| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifbieq1d | GIF version | ||
| Description: Equivalence/equality deduction for conditional operators. (Contributed by JJ, 25-Sep-2018.) |
| Ref | Expression |
|---|---|
| ifbieq1d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| ifbieq1d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| ifbieq1d | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜒, 𝐵, 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifbieq1d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | ifbid 3624 | . 2 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜒, 𝐴, 𝐶)) |
| 3 | ifbieq1d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 4 | 3 | ifeq1d 3620 | . 2 ⊢ (𝜑 → if(𝜒, 𝐴, 𝐶) = if(𝜒, 𝐵, 𝐶)) |
| 5 | 2, 4 | eqtrd 2262 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜒, 𝐵, 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 ifcif 3602 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rab 2517 df-v 2801 df-un 3201 df-if 3603 |
| This theorem is referenced by: ctssdclemn0 7285 ctssdc 7288 enumctlemm 7289 iseqf1olemfvp 10740 seq3f1olemqsum 10743 seq3f1oleml 10746 seq3f1o 10747 bcval 10979 swrdval 11188 sumrbdclem 11896 summodclem3 11899 summodclem2a 11900 summodc 11902 zsumdc 11903 fsum3 11906 isumss 11910 isumss2 11912 fsum3cvg2 11913 fsum3ser 11916 fsumcl2lem 11917 fsumadd 11925 sumsnf 11928 fsummulc2 11967 isumlessdc 12015 cbvprod 12077 prodrbdclem 12090 prodmodclem3 12094 prodmodclem2a 12095 prodmodc 12097 zproddc 12098 fprodseq 12102 fprodntrivap 12103 prodssdc 12108 fprodmul 12110 prodsnf 12111 pcmpt 12874 pcmptdvds 12876 elply2 15417 lgsval 15691 lgsfvalg 15692 lgsdir 15722 lgsdilem2 15723 lgsdi 15724 lgsne0 15725 |
| Copyright terms: Public domain | W3C validator |