ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumiun GIF version

Theorem fsumiun 11469
Description: Sum over a disjoint indexed union. (Contributed by Mario Carneiro, 1-Jul-2015.) (Revised by Mario Carneiro, 10-Dec-2016.)
Hypotheses
Ref Expression
fsumiun.1 (𝜑𝐴 ∈ Fin)
fsumiun.2 ((𝜑𝑥𝐴) → 𝐵 ∈ Fin)
fsumiun.3 (𝜑Disj 𝑥𝐴 𝐵)
fsumiun.4 ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) → 𝐶 ∈ ℂ)
Assertion
Ref Expression
fsumiun (𝜑 → Σ𝑘 𝑥𝐴 𝐵𝐶 = Σ𝑥𝐴 Σ𝑘𝐵 𝐶)
Distinct variable groups:   𝑥,𝑘,𝐴   𝐵,𝑘   𝜑,𝑘,𝑥   𝑥,𝐶
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑘)

Proof of Theorem fsumiun
Dummy variables 𝑢 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3175 . 2 𝐴𝐴
2 fsumiun.1 . . 3 (𝜑𝐴 ∈ Fin)
3 sseq1 3178 . . . . . 6 (𝑢 = ∅ → (𝑢𝐴 ↔ ∅ ⊆ 𝐴))
4 iuneq1 3897 . . . . . . . . 9 (𝑢 = ∅ → 𝑥𝑢 𝐵 = 𝑥 ∈ ∅ 𝐵)
5 0iun 3941 . . . . . . . . 9 𝑥 ∈ ∅ 𝐵 = ∅
64, 5eqtrdi 2226 . . . . . . . 8 (𝑢 = ∅ → 𝑥𝑢 𝐵 = ∅)
76sumeq1d 11358 . . . . . . 7 (𝑢 = ∅ → Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑘 ∈ ∅ 𝐶)
8 sumeq1 11347 . . . . . . 7 (𝑢 = ∅ → Σ𝑥𝑢 Σ𝑘𝐵 𝐶 = Σ𝑥 ∈ ∅ Σ𝑘𝐵 𝐶)
97, 8eqeq12d 2192 . . . . . 6 (𝑢 = ∅ → (Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑥𝑢 Σ𝑘𝐵 𝐶 ↔ Σ𝑘 ∈ ∅ 𝐶 = Σ𝑥 ∈ ∅ Σ𝑘𝐵 𝐶))
103, 9imbi12d 234 . . . . 5 (𝑢 = ∅ → ((𝑢𝐴 → Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑥𝑢 Σ𝑘𝐵 𝐶) ↔ (∅ ⊆ 𝐴 → Σ𝑘 ∈ ∅ 𝐶 = Σ𝑥 ∈ ∅ Σ𝑘𝐵 𝐶)))
1110imbi2d 230 . . . 4 (𝑢 = ∅ → ((𝜑 → (𝑢𝐴 → Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑥𝑢 Σ𝑘𝐵 𝐶)) ↔ (𝜑 → (∅ ⊆ 𝐴 → Σ𝑘 ∈ ∅ 𝐶 = Σ𝑥 ∈ ∅ Σ𝑘𝐵 𝐶))))
12 sseq1 3178 . . . . . 6 (𝑢 = 𝑧 → (𝑢𝐴𝑧𝐴))
13 iuneq1 3897 . . . . . . . 8 (𝑢 = 𝑧 𝑥𝑢 𝐵 = 𝑥𝑧 𝐵)
1413sumeq1d 11358 . . . . . . 7 (𝑢 = 𝑧 → Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑘 𝑥𝑧 𝐵𝐶)
15 sumeq1 11347 . . . . . . 7 (𝑢 = 𝑧 → Σ𝑥𝑢 Σ𝑘𝐵 𝐶 = Σ𝑥𝑧 Σ𝑘𝐵 𝐶)
1614, 15eqeq12d 2192 . . . . . 6 (𝑢 = 𝑧 → (Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑥𝑢 Σ𝑘𝐵 𝐶 ↔ Σ𝑘 𝑥𝑧 𝐵𝐶 = Σ𝑥𝑧 Σ𝑘𝐵 𝐶))
1712, 16imbi12d 234 . . . . 5 (𝑢 = 𝑧 → ((𝑢𝐴 → Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑥𝑢 Σ𝑘𝐵 𝐶) ↔ (𝑧𝐴 → Σ𝑘 𝑥𝑧 𝐵𝐶 = Σ𝑥𝑧 Σ𝑘𝐵 𝐶)))
1817imbi2d 230 . . . 4 (𝑢 = 𝑧 → ((𝜑 → (𝑢𝐴 → Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑥𝑢 Σ𝑘𝐵 𝐶)) ↔ (𝜑 → (𝑧𝐴 → Σ𝑘 𝑥𝑧 𝐵𝐶 = Σ𝑥𝑧 Σ𝑘𝐵 𝐶))))
