Step | Hyp | Ref
| Expression |
1 | | anass 399 |
. . 3
⊢ (((𝑁 = 0 ∧ 𝑀 = 0) ∧ 𝑃 = 0) ↔ (𝑁 = 0 ∧ (𝑀 = 0 ∧ 𝑃 = 0))) |
2 | | anass 399 |
. . . . . 6
⊢ (((𝑥 ∥ 𝑁 ∧ 𝑥 ∥ 𝑀) ∧ 𝑥 ∥ 𝑃) ↔ (𝑥 ∥ 𝑁 ∧ (𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑃))) |
3 | 2 | a1i 9 |
. . . . 5
⊢ (𝑥 ∈ ℤ → (((𝑥 ∥ 𝑁 ∧ 𝑥 ∥ 𝑀) ∧ 𝑥 ∥ 𝑃) ↔ (𝑥 ∥ 𝑁 ∧ (𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑃)))) |
4 | 3 | rabbiia 2710 |
. . . 4
⊢ {𝑥 ∈ ℤ ∣ ((𝑥 ∥ 𝑁 ∧ 𝑥 ∥ 𝑀) ∧ 𝑥 ∥ 𝑃)} = {𝑥 ∈ ℤ ∣ (𝑥 ∥ 𝑁 ∧ (𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑃))} |
5 | 4 | supeq1i 6949 |
. . 3
⊢
sup({𝑥 ∈
ℤ ∣ ((𝑥 ∥
𝑁 ∧ 𝑥 ∥ 𝑀) ∧ 𝑥 ∥ 𝑃)}, ℝ, < ) = sup({𝑥 ∈ ℤ ∣ (𝑥 ∥ 𝑁 ∧ (𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑃))}, ℝ, < ) |
6 | 1, 5 | ifbieq2i 3542 |
. 2
⊢
if(((𝑁 = 0 ∧
𝑀 = 0) ∧ 𝑃 = 0), 0, sup({𝑥 ∈ ℤ ∣ ((𝑥 ∥ 𝑁 ∧ 𝑥 ∥ 𝑀) ∧ 𝑥 ∥ 𝑃)}, ℝ, < )) = if((𝑁 = 0 ∧ (𝑀 = 0 ∧ 𝑃 = 0)), 0, sup({𝑥 ∈ ℤ ∣ (𝑥 ∥ 𝑁 ∧ (𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑃))}, ℝ, < )) |
7 | | gcdcl 11895 |
. . . . . 6
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 gcd 𝑀) ∈
ℕ0) |
8 | 7 | 3adant3 1007 |
. . . . 5
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑁 gcd 𝑀) ∈
ℕ0) |
9 | 8 | nn0zd 9307 |
. . . 4
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑁 gcd 𝑀) ∈ ℤ) |
10 | | simp3 989 |
. . . 4
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → 𝑃 ∈
ℤ) |
11 | | gcdval 11888 |
. . . 4
⊢ (((𝑁 gcd 𝑀) ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 gcd 𝑀) gcd 𝑃) = if(((𝑁 gcd 𝑀) = 0 ∧ 𝑃 = 0), 0, sup({𝑥 ∈ ℤ ∣ (𝑥 ∥ (𝑁 gcd 𝑀) ∧ 𝑥 ∥ 𝑃)}, ℝ, < ))) |
12 | 9, 10, 11 | syl2anc 409 |
. . 3
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 gcd 𝑀) gcd 𝑃) = if(((𝑁 gcd 𝑀) = 0 ∧ 𝑃 = 0), 0, sup({𝑥 ∈ ℤ ∣ (𝑥 ∥ (𝑁 gcd 𝑀) ∧ 𝑥 ∥ 𝑃)}, ℝ, < ))) |
13 | | gcdeq0 11906 |
. . . . . . 7
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑁 gcd 𝑀) = 0 ↔ (𝑁 = 0 ∧ 𝑀 = 0))) |
14 | 13 | 3adant3 1007 |
. . . . . 6
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 gcd 𝑀) = 0 ↔ (𝑁 = 0 ∧ 𝑀 = 0))) |
15 | 14 | anbi1d 461 |
. . . . 5
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (((𝑁 gcd 𝑀) = 0 ∧ 𝑃 = 0) ↔ ((𝑁 = 0 ∧ 𝑀 = 0) ∧ 𝑃 = 0))) |
16 | 15 | bicomd 140 |
. . . 4
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (((𝑁 = 0 ∧ 𝑀 = 0) ∧ 𝑃 = 0) ↔ ((𝑁 gcd 𝑀) = 0 ∧ 𝑃 = 0))) |
