ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gcdass GIF version

Theorem gcdass 12544
Description: Associative law for gcd operator. Theorem 1.4(b) in [ApostolNT] p. 16. (Contributed by Scott Fenton, 2-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
gcdass ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 gcd 𝑀) gcd 𝑃) = (𝑁 gcd (𝑀 gcd 𝑃)))

Proof of Theorem gcdass
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 anass 401 . . 3 (((𝑁 = 0 ∧ 𝑀 = 0) ∧ 𝑃 = 0) ↔ (𝑁 = 0 ∧ (𝑀 = 0 ∧ 𝑃 = 0)))
2 anass 401 . . . . . 6 (((𝑥𝑁𝑥𝑀) ∧ 𝑥𝑃) ↔ (𝑥𝑁 ∧ (𝑥𝑀𝑥𝑃)))
32a1i 9 . . . . 5 (𝑥 ∈ ℤ → (((𝑥𝑁𝑥𝑀) ∧ 𝑥𝑃) ↔ (𝑥𝑁 ∧ (𝑥𝑀𝑥𝑃))))
43rabbiia 2784 . . . 4 {𝑥 ∈ ℤ ∣ ((𝑥𝑁𝑥𝑀) ∧ 𝑥𝑃)} = {𝑥 ∈ ℤ ∣ (𝑥𝑁 ∧ (𝑥𝑀𝑥𝑃))}
54supeq1i 7163 . . 3 sup({𝑥 ∈ ℤ ∣ ((𝑥𝑁𝑥𝑀) ∧ 𝑥𝑃)}, ℝ, < ) = sup({𝑥 ∈ ℤ ∣ (𝑥𝑁 ∧ (𝑥𝑀𝑥𝑃))}, ℝ, < )
61, 5ifbieq2i 3626 . 2 if(((𝑁 = 0 ∧ 𝑀 = 0) ∧ 𝑃 = 0), 0, sup({𝑥 ∈ ℤ ∣ ((𝑥𝑁𝑥𝑀) ∧ 𝑥𝑃)}, ℝ, < )) = if((𝑁 = 0 ∧ (𝑀 = 0 ∧ 𝑃 = 0)), 0, sup({𝑥 ∈ ℤ ∣ (𝑥𝑁 ∧ (𝑥𝑀𝑥𝑃))}, ℝ, < ))
7 gcdcl 12495 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 gcd 𝑀) ∈ ℕ0)
873adant3 1041 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑁 gcd 𝑀) ∈ ℕ0)
98nn0zd 9575 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑁 gcd 𝑀) ∈ ℤ)
10 simp3 1023 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → 𝑃 ∈ ℤ)
11 gcdval 12488 . . . 4 (((𝑁 gcd 𝑀) ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 gcd 𝑀) gcd 𝑃) = if(((𝑁 gcd 𝑀) = 0 ∧ 𝑃 = 0), 0, sup({𝑥 ∈ ℤ ∣ (𝑥 ∥ (𝑁 gcd 𝑀) ∧ 𝑥𝑃)}, ℝ, < )))
129, 10, 11syl2anc 411 . . 3 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 gcd 𝑀) gcd 𝑃) = if(((𝑁 gcd 𝑀) = 0 ∧ 𝑃 = 0), 0, sup({𝑥 ∈ ℤ ∣ (𝑥 ∥ (𝑁 gcd 𝑀) ∧ 𝑥𝑃)}, ℝ, < )))
13 gcdeq0 12506 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑁 gcd 𝑀) = 0 ↔ (𝑁 = 0 ∧ 𝑀 = 0)))
14133adant3 1041 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 gcd 𝑀) = 0 ↔ (𝑁 = 0 ∧ 𝑀 = 0)))
1514anbi1d 465 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (((𝑁 gcd 𝑀) = 0 ∧ 𝑃 = 0) ↔ ((𝑁 = 0 ∧ 𝑀 = 0) ∧ 𝑃 = 0)))
1615bicomd 141 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (((𝑁 = 0 ∧ 𝑀 = 0) ∧ 𝑃 = 0) ↔ ((𝑁 gcd 𝑀) = 0 ∧ 𝑃 = 0)))
17 simpr 110 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℤ)
18 simpl1 1024 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → 𝑁 ∈ ℤ)
19 simpl2 1025 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → 𝑀 ∈ ℤ)
20 dvdsgcdb 12542 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑥𝑁𝑥𝑀) ↔ 𝑥 ∥ (𝑁 gcd 𝑀)))
2117, 18, 19, 20syl3anc 1271 . . . . . . 7 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → ((𝑥𝑁𝑥𝑀) ↔ 𝑥 ∥ (𝑁 gcd 𝑀)))
2221anbi1d 465 . . . . . 6 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → (((𝑥𝑁𝑥𝑀) ∧ 𝑥𝑃) ↔ (𝑥 ∥ (𝑁 gcd 𝑀) ∧ 𝑥𝑃)))
2322rabbidva 2787 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → {𝑥 ∈ ℤ ∣ ((𝑥𝑁𝑥𝑀) ∧ 𝑥𝑃)} = {𝑥 ∈ ℤ ∣ (𝑥 ∥ (𝑁 gcd 𝑀) ∧ 𝑥𝑃)})
2423supeq1d 7162 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → sup({𝑥 ∈ ℤ ∣ ((𝑥𝑁𝑥𝑀) ∧ 𝑥𝑃)}, ℝ, < ) = sup({𝑥 ∈ ℤ ∣ (𝑥 ∥ (𝑁 gcd 𝑀) ∧ 𝑥𝑃)}, ℝ, < ))
2516, 24ifbieq2d 3627 . . 3 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → if(((𝑁 = 0 ∧ 𝑀 = 0) ∧ 𝑃 = 0), 0, sup({𝑥 ∈ ℤ ∣ ((𝑥𝑁𝑥𝑀) ∧ 𝑥𝑃)}, ℝ, < )) = if(((𝑁 gcd 𝑀) = 0 ∧ 𝑃 = 0), 0, sup({𝑥 ∈ ℤ ∣ (𝑥 ∥ (𝑁 gcd 𝑀) ∧ 𝑥𝑃)}, ℝ, < )))