19 sseq1 3178 . . . . . 6 (𝑢 = (𝑧 ∪ {𝑤}) → (𝑢𝐴 ↔ (𝑧 ∪ {𝑤}) ⊆ 𝐴))
20 iuneq1 3897 . . . . . . . 8 (𝑢 = (𝑧 ∪ {𝑤}) → 𝑥𝑢 𝐵 = 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵)
2120sumeq1d 11358 . . . . . . 7 (𝑢 = (𝑧 ∪ {𝑤}) → Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶)
22 sumeq1 11347 . . . . . . 7 (𝑢 = (𝑧 ∪ {𝑤}) → Σ𝑥𝑢 Σ𝑘𝐵 𝐶 = Σ𝑥 ∈ (𝑧 ∪ {𝑤})Σ𝑘𝐵 𝐶)
2321, 22eqeq12d 2192 . . . . . 6 (𝑢 = (𝑧 ∪ {𝑤}) → (Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑥𝑢 Σ𝑘𝐵 𝐶 ↔ Σ𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶 = Σ𝑥 ∈ (𝑧 ∪ {𝑤})Σ𝑘𝐵 𝐶))
2419, 23imbi12d 234 . . . . 5 (𝑢 = (𝑧 ∪ {𝑤}) → ((𝑢𝐴 → Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑥𝑢 Σ𝑘𝐵 𝐶) ↔ ((𝑧 ∪ {𝑤}) ⊆ 𝐴 → Σ𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶 = Σ𝑥 ∈ (𝑧 ∪ {𝑤})Σ𝑘𝐵 𝐶)))
2524imbi2d 230 . . . 4 (𝑢 = (𝑧 ∪ {𝑤}) → ((𝜑 → (𝑢𝐴 → Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑥𝑢 Σ𝑘𝐵 𝐶)) ↔ (𝜑 → ((𝑧 ∪ {𝑤}) ⊆ 𝐴 → Σ𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶 = Σ𝑥 ∈ (𝑧 ∪ {𝑤})Σ𝑘𝐵 𝐶))))
26 sseq1 3178 . . . . . 6 (𝑢 = 𝐴 → (𝑢𝐴𝐴𝐴))
27 iuneq1 3897 . . . . . . . 8 (𝑢 = 𝐴 𝑥𝑢 𝐵 = 𝑥𝐴 𝐵)
2827sumeq1d 11358 . . . . . . 7 (𝑢 = 𝐴 → Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑘 𝑥𝐴 𝐵𝐶)
29 sumeq1 11347 . . . . . . 7 (𝑢 = 𝐴 → Σ𝑥𝑢 Σ𝑘𝐵 𝐶 = Σ𝑥𝐴 Σ𝑘𝐵 𝐶)
3028, 29eqeq12d 2192 . . . . . 6 (𝑢 = 𝐴 → (Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑥𝑢 Σ𝑘𝐵 𝐶 ↔ Σ𝑘 𝑥𝐴 𝐵𝐶 = Σ𝑥𝐴 Σ𝑘𝐵 𝐶))
3126, 30imbi12d 234 . . . . 5 (𝑢 = 𝐴 → ((𝑢𝐴 → Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑥𝑢 Σ𝑘𝐵 𝐶) ↔ (𝐴𝐴 → Σ𝑘 𝑥𝐴 𝐵𝐶 = Σ𝑥𝐴 Σ𝑘𝐵 𝐶)))
3231imbi2d 230 . . . 4 (𝑢 = 𝐴 → ((𝜑 → (𝑢𝐴 → Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑥𝑢 Σ𝑘𝐵 𝐶)) ↔ (𝜑 → (𝐴𝐴 → Σ𝑘 𝑥𝐴 𝐵𝐶 = Σ𝑥𝐴 Σ𝑘𝐵 𝐶))))
33 sum0 11380 . . . . . 6 Σ𝑘 ∈ ∅ 𝐶 = 0
34 sum0 11380 . . . . . 6 Σ𝑥 ∈ ∅ Σ𝑘𝐵 𝐶 = 0
3533, 34eqtr4i 2201 . . . . 5 Σ𝑘 ∈ ∅ 𝐶 = Σ𝑥 ∈ ∅ Σ𝑘𝐵 𝐶
36352a1i 27 . . . 4 (𝜑 → (∅ ⊆ 𝐴 → Σ𝑘 ∈ ∅ 𝐶 = Σ𝑥 ∈ ∅ Σ𝑘𝐵 𝐶))
37 id 19 . . . . . . . . 9 ((𝑧 ∪ {𝑤}) ⊆ 𝐴 → (𝑧 ∪ {𝑤}) ⊆ 𝐴)
3837unssad 3312 . . . . . . . 8 ((𝑧 ∪ {𝑤}) ⊆ 𝐴𝑧𝐴)
3938imim1i 60 . . . . . . 7 ((𝑧𝐴 → Σ𝑘 𝑥𝑧 𝐵𝐶 = Σ𝑥𝑧 Σ𝑘𝐵 𝐶) → ((𝑧 ∪ {𝑤}) ⊆ 𝐴 → Σ𝑘 𝑥𝑧 𝐵𝐶 = Σ𝑥𝑧 Σ𝑘𝐵 𝐶))