17 | | simpr 109 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈
ℤ) |
18 | | simpl1 990 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → 𝑁 ∈
ℤ) |
19 | | simpl2 991 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → 𝑀 ∈
ℤ) |
20 | | dvdsgcdb 11942 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑥 ∥ 𝑁 ∧ 𝑥 ∥ 𝑀) ↔ 𝑥 ∥ (𝑁 gcd 𝑀))) |
21 | 17, 18, 19, 20 | syl3anc 1228 |
. . . . . . 7
⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → ((𝑥 ∥ 𝑁 ∧ 𝑥 ∥ 𝑀) ↔ 𝑥 ∥ (𝑁 gcd 𝑀))) |
22 | 21 | anbi1d 461 |
. . . . . 6
⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → (((𝑥 ∥ 𝑁 ∧ 𝑥 ∥ 𝑀) ∧ 𝑥 ∥ 𝑃) ↔ (𝑥 ∥ (𝑁 gcd 𝑀) ∧ 𝑥 ∥ 𝑃))) |
23 | 22 | rabbidva 2713 |
. . . . 5
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → {𝑥 ∈ ℤ ∣ ((𝑥 ∥ 𝑁 ∧ 𝑥 ∥ 𝑀) ∧ 𝑥 ∥ 𝑃)} = {𝑥 ∈ ℤ ∣ (𝑥 ∥ (𝑁 gcd 𝑀) ∧ 𝑥 ∥ 𝑃)}) |
24 | 23 | supeq1d 6948 |
. . . 4
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) →
sup({𝑥 ∈ ℤ
∣ ((𝑥 ∥ 𝑁 ∧ 𝑥 ∥ 𝑀) ∧ 𝑥 ∥ 𝑃)}, ℝ, < ) = sup({𝑥 ∈ ℤ ∣ (𝑥 ∥ (𝑁 gcd 𝑀) ∧ 𝑥 ∥ 𝑃)}, ℝ, < )) |
25 | 16, 24 | ifbieq2d 3543 |
. . 3
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) →
if(((𝑁 = 0 ∧ 𝑀 = 0) ∧ 𝑃 = 0), 0, sup({𝑥 ∈ ℤ ∣ ((𝑥 ∥ 𝑁 ∧ 𝑥 ∥ 𝑀) ∧ 𝑥 ∥ 𝑃)}, ℝ, < )) = if(((𝑁 gcd 𝑀) = 0 ∧ 𝑃 = 0), 0, sup({𝑥 ∈ ℤ ∣ (𝑥 ∥ (𝑁 gcd 𝑀) ∧ 𝑥 ∥ 𝑃)}, ℝ, < ))) |
26 | 12, 25 | eqtr4d 2201 |
. 2
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 gcd 𝑀) gcd 𝑃) = if(((𝑁 = 0 ∧ 𝑀 = 0) ∧ 𝑃 = 0), 0, sup({𝑥 ∈ ℤ ∣ ((𝑥 ∥ 𝑁 ∧ 𝑥 ∥ 𝑀) ∧ 𝑥 ∥ 𝑃)}, ℝ, < ))) |
27 | | simp1 987 |
. . . 4
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → 𝑁 ∈
ℤ) |
28 | | gcdcl 11895 |
. . . . . 6
⊢ ((𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑀 gcd 𝑃) ∈
ℕ0) |
29 | 28 | 3adant1 1005 |
. . . . 5
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑀 gcd 𝑃) ∈
ℕ0) |
30 | 29 | nn0zd 9307 |
. . . 4
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑀 gcd 𝑃) ∈ ℤ) |
31 | | gcdval 11888 |
. . . 4
⊢ ((𝑁 ∈ ℤ ∧ (𝑀 gcd 𝑃) ∈ ℤ) → (𝑁 gcd (𝑀 gcd 𝑃)) = if((𝑁 = 0 ∧ (𝑀 gcd 𝑃) = 0), 0, sup({𝑥 ∈ ℤ ∣ (𝑥 ∥ 𝑁 ∧ 𝑥 ∥ (𝑀 gcd 𝑃))}, ℝ, < ))) |
32 | 27, 30, 31 | syl2anc 409 |
. . 3
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑁 gcd (𝑀 gcd 𝑃)) = if((𝑁 = 0 ∧ (𝑀 gcd 𝑃) = 0), 0, sup({𝑥 ∈ ℤ ∣ (𝑥 ∥ 𝑁 ∧ 𝑥 ∥ (𝑀 gcd 𝑃))}, ℝ, < ))) |
