Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ifbieq1d | GIF version |
Description: Equivalence/equality deduction for conditional operators. (Contributed by JJ, 25-Sep-2018.) |
Ref | Expression |
---|---|
ifbieq1d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
ifbieq1d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
ifbieq1d | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜒, 𝐵, 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifbieq1d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | ifbid 3541 | . 2 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜒, 𝐴, 𝐶)) |
3 | ifbieq1d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
4 | 3 | ifeq1d 3537 | . 2 ⊢ (𝜑 → if(𝜒, 𝐴, 𝐶) = if(𝜒, 𝐵, 𝐶)) |
5 | 2, 4 | eqtrd 2198 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜒, 𝐵, 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1343 ifcif 3520 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rab 2453 df-v 2728 df-un 3120 df-if 3521 |
This theorem is referenced by: ctssdclemn0 7075 ctssdc 7078 enumctlemm 7079 iseqf1olemfvp 10432 seq3f1olemqsum 10435 seq3f1oleml 10438 seq3f1o 10439 bcval 10662 sumrbdclem 11318 summodclem3 11321 summodclem2a 11322 summodc 11324 zsumdc 11325 fsum3 11328 isumss 11332 isumss2 11334 fsum3cvg2 11335 fsum3ser 11338 fsumcl2lem 11339 fsumadd 11347 sumsnf 11350 fsummulc2 11389 isumlessdc 11437 cbvprod 11499 prodrbdclem 11512 prodmodclem3 11516 prodmodclem2a 11517 prodmodc 11519 zproddc 11520 fprodseq 11524 fprodntrivap 11525 prodssdc 11530 fprodmul 11532 prodsnf 11533 pcmpt 12273 pcmptdvds 12275 lgsval 13545 lgsfvalg 13546 lgsdir 13576 lgsdilem2 13577 lgsdi 13578 lgsne0 13579 |
Copyright terms: Public domain | W3C validator |