40 oveq1 5876 . . . . . . . . . 10 𝑘 𝑥𝑧 𝐵𝐶 = Σ𝑥𝑧 Σ𝑘𝐵 𝐶 → (Σ𝑘 𝑥𝑧 𝐵𝐶 + Σ𝑘 𝑤 / 𝑥𝐵𝐶) = (Σ𝑥𝑧 Σ𝑘𝐵 𝐶 + Σ𝑘 𝑤 / 𝑥𝐵𝐶))
41 nfcv 2319 . . . . . . . . . . . . . . . . 17 𝑧𝐵
42 nfcsb1v 3090 . . . . . . . . . . . . . . . . 17 𝑥𝑧 / 𝑥𝐵
43 csbeq1a 3066 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧𝐵 = 𝑧 / 𝑥𝐵)
4441, 42, 43cbviun 3921 . . . . . . . . . . . . . . . 16 𝑥 ∈ {𝑤}𝐵 = 𝑧 ∈ {𝑤}𝑧 / 𝑥𝐵
45 vex 2740 . . . . . . . . . . . . . . . . 17 𝑤 ∈ V
46 csbeq1 3060 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑤𝑧 / 𝑥𝐵 = 𝑤 / 𝑥𝐵)
4745, 46iunxsn 3960 . . . . . . . . . . . . . . . 16 𝑧 ∈ {𝑤}𝑧 / 𝑥𝐵 = 𝑤 / 𝑥𝐵
4844, 47eqtri 2198 . . . . . . . . . . . . . . 15 𝑥 ∈ {𝑤}𝐵 = 𝑤 / 𝑥𝐵
4948ineq2i 3333 . . . . . . . . . . . . . 14 ( 𝑥𝑧 𝐵 𝑥 ∈ {𝑤}𝐵) = ( 𝑥𝑧 𝐵𝑤 / 𝑥𝐵)
50 fsumiun.3 . . . . . . . . . . . . . . . 16 (𝜑Disj 𝑥𝐴 𝐵)
5150ad2antrr 488 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → Disj 𝑥𝐴 𝐵)
5238adantl 277 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → 𝑧𝐴)
53 simpr 110 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → (𝑧 ∪ {𝑤}) ⊆ 𝐴)
5453unssbd 3313 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → {𝑤} ⊆ 𝐴)
55 simplr 528 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → ¬ 𝑤𝑧)
56 disjsn 3653 . . . . . . . . . . . . . . . 16 ((𝑧 ∩ {𝑤}) = ∅ ↔ ¬ 𝑤𝑧)
5755, 56sylibr 134 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → (𝑧 ∩ {𝑤}) = ∅)
58 disjiun 3995 . . . . . . . . . . . . . . 15 ((Disj 𝑥𝐴 𝐵 ∧ (𝑧𝐴 ∧ {𝑤} ⊆ 𝐴 ∧ (𝑧 ∩ {𝑤}) = ∅)) → ( 𝑥𝑧 𝐵 𝑥 ∈ {𝑤}𝐵) = ∅)
5951, 52, 54, 57, 58syl13anc 1240 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → ( 𝑥𝑧 𝐵 𝑥 ∈ {𝑤}𝐵) = ∅)
6049, 59eqtr3id 2224 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → ( 𝑥𝑧 𝐵𝑤 / 𝑥𝐵) = ∅)
6160adantlrl 482 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧 ∈ Fin ∧ ¬ 𝑤𝑧)) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → ( 𝑥𝑧 𝐵𝑤 / 𝑥𝐵) = ∅)
62 iunxun 3963 . . . . . . . . . . . . . 14 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵 = ( 𝑥𝑧 𝐵 𝑥 ∈ {𝑤}𝐵)
6348uneq2i 3286 . . . . . . . . . . . . . 14 ( 𝑥𝑧 𝐵 𝑥 ∈ {𝑤}𝐵) = ( 𝑥𝑧 𝐵𝑤 / 𝑥𝐵)
