| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifbieq1d | GIF version | ||
| Description: Equivalence/equality deduction for conditional operators. (Contributed by JJ, 25-Sep-2018.) |
| Ref | Expression |
|---|---|
| ifbieq1d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| ifbieq1d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| ifbieq1d | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜒, 𝐵, 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifbieq1d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | ifbid 3596 | . 2 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜒, 𝐴, 𝐶)) |
| 3 | ifbieq1d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 4 | 3 | ifeq1d 3592 | . 2 ⊢ (𝜑 → if(𝜒, 𝐴, 𝐶) = if(𝜒, 𝐵, 𝐶)) |
| 5 | 2, 4 | eqtrd 2239 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜒, 𝐵, 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ifcif 3575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rab 2494 df-v 2775 df-un 3174 df-if 3576 |
| This theorem is referenced by: ctssdclemn0 7226 ctssdc 7229 enumctlemm 7230 iseqf1olemfvp 10672 seq3f1olemqsum 10675 seq3f1oleml 10678 seq3f1o 10679 bcval 10911 swrdval 11119 sumrbdclem 11758 summodclem3 11761 summodclem2a 11762 summodc 11764 zsumdc 11765 fsum3 11768 isumss 11772 isumss2 11774 fsum3cvg2 11775 fsum3ser 11778 fsumcl2lem 11779 fsumadd 11787 sumsnf 11790 fsummulc2 11829 isumlessdc 11877 cbvprod 11939 prodrbdclem 11952 prodmodclem3 11956 prodmodclem2a 11957 prodmodc 11959 zproddc 11960 fprodseq 11964 fprodntrivap 11965 prodssdc 11970 fprodmul 11972 prodsnf 11973 pcmpt 12736 pcmptdvds 12738 elply2 15277 lgsval 15551 lgsfvalg 15552 lgsdir 15582 lgsdilem2 15583 lgsdi 15584 lgsne0 15585 |
| Copyright terms: Public domain | W3C validator |