![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ifbieq1d | GIF version |
Description: Equivalence/equality deduction for conditional operators. (Contributed by JJ, 25-Sep-2018.) |
Ref | Expression |
---|---|
ifbieq1d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
ifbieq1d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
ifbieq1d | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜒, 𝐵, 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifbieq1d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | ifbid 3553 | . 2 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜒, 𝐴, 𝐶)) |
3 | ifbieq1d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
4 | 3 | ifeq1d 3549 | . 2 ⊢ (𝜑 → if(𝜒, 𝐴, 𝐶) = if(𝜒, 𝐵, 𝐶)) |
5 | 2, 4 | eqtrd 2208 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜒, 𝐵, 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1353 ifcif 3532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-rab 2462 df-v 2737 df-un 3131 df-if 3533 |
This theorem is referenced by: ctssdclemn0 7099 ctssdc 7102 enumctlemm 7103 iseqf1olemfvp 10465 seq3f1olemqsum 10468 seq3f1oleml 10471 seq3f1o 10472 bcval 10695 sumrbdclem 11351 summodclem3 11354 summodclem2a 11355 summodc 11357 zsumdc 11358 fsum3 11361 isumss 11365 isumss2 11367 fsum3cvg2 11368 fsum3ser 11371 fsumcl2lem 11372 fsumadd 11380 sumsnf 11383 fsummulc2 11422 isumlessdc 11470 cbvprod 11532 prodrbdclem 11545 prodmodclem3 11549 prodmodclem2a 11550 prodmodc 11552 zproddc 11553 fprodseq 11557 fprodntrivap 11558 prodssdc 11563 fprodmul 11565 prodsnf 11566 pcmpt 12306 pcmptdvds 12308 lgsval 13956 lgsfvalg 13957 lgsdir 13987 lgsdilem2 13988 lgsdi 13989 lgsne0 13990 |
Copyright terms: Public domain | W3C validator |