6462, 63eqtri 2198 . . . . . . . . . . . . 13 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵 = ( 𝑥𝑧 𝐵𝑤 / 𝑥𝐵)
6564a1i 9 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧 ∈ Fin ∧ ¬ 𝑤𝑧)) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵 = ( 𝑥𝑧 𝐵𝑤 / 𝑥𝐵))
66 simplrl 535 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑧 ∈ Fin ∧ ¬ 𝑤𝑧)) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → 𝑧 ∈ Fin)
6745a1i 9 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑧 ∈ Fin ∧ ¬ 𝑤𝑧)) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → 𝑤 ∈ V)
6855adantlrl 482 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑧 ∈ Fin ∧ ¬ 𝑤𝑧)) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → ¬ 𝑤𝑧)
69 unsnfi 6912 . . . . . . . . . . . . . 14 ((𝑧 ∈ Fin ∧ 𝑤 ∈ V ∧ ¬ 𝑤𝑧) → (𝑧 ∪ {𝑤}) ∈ Fin)
7066, 67, 68, 69syl3anc 1238 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧 ∈ Fin ∧ ¬ 𝑤𝑧)) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → (𝑧 ∪ {𝑤}) ∈ Fin)
71 fsumiun.2 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → 𝐵 ∈ Fin)
7271ralrimiva 2550 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑥𝐴 𝐵 ∈ Fin)
7372ad2antrr 488 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → ∀𝑥𝐴 𝐵 ∈ Fin)
74 ssralv 3219 . . . . . . . . . . . . . . 15 ((𝑧 ∪ {𝑤}) ⊆ 𝐴 → (∀𝑥𝐴 𝐵 ∈ Fin → ∀𝑥 ∈ (𝑧 ∪ {𝑤})𝐵 ∈ Fin))
7553, 73, 74sylc 62 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → ∀𝑥 ∈ (𝑧 ∪ {𝑤})𝐵 ∈ Fin)
7675adantlrl 482 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧 ∈ Fin ∧ ¬ 𝑤𝑧)) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → ∀𝑥 ∈ (𝑧 ∪ {𝑤})𝐵 ∈ Fin)
77 disjss1 3983 . . . . . . . . . . . . . . 15 ((𝑧 ∪ {𝑤}) ⊆ 𝐴 → (Disj 𝑥𝐴 𝐵Disj 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵))
7853, 51, 77sylc 62 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → Disj 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵)
7978adantlrl 482 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧 ∈ Fin ∧ ¬ 𝑤𝑧)) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → Disj 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵)
