ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumiun GIF version

Theorem fsumiun 11863
Description: Sum over a disjoint indexed union. (Contributed by Mario Carneiro, 1-Jul-2015.) (Revised by Mario Carneiro, 10-Dec-2016.)
Hypotheses
Ref Expression
fsumiun.1 (𝜑𝐴 ∈ Fin)
fsumiun.2 ((𝜑𝑥𝐴) → 𝐵 ∈ Fin)
fsumiun.3 (𝜑Disj 𝑥𝐴 𝐵)
fsumiun.4 ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) → 𝐶 ∈ ℂ)
Assertion
Ref Expression
fsumiun (𝜑 → Σ𝑘 𝑥𝐴 𝐵𝐶 = Σ𝑥𝐴 Σ𝑘𝐵 𝐶)
Distinct variable groups:   𝑥,𝑘,𝐴   𝐵,𝑘   𝜑,𝑘,𝑥   𝑥,𝐶
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑘)

Proof of Theorem fsumiun
Dummy variables 𝑢 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3217 . 2 𝐴𝐴
2 fsumiun.1 . . 3 (𝜑𝐴 ∈ Fin)
3 sseq1 3220 . . . . . 6 (𝑢 = ∅ → (𝑢𝐴 ↔ ∅ ⊆ 𝐴))
4 iuneq1 3946 . . . . . . . . 9 (𝑢 = ∅ → 𝑥𝑢 𝐵 = 𝑥 ∈ ∅ 𝐵)
5 0iun 3991 . . . . . . . . 9 𝑥 ∈ ∅ 𝐵 = ∅
64, 5eqtrdi 2255 . . . . . . . 8 (𝑢 = ∅ → 𝑥𝑢 𝐵 = ∅)
76sumeq1d 11752 . . . . . . 7 (𝑢 = ∅ → Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑘 ∈ ∅ 𝐶)
8 sumeq1 11741 . . . . . . 7 (𝑢 = ∅ → Σ𝑥𝑢 Σ𝑘𝐵 𝐶 = Σ𝑥 ∈ ∅ Σ𝑘𝐵 𝐶)
97, 8eqeq12d 2221 . . . . . 6 (𝑢 = ∅ → (Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑥𝑢 Σ𝑘𝐵 𝐶 ↔ Σ𝑘 ∈ ∅ 𝐶 = Σ𝑥 ∈ ∅ Σ𝑘𝐵 𝐶))
103, 9imbi12d 234 . . . . 5 (𝑢 = ∅ → ((𝑢𝐴 → Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑥𝑢 Σ𝑘𝐵 𝐶) ↔ (∅ ⊆ 𝐴 → Σ𝑘 ∈ ∅ 𝐶 = Σ𝑥 ∈ ∅ Σ𝑘𝐵 𝐶)))
1110imbi2d 230 . . . 4 (𝑢 = ∅ → ((𝜑 → (𝑢𝐴 → Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑥𝑢 Σ𝑘𝐵 𝐶)) ↔ (𝜑 → (∅ ⊆ 𝐴 → Σ𝑘 ∈ ∅ 𝐶 = Σ𝑥 ∈ ∅ Σ𝑘𝐵 𝐶))))
12 sseq1 3220 . . . . . 6 (𝑢 = 𝑧 → (𝑢𝐴𝑧𝐴))
13 iuneq1 3946 . . . . . . . 8 (𝑢 = 𝑧 𝑥𝑢 𝐵 = 𝑥𝑧 𝐵)
1413sumeq1d 11752 . . . . . . 7 (𝑢 = 𝑧 → Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑘 𝑥𝑧 𝐵𝐶)
15 sumeq1 11741 . . . . . . 7 (𝑢 = 𝑧 → Σ𝑥𝑢 Σ𝑘𝐵 𝐶 = Σ𝑥𝑧 Σ𝑘𝐵 𝐶)
1614, 15eqeq12d 2221 . . . . . 6 (𝑢 = 𝑧 → (Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑥𝑢 Σ𝑘𝐵 𝐶 ↔ Σ𝑘 𝑥𝑧 𝐵𝐶 = Σ𝑥𝑧 Σ𝑘𝐵 𝐶))
1712, 16imbi12d 234 . . . . 5 (𝑢 = 𝑧 → ((𝑢𝐴 → Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑥𝑢 Σ𝑘𝐵 𝐶) ↔ (𝑧𝐴 → Σ𝑘 𝑥𝑧 𝐵𝐶 = Σ𝑥𝑧 Σ𝑘𝐵 𝐶)))
1817imbi2d 230 . . . 4 (𝑢 = 𝑧 → ((𝜑 → (𝑢𝐴 → Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑥𝑢 Σ𝑘𝐵 𝐶)) ↔ (𝜑 → (𝑧𝐴 → Σ𝑘 𝑥𝑧 𝐵𝐶 = Σ𝑥𝑧 Σ𝑘𝐵 𝐶))))
19 sseq1 3220 . . . . . 6 (𝑢 = (𝑧 ∪ {𝑤}) → (𝑢𝐴 ↔ (𝑧 ∪ {𝑤}) ⊆ 𝐴))
20 iuneq1 3946 . . . . . . . 8 (𝑢 = (𝑧 ∪ {𝑤}) → 𝑥𝑢 𝐵 = 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵)
2120sumeq1d 11752 . . . . . . 7 (𝑢 = (𝑧 ∪ {𝑤}) → Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶)
22 sumeq1 11741 . . . . . . 7 (𝑢 = (𝑧 ∪ {𝑤}) → Σ𝑥𝑢 Σ𝑘𝐵 𝐶 = Σ𝑥 ∈ (𝑧 ∪ {𝑤})Σ𝑘𝐵 𝐶)
2321, 22eqeq12d 2221 . . . . . 6 (𝑢 = (𝑧 ∪ {𝑤}) → (Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑥𝑢 Σ𝑘𝐵 𝐶 ↔ Σ𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶 = Σ𝑥 ∈ (𝑧 ∪ {𝑤})Σ𝑘𝐵 𝐶))
2419, 23imbi12d 234 . . . . 5 (𝑢 = (𝑧 ∪ {𝑤}) → ((𝑢𝐴 → Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑥𝑢 Σ𝑘𝐵 𝐶) ↔ ((𝑧 ∪ {𝑤}) ⊆ 𝐴 → Σ𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶 = Σ𝑥 ∈ (𝑧 ∪ {𝑤})Σ𝑘𝐵 𝐶)))
2524imbi2d 230 . . . 4 (𝑢 = (𝑧 ∪ {𝑤}) → ((𝜑 → (𝑢𝐴 → Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑥𝑢 Σ𝑘𝐵 𝐶)) ↔ (𝜑 → ((𝑧 ∪ {𝑤}) ⊆ 𝐴 → Σ𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶 = Σ𝑥 ∈ (𝑧 ∪ {𝑤})Σ𝑘𝐵 𝐶))))
26 sseq1 3220 . . . . . 6 (𝑢 = 𝐴 → (𝑢𝐴𝐴𝐴))
27 iuneq1 3946 . . . . . . . 8 (𝑢 = 𝐴 𝑥𝑢 𝐵 = 𝑥𝐴 𝐵)
2827sumeq1d 11752 . . . . . . 7 (𝑢 = 𝐴 → Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑘 𝑥𝐴 𝐵𝐶)
29 sumeq1 11741 . . . . . . 7 (𝑢 = 𝐴 → Σ𝑥𝑢 Σ𝑘𝐵 𝐶 = Σ𝑥𝐴 Σ𝑘𝐵 𝐶)
3028, 29eqeq12d 2221 . . . . . 6 (𝑢 = 𝐴 → (Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑥𝑢 Σ𝑘𝐵 𝐶 ↔ Σ𝑘 𝑥𝐴 𝐵𝐶 = Σ𝑥𝐴 Σ𝑘𝐵 𝐶))
3126, 30imbi12d 234 . . . . 5 (𝑢 = 𝐴 → ((𝑢𝐴 → Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑥𝑢 Σ𝑘𝐵 𝐶) ↔ (𝐴𝐴 → Σ𝑘 𝑥𝐴 𝐵𝐶 = Σ𝑥𝐴 Σ𝑘𝐵 𝐶)))
3231imbi2d 230 . . . 4 (𝑢 = 𝐴 → ((𝜑 → (𝑢𝐴 → Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑥𝑢 Σ𝑘𝐵 𝐶)) ↔ (𝜑 → (𝐴𝐴 → Σ𝑘 𝑥𝐴 𝐵𝐶 = Σ𝑥𝐴 Σ𝑘𝐵 𝐶))))
33 sum0 11774 . . . . . 6 Σ𝑘 ∈ ∅ 𝐶 = 0
34 sum0 11774 . . . . . 6 Σ𝑥 ∈ ∅ Σ𝑘𝐵 𝐶 = 0
3533, 34eqtr4i 2230 . . . . 5 Σ𝑘 ∈ ∅ 𝐶 = Σ𝑥 ∈ ∅ Σ𝑘𝐵 𝐶
36352a1i 27 . . . 4 (𝜑 → (∅ ⊆ 𝐴 → Σ𝑘 ∈ ∅ 𝐶 = Σ𝑥 ∈ ∅ Σ𝑘𝐵 𝐶))
37 id 19 . . . . . . . . 9 ((𝑧 ∪ {𝑤}) ⊆ 𝐴 → (𝑧 ∪ {𝑤}) ⊆ 𝐴)
3837unssad 3354 . . . . . . . 8 ((𝑧 ∪ {𝑤}) ⊆ 𝐴𝑧𝐴)
3938imim1i 60 . . . . . . 7 ((𝑧𝐴 → Σ𝑘 𝑥𝑧 𝐵𝐶 = Σ𝑥𝑧 Σ𝑘𝐵 𝐶) → ((𝑧 ∪ {𝑤}) ⊆ 𝐴 → Σ𝑘 𝑥𝑧 𝐵𝐶 = Σ𝑥𝑧 Σ𝑘𝐵 𝐶))
40 oveq1 5964 . . . . . . . . . 10 𝑘 𝑥𝑧 𝐵𝐶 = Σ𝑥𝑧 Σ𝑘𝐵 