![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ifbieq1d | GIF version |
Description: Equivalence/equality deduction for conditional operators. (Contributed by JJ, 25-Sep-2018.) |
Ref | Expression |
---|---|
ifbieq1d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
ifbieq1d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
ifbieq1d | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜒, 𝐵, 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifbieq1d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | ifbid 3578 | . 2 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜒, 𝐴, 𝐶)) |
3 | ifbieq1d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
4 | 3 | ifeq1d 3574 | . 2 ⊢ (𝜑 → if(𝜒, 𝐴, 𝐶) = if(𝜒, 𝐵, 𝐶)) |
5 | 2, 4 | eqtrd 2226 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜒, 𝐵, 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ifcif 3557 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rab 2481 df-v 2762 df-un 3157 df-if 3558 |
This theorem is referenced by: ctssdclemn0 7169 ctssdc 7172 enumctlemm 7173 iseqf1olemfvp 10581 seq3f1olemqsum 10584 seq3f1oleml 10587 seq3f1o 10588 bcval 10820 sumrbdclem 11520 summodclem3 11523 summodclem2a 11524 summodc 11526 zsumdc 11527 fsum3 11530 isumss 11534 isumss2 11536 fsum3cvg2 11537 fsum3ser 11540 fsumcl2lem 11541 fsumadd 11549 sumsnf 11552 fsummulc2 11591 isumlessdc 11639 cbvprod 11701 prodrbdclem 11714 prodmodclem3 11718 prodmodclem2a 11719 prodmodc 11721 zproddc 11722 fprodseq 11726 fprodntrivap 11727 prodssdc 11732 fprodmul 11734 prodsnf 11735 pcmpt 12481 pcmptdvds 12483 elply2 14881 lgsval 15120 lgsfvalg 15121 lgsdir 15151 lgsdilem2 15152 lgsdi 15153 lgsne0 15154 |
Copyright terms: Public domain | W3C validator |