80 iunfidisj 6939 . . . . . . . . . . . . 13 (((𝑧 ∪ {𝑤}) ∈ Fin ∧ ∀𝑥 ∈ (𝑧 ∪ {𝑤})𝐵 ∈ Fin ∧ Disj 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵) → 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵 ∈ Fin)
8170, 76, 79, 80syl3anc 1238 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧 ∈ Fin ∧ ¬ 𝑤𝑧)) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵 ∈ Fin)
82 iunss1 3895 . . . . . . . . . . . . . . 15 ((𝑧 ∪ {𝑤}) ⊆ 𝐴 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵 𝑥𝐴 𝐵)
8382adantl 277 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑧 ∈ Fin ∧ ¬ 𝑤𝑧)) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵 𝑥𝐴 𝐵)
8483sselda 3155 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑧 ∈ Fin ∧ ¬ 𝑤𝑧)) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) ∧ 𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵) → 𝑘 𝑥𝐴 𝐵)
85 eliun 3888 . . . . . . . . . . . . . . 15 (𝑘 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑘𝐵)
86 fsumiun.4 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) → 𝐶 ∈ ℂ)
8786rexlimdvaa 2595 . . . . . . . . . . . . . . . 16 (𝜑 → (∃𝑥𝐴 𝑘𝐵𝐶 ∈ ℂ))
8887ad2antrr 488 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑧 ∈ Fin ∧ ¬ 𝑤𝑧)) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → (∃𝑥𝐴 𝑘𝐵𝐶 ∈ ℂ))
8985, 88biimtrid 152 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑧 ∈ Fin ∧ ¬ 𝑤𝑧)) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → (𝑘 𝑥𝐴 𝐵𝐶 ∈ ℂ))
9089imp 124 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑧 ∈ Fin ∧ ¬ 𝑤𝑧)) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) ∧ 𝑘 𝑥𝐴 𝐵) → 𝐶 ∈ ℂ)
9184, 90syldan 282 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑧 ∈ Fin ∧ ¬ 𝑤𝑧)) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) ∧ 𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵) → 𝐶 ∈ ℂ)
9261, 65, 81, 91fsumsplit 11399 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧 ∈ Fin ∧ ¬ 𝑤𝑧)) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → Σ𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶 = (Σ𝑘 𝑥𝑧 𝐵𝐶 + Σ𝑘 𝑤 / 𝑥𝐵𝐶))
9368, 56sylibr 134 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧 ∈ Fin ∧ ¬ 𝑤𝑧)) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → (𝑧 ∩ {𝑤}) = ∅)