2612, 25eqtr4d 2265 . 2 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 gcd 𝑀) gcd 𝑃) = if(((𝑁 = 0 ∧ 𝑀 = 0) ∧ 𝑃 = 0), 0, sup({𝑥 ∈ ℤ ∣ ((𝑥𝑁𝑥𝑀) ∧ 𝑥𝑃)}, ℝ, < )))
27 simp1 1021 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → 𝑁 ∈ ℤ)
28 gcdcl 12495 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑀 gcd 𝑃) ∈ ℕ0)
29283adant1 1039 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑀 gcd 𝑃) ∈ ℕ0)
3029nn0zd 9575 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑀 gcd 𝑃) ∈ ℤ)
31 gcdval 12488 . . . 4 ((𝑁 ∈ ℤ ∧ (𝑀 gcd 𝑃) ∈ ℤ) → (𝑁 gcd (𝑀 gcd 𝑃)) = if((𝑁 = 0 ∧ (𝑀 gcd 𝑃) = 0), 0, sup({𝑥 ∈ ℤ ∣ (𝑥𝑁𝑥 ∥ (𝑀 gcd 𝑃))}, ℝ, < )))
3227, 30, 31syl2anc 411 . . 3 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑁 gcd (𝑀 gcd 𝑃)) = if((𝑁 = 0 ∧ (𝑀 gcd 𝑃) = 0), 0, sup({𝑥 ∈ ℤ ∣ (𝑥𝑁𝑥 ∥ (𝑀 gcd 𝑃))}, ℝ, < )))
33 gcdeq0 12506 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑀 gcd 𝑃) = 0 ↔ (𝑀 = 0 ∧ 𝑃 = 0)))
34333adant1 1039 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑀 gcd 𝑃) = 0 ↔ (𝑀 = 0 ∧ 𝑃 = 0)))
3534anbi2d 464 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 = 0 ∧ (𝑀 gcd 𝑃) = 0) ↔ (𝑁 = 0 ∧ (𝑀 = 0 ∧ 𝑃 = 0))))
3635bicomd 141 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 = 0 ∧ (𝑀 = 0 ∧ 𝑃 = 0)) ↔ (𝑁 = 0 ∧ (𝑀 gcd 𝑃) = 0)))
37 simpl3 1026 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → 𝑃 ∈ ℤ)
38 dvdsgcdb 12542 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑥𝑀𝑥𝑃) ↔ 𝑥 ∥ (𝑀 gcd 𝑃)))
3917, 19, 37, 38syl3anc 1271 . . . . . . 7 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → ((𝑥𝑀𝑥𝑃) ↔ 𝑥 ∥ (𝑀 gcd 𝑃)))
4039anbi2d 464 . . . . . 6 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → ((𝑥𝑁 ∧ (𝑥𝑀𝑥𝑃)) ↔ (𝑥𝑁𝑥 ∥ (𝑀 gcd 𝑃))))
4140rabbidva 2787 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → {𝑥 ∈ ℤ ∣ (𝑥𝑁 ∧ (𝑥𝑀𝑥𝑃))} = {𝑥 ∈ ℤ ∣ (𝑥𝑁𝑥 ∥ (𝑀 gcd 𝑃))})
4241supeq1d 7162 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → sup({𝑥 ∈ ℤ ∣ (𝑥𝑁 ∧ (𝑥𝑀𝑥𝑃))}, ℝ, < ) = sup({𝑥 ∈ ℤ ∣ (𝑥𝑁𝑥 ∥ (𝑀 gcd 𝑃))}, ℝ, < ))
4336, 42ifbieq2d 3627 . . 3 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → if((𝑁 = 0 ∧ (𝑀 = 0 ∧ 𝑃 = 0)), 0, sup({𝑥 ∈ ℤ ∣ (𝑥𝑁 ∧ (𝑥𝑀𝑥𝑃))}, ℝ, < )) = if((𝑁 = 0 ∧ (𝑀 gcd 𝑃) = 0), 0, sup({𝑥 ∈ ℤ ∣ (𝑥𝑁𝑥 ∥ (𝑀 gcd 𝑃))}, ℝ, < )))
4432, 43eqtr4d 2265 . 2 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑁 gcd (𝑀 gcd 𝑃)) = if((𝑁 = 0 ∧ (𝑀 = 0 ∧ 𝑃 = 0)), 0, sup({𝑥 ∈ ℤ ∣ (𝑥𝑁 ∧ (𝑥𝑀𝑥𝑃))}, ℝ, < )))
456, 26, 443eqtr4a 2288 1 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 gcd 𝑀) gcd 𝑃) = (𝑁 gcd (𝑀 gcd 𝑃)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wcel 2200  {crab 2512  ifcif 3602   class class class wbr 4083  (class class class)co 6007  supcsup 7157  cr 8006  0cc0 8007   < clt 8189  0cn0 9377  cz 9454  cdvds 12306   gcd cgcd 12482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-frec 6543  df-sup 7159  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-n0 9378  df-z 9455  df-uz 9731  df-q 9823  df-rp 9858  df-fz 10213  df-fzo 10347  df-fl 10498  df-mod 10553  df-seqfrec 10678  df-exp 10769  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518  df-dvds 12307  df-gcd 12483
This theorem is referenced by:  rpmulgcd  12555  coprimeprodsq  12788
  Copyright terms: Public domain W3C validator