33 | | gcdeq0 11906 |
. . . . . . 7
⊢ ((𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑀 gcd 𝑃) = 0 ↔ (𝑀 = 0 ∧ 𝑃 = 0))) |
34 | 33 | 3adant1 1005 |
. . . . . 6
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑀 gcd 𝑃) = 0 ↔ (𝑀 = 0 ∧ 𝑃 = 0))) |
35 | 34 | anbi2d 460 |
. . . . 5
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 = 0 ∧ (𝑀 gcd 𝑃) = 0) ↔ (𝑁 = 0 ∧ (𝑀 = 0 ∧ 𝑃 = 0)))) |
36 | 35 | bicomd 140 |
. . . 4
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 = 0 ∧ (𝑀 = 0 ∧ 𝑃 = 0)) ↔ (𝑁 = 0 ∧ (𝑀 gcd 𝑃) = 0))) |
37 | | simpl3 992 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → 𝑃 ∈
ℤ) |
38 | | dvdsgcdb 11942 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑃) ↔ 𝑥 ∥ (𝑀 gcd 𝑃))) |
39 | 17, 19, 37, 38 | syl3anc 1228 |
. . . . . . 7
⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → ((𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑃) ↔ 𝑥 ∥ (𝑀 gcd 𝑃))) |
40 | 39 | anbi2d 460 |
. . . . . 6
⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → ((𝑥 ∥ 𝑁 ∧ (𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑃)) ↔ (𝑥 ∥ 𝑁 ∧ 𝑥 ∥ (𝑀 gcd 𝑃)))) |
41 | 40 | rabbidva 2713 |
. . . . 5
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → {𝑥 ∈ ℤ ∣ (𝑥 ∥ 𝑁 ∧ (𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑃))} = {𝑥 ∈ ℤ ∣ (𝑥 ∥ 𝑁 ∧ 𝑥 ∥ (𝑀 gcd 𝑃))}) |
42 | 41 | supeq1d 6948 |
. . . 4
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) →
sup({𝑥 ∈ ℤ
∣ (𝑥 ∥ 𝑁 ∧ (𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑃))}, ℝ, < ) = sup({𝑥 ∈ ℤ ∣ (𝑥 ∥ 𝑁 ∧ 𝑥 ∥ (𝑀 gcd 𝑃))}, ℝ, < )) |
43 | 36, 42 | ifbieq2d 3543 |
. . 3
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) →
if((𝑁 = 0 ∧ (𝑀 = 0 ∧ 𝑃 = 0)), 0, sup({𝑥 ∈ ℤ ∣ (𝑥 ∥ 𝑁 ∧ (𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑃))}, ℝ, < )) = if((𝑁 = 0 ∧ (𝑀 gcd 𝑃) = 0), 0, sup({𝑥 ∈ ℤ ∣ (𝑥 ∥ 𝑁 ∧ 𝑥 ∥ (𝑀 gcd 𝑃))}, ℝ, < ))) |
44 | 32, 43 | eqtr4d 2201 |
. 2
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑁 gcd (𝑀 gcd 𝑃)) = if((𝑁 = 0 ∧ (𝑀 = 0 ∧ 𝑃 = 0)), 0, sup({𝑥 ∈ ℤ ∣ (𝑥 ∥ 𝑁 ∧ (𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑃))}, ℝ, < ))) |
45 | 6, 26, 44 | 3eqtr4a 2224 |
1
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 gcd 𝑀) gcd 𝑃) = (𝑁 gcd (𝑀 gcd 𝑃))) |