94 eqidd 2178 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧 ∈ Fin ∧ ¬ 𝑤𝑧)) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → (𝑧 ∪ {𝑤}) = (𝑧 ∪ {𝑤}))
95 simplr 528 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑧 ∈ Fin ∧ ¬ 𝑤𝑧)) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) ∧ 𝑥 ∈ (𝑧 ∪ {𝑤})) → (𝑧 ∪ {𝑤}) ⊆ 𝐴)
96 simpr 110 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑧 ∈ Fin ∧ ¬ 𝑤𝑧)) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) ∧ 𝑥 ∈ (𝑧 ∪ {𝑤})) → 𝑥 ∈ (𝑧 ∪ {𝑤}))
9795, 96sseldd 3156 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑧 ∈ Fin ∧ ¬ 𝑤𝑧)) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) ∧ 𝑥 ∈ (𝑧 ∪ {𝑤})) → 𝑥𝐴)
9886anassrs 400 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝐴) ∧ 𝑘𝐵) → 𝐶 ∈ ℂ)
9971, 98fsumcl 11392 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → Σ𝑘𝐵 𝐶 ∈ ℂ)
10099ralrimiva 2550 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑥𝐴 Σ𝑘𝐵 𝐶 ∈ ℂ)
101100ad2antrr 488 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑧 ∈ Fin ∧ ¬ 𝑤𝑧)) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → ∀𝑥𝐴 Σ𝑘𝐵 𝐶 ∈ ℂ)
102101r19.21bi 2565 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑧 ∈ Fin ∧ ¬ 𝑤𝑧)) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) ∧ 𝑥𝐴) → Σ𝑘𝐵 𝐶 ∈ ℂ)
10397, 102syldan 282 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑧 ∈ Fin ∧ ¬ 𝑤𝑧)) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) ∧ 𝑥 ∈ (𝑧 ∪ {𝑤})) → Σ𝑘𝐵 𝐶 ∈ ℂ)
10493, 94, 70, 103fsumsplit 11399 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧 ∈ Fin ∧ ¬ 𝑤𝑧)) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → Σ𝑥 ∈ (𝑧 ∪ {𝑤})Σ𝑘𝐵 𝐶 = (Σ𝑥𝑧 Σ𝑘𝐵 𝐶 + Σ𝑥 ∈ {𝑤𝑘𝐵 𝐶))
105 nfcv 2319 . . . . . . . . . . . . . . . 16 𝑧Σ𝑘𝐵 𝐶
106 nfcv 2319 . . . . . . . . . . . . . . . . 17 𝑥𝐶
10742, 106nfsum 11349 . . . . . . . . . . . . . . . 16 𝑥Σ𝑘 𝑧 / 𝑥𝐵𝐶
10843sumeq1d 11358 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → Σ𝑘𝐵 𝐶 = Σ𝑘 𝑧 / 𝑥𝐵𝐶)
109105, 107, 108cbvsumi 11354 . . . . . . . . . . . . . . 15 Σ𝑥 ∈ {𝑤𝑘𝐵 𝐶 = Σ𝑧 ∈ {𝑤𝑘 𝑧 / 𝑥𝐵𝐶
11045snss 3726 . . . . . . . . . . . . . . . . . 18 (𝑤𝐴 ↔ {𝑤} ⊆ 𝐴)
11154, 110sylibr 134 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → 𝑤𝐴)
