![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ifbieq1d | GIF version |
Description: Equivalence/equality deduction for conditional operators. (Contributed by JJ, 25-Sep-2018.) |
Ref | Expression |
---|---|
ifbieq1d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
ifbieq1d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
ifbieq1d | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜒, 𝐵, 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifbieq1d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | ifbid 3570 | . 2 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜒, 𝐴, 𝐶)) |
3 | ifbieq1d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
4 | 3 | ifeq1d 3566 | . 2 ⊢ (𝜑 → if(𝜒, 𝐴, 𝐶) = if(𝜒, 𝐵, 𝐶)) |
5 | 2, 4 | eqtrd 2222 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜒, 𝐵, 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ifcif 3549 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-rab 2477 df-v 2754 df-un 3148 df-if 3550 |
This theorem is referenced by: ctssdclemn0 7127 ctssdc 7130 enumctlemm 7131 iseqf1olemfvp 10515 seq3f1olemqsum 10518 seq3f1oleml 10521 seq3f1o 10522 bcval 10747 sumrbdclem 11403 summodclem3 11406 summodclem2a 11407 summodc 11409 zsumdc 11410 fsum3 11413 isumss 11417 isumss2 11419 fsum3cvg2 11420 fsum3ser 11423 fsumcl2lem 11424 fsumadd 11432 sumsnf 11435 fsummulc2 11474 isumlessdc 11522 cbvprod 11584 prodrbdclem 11597 prodmodclem3 11601 prodmodclem2a 11602 prodmodc 11604 zproddc 11605 fprodseq 11609 fprodntrivap 11610 prodssdc 11615 fprodmul 11617 prodsnf 11618 pcmpt 12359 pcmptdvds 12361 lgsval 14802 lgsfvalg 14803 lgsdir 14833 lgsdilem2 14834 lgsdi 14835 lgsne0 14836 |
Copyright terms: Public domain | W3C validator |