| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifbieq1d | GIF version | ||
| Description: Equivalence/equality deduction for conditional operators. (Contributed by JJ, 25-Sep-2018.) |
| Ref | Expression |
|---|---|
| ifbieq1d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| ifbieq1d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| ifbieq1d | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜒, 𝐵, 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifbieq1d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | ifbid 3582 | . 2 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜒, 𝐴, 𝐶)) |
| 3 | ifbieq1d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 4 | 3 | ifeq1d 3578 | . 2 ⊢ (𝜑 → if(𝜒, 𝐴, 𝐶) = if(𝜒, 𝐵, 𝐶)) |
| 5 | 2, 4 | eqtrd 2229 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜒, 𝐵, 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ifcif 3561 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-v 2765 df-un 3161 df-if 3562 |
| This theorem is referenced by: ctssdclemn0 7176 ctssdc 7179 enumctlemm 7180 iseqf1olemfvp 10602 seq3f1olemqsum 10605 seq3f1oleml 10608 seq3f1o 10609 bcval 10841 sumrbdclem 11542 summodclem3 11545 summodclem2a 11546 summodc 11548 zsumdc 11549 fsum3 11552 isumss 11556 isumss2 11558 fsum3cvg2 11559 fsum3ser 11562 fsumcl2lem 11563 fsumadd 11571 sumsnf 11574 fsummulc2 11613 isumlessdc 11661 cbvprod 11723 prodrbdclem 11736 prodmodclem3 11740 prodmodclem2a 11741 prodmodc 11743 zproddc 11744 fprodseq 11748 fprodntrivap 11749 prodssdc 11754 fprodmul 11756 prodsnf 11757 pcmpt 12512 pcmptdvds 12514 elply2 14971 lgsval 15245 lgsfvalg 15246 lgsdir 15276 lgsdilem2 15277 lgsdi 15278 lgsne0 15279 |
| Copyright terms: Public domain | W3C validator |