112100ad2antrr 488 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → ∀𝑥𝐴 Σ𝑘𝐵 𝐶 ∈ ℂ)
113 nfcsb1v 3090 . . . . . . . . . . . . . . . . . . . 20 𝑥𝑤 / 𝑥𝐵
114113, 106nfsum 11349 . . . . . . . . . . . . . . . . . . 19 𝑥Σ𝑘 𝑤 / 𝑥𝐵𝐶
115114nfel1 2330 . . . . . . . . . . . . . . . . . 18 𝑥Σ𝑘 𝑤 / 𝑥𝐵𝐶 ∈ ℂ
116 csbeq1a 3066 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑤𝐵 = 𝑤 / 𝑥𝐵)
117116sumeq1d 11358 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑤 → Σ𝑘𝐵 𝐶 = Σ𝑘 𝑤 / 𝑥𝐵𝐶)
118117eleq1d 2246 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑤 → (Σ𝑘𝐵 𝐶 ∈ ℂ ↔ Σ𝑘 𝑤 / 𝑥𝐵𝐶 ∈ ℂ))
119115, 118rspc 2835 . . . . . . . . . . . . . . . . 17 (𝑤𝐴 → (∀𝑥𝐴 Σ𝑘𝐵 𝐶 ∈ ℂ → Σ𝑘 𝑤 / 𝑥𝐵𝐶 ∈ ℂ))
120111, 112, 119sylc 62 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → Σ𝑘 𝑤 / 𝑥𝐵𝐶 ∈ ℂ)
12146sumeq1d 11358 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑤 → Σ𝑘 𝑧 / 𝑥𝐵𝐶 = Σ𝑘 𝑤 / 𝑥𝐵𝐶)
122121sumsn 11403 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ V ∧ Σ𝑘 𝑤 / 𝑥𝐵𝐶 ∈ ℂ) → Σ𝑧 ∈ {𝑤𝑘 𝑧 / 𝑥𝐵𝐶 = Σ𝑘 𝑤 / 𝑥𝐵𝐶)
12345, 120, 122sylancr 414 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → Σ𝑧 ∈ {𝑤𝑘 𝑧 / 𝑥𝐵𝐶 = Σ𝑘 𝑤 / 𝑥𝐵𝐶)
124109, 123eqtrid 2222 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → Σ𝑥 ∈ {𝑤𝑘𝐵 𝐶 = Σ𝑘 𝑤 / 𝑥𝐵𝐶)
125124oveq2d 5885 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → (Σ𝑥𝑧 Σ𝑘𝐵 𝐶 + Σ𝑥 ∈ {𝑤𝑘𝐵 𝐶) = (Σ𝑥𝑧 Σ𝑘𝐵 𝐶 + Σ𝑘 𝑤 / 𝑥𝐵𝐶))
126125adantlrl 482 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧 ∈ Fin ∧ ¬ 𝑤𝑧)) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → (Σ𝑥𝑧 Σ𝑘𝐵 𝐶 + Σ𝑥 ∈ {𝑤𝑘𝐵 𝐶) = (Σ𝑥𝑧 Σ𝑘𝐵 𝐶 + Σ𝑘 𝑤 / 𝑥𝐵𝐶))
127104, 126eqtrd 2210 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧 ∈ Fin ∧ ¬ 𝑤𝑧)) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → Σ𝑥 ∈ (𝑧 ∪ {𝑤})Σ𝑘𝐵 𝐶 = (Σ𝑥𝑧 Σ𝑘𝐵 𝐶 + Σ𝑘 𝑤 / 𝑥𝐵𝐶))
12892, 127eqeq12d 2192 . . . . . . . . . 10 (((𝜑 ∧ (𝑧 ∈ Fin ∧ ¬ 𝑤𝑧)) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → (Σ𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶 = Σ𝑥 ∈ (𝑧 ∪ {𝑤})Σ𝑘𝐵 𝐶 ↔ (Σ𝑘 𝑥𝑧 𝐵𝐶 + Σ𝑘 𝑤 / 𝑥𝐵𝐶) = (Σ𝑥𝑧 Σ𝑘𝐵 𝐶 + Σ𝑘 𝑤 / 𝑥𝐵𝐶)))
