| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifbieq1d | GIF version | ||
| Description: Equivalence/equality deduction for conditional operators. (Contributed by JJ, 25-Sep-2018.) |
| Ref | Expression |
|---|---|
| ifbieq1d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| ifbieq1d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| ifbieq1d | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜒, 𝐵, 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifbieq1d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | ifbid 3624 | . 2 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜒, 𝐴, 𝐶)) |
| 3 | ifbieq1d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 4 | 3 | ifeq1d 3620 | . 2 ⊢ (𝜑 → if(𝜒, 𝐴, 𝐶) = if(𝜒, 𝐵, 𝐶)) |
| 5 | 2, 4 | eqtrd 2262 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜒, 𝐵, 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 ifcif 3602 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rab 2517 df-v 2801 df-un 3201 df-if 3603 |
| This theorem is referenced by: ctssdclemn0 7265 ctssdc 7268 enumctlemm 7269 iseqf1olemfvp 10719 seq3f1olemqsum 10722 seq3f1oleml 10725 seq3f1o 10726 bcval 10958 swrdval 11166 sumrbdclem 11874 summodclem3 11877 summodclem2a 11878 summodc 11880 zsumdc 11881 fsum3 11884 isumss 11888 isumss2 11890 fsum3cvg2 11891 fsum3ser 11894 fsumcl2lem 11895 fsumadd 11903 sumsnf 11906 fsummulc2 11945 isumlessdc 11993 cbvprod 12055 prodrbdclem 12068 prodmodclem3 12072 prodmodclem2a 12073 prodmodc 12075 zproddc 12076 fprodseq 12080 fprodntrivap 12081 prodssdc 12086 fprodmul 12088 prodsnf 12089 pcmpt 12852 pcmptdvds 12854 elply2 15394 lgsval 15668 lgsfvalg 15669 lgsdir 15699 lgsdilem2 15700 lgsdi 15701 lgsne0 15702 |
| Copyright terms: Public domain | W3C validator |