴, 𝐶)) |
3 | ifbieq1d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
4 | 3 | ifeq1d 3563 | . 2 ⊢ (𝜑 → if(𝜒, 𝐴, 𝐶) = if(𝜒, 𝐵, 𝐶)) |
5 | 2, 4 | eqtrd 2220 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜒, 𝐵, 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1363 ifcif 3546 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 |
This theorem depends on definitions: df-bi 117 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-rab 2474 df-v 2751 df-un 3145 df-if 3547 |
This theorem is referenced by: ctssdclemn0 7122 ctssdc 7125 enumctlemm 7126 iseqf1olemfvp 10510 seq3f1olemqsum 10513 seq3f1oleml 10516 seq3f1o 10517 bcval 10742 sumrbdclem 11398 summodclem3 11401 summodclem2a 11402 summodc 11404 zsumdc 11405 fsum3 11408 isumss 11412 isumss2 11414 fsum3cvg2 11415 fsum3ser 11418 fsumcl2lem 11419 fsumadd 11427 sumsnf 11430 fsummulc2 11469 isumlessdc 11517 cbvprod 11579 prodrbdclem 11592 prodmodclem3 11596 prodmodclem2a 11597 prodmodc 11599 zproddc 11600 fprodseq 11604 fprodntrivap 11605 prodssdc 11610 fprodmul 11612 prodsnf 11613 pcmpt 12354 pcmptdvds 12356 lgsval 14645 lgsfvalg 14646 lgsdir 14676 lgsdilem2 14677 lgsdi 14678 lgsne0 14679 |
Copyright terms: Public domain | W3C validator |