12940, 128syl5ibr 156 . . . . . . . . 9 (((𝜑 ∧ (𝑧 ∈ Fin ∧ ¬ 𝑤𝑧)) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → (Σ𝑘 𝑥𝑧 𝐵𝐶 = Σ𝑥𝑧 Σ𝑘𝐵 𝐶 → Σ𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶 = Σ𝑥 ∈ (𝑧 ∪ {𝑤})Σ𝑘𝐵 𝐶))
130129ex 115 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ Fin ∧ ¬ 𝑤𝑧)) → ((𝑧 ∪ {𝑤}) ⊆ 𝐴 → (Σ𝑘 𝑥𝑧 𝐵𝐶 = Σ𝑥𝑧 Σ𝑘𝐵 𝐶 → Σ𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶 = Σ𝑥 ∈ (𝑧 ∪ {𝑤})Σ𝑘𝐵 𝐶)))
131130a2d 26 . . . . . . 7 ((𝜑 ∧ (𝑧 ∈ Fin ∧ ¬ 𝑤𝑧)) → (((𝑧 ∪ {𝑤}) ⊆ 𝐴 → Σ𝑘 𝑥𝑧 𝐵𝐶 = Σ𝑥𝑧 Σ𝑘𝐵 𝐶) → ((𝑧 ∪ {𝑤}) ⊆ 𝐴 → Σ𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶 = Σ𝑥 ∈ (𝑧 ∪ {𝑤})Σ𝑘𝐵 𝐶)))
13239, 131syl5 32 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ Fin ∧ ¬ 𝑤𝑧)) → ((𝑧𝐴 → Σ𝑘 𝑥𝑧 𝐵𝐶 = Σ𝑥𝑧 Σ𝑘𝐵 𝐶) → ((𝑧 ∪ {𝑤}) ⊆ 𝐴 → Σ𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶 = Σ𝑥 ∈ (𝑧 ∪ {𝑤})Σ𝑘𝐵 𝐶)))
133132expcom 116 . . . . 5 ((𝑧 ∈ Fin ∧ ¬ 𝑤𝑧) → (𝜑 → ((𝑧𝐴 → Σ𝑘 𝑥𝑧 𝐵𝐶 = Σ𝑥𝑧 Σ𝑘𝐵 𝐶) → ((𝑧 ∪ {𝑤}) ⊆ 𝐴 → Σ𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶 = Σ𝑥 ∈ (𝑧 ∪ {𝑤})Σ𝑘𝐵 𝐶))))
134133a2d 26 . . . 4 ((𝑧 ∈ Fin ∧ ¬ 𝑤𝑧) → ((𝜑 → (𝑧𝐴 → Σ𝑘 𝑥𝑧 𝐵𝐶 = Σ𝑥𝑧 Σ𝑘𝐵 𝐶)) → (𝜑 → ((𝑧 ∪ {𝑤}) ⊆ 𝐴 → Σ𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶 = Σ𝑥 ∈ (𝑧 ∪ {𝑤})Σ𝑘𝐵 𝐶))))
13511, 18, 25, 32, 36, 134findcard2s 6884 . . 3 (𝐴 ∈ Fin → (𝜑 → (𝐴𝐴 → Σ𝑘 𝑥𝐴 𝐵𝐶 = Σ𝑥𝐴 Σ𝑘𝐵 𝐶)))
1362, 135mpcom 36 . 2 (𝜑 → (𝐴𝐴 → Σ𝑘 𝑥𝐴 𝐵𝐶 = Σ𝑥𝐴 Σ𝑘𝐵 𝐶))
1371, 136mpi 15 1 (𝜑 → Σ𝑘 𝑥𝐴 𝐵𝐶 = Σ𝑥𝐴 Σ𝑘𝐵 𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104   = wceq 1353  wcel 2148  wral 2455  wrex 2456  Vcvv 2737  csb 3057  cun 3127  cin 3128  wss 3129  c0 3422  {csn 3591   ciun 3884  Disj wdisj 3977  (class class class)co 5869  Fincfn 6734  cc 7800  0cc0 7802   + caddc 7805  Σcsu 11345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-disj 3978  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-frec 6386  df-1o 6411  df-oadd 6415  df-er 6529  df-en 6735  df-dom 6736  df-fin 6737  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-fz 9996  df-fzo 10129  df-seqfrec 10432  df-exp 10506  df-ihash 10740  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-clim 11271  df-sumdc 11346
This theorem is referenced by:  hashiun  11470
  Copyright terms: Public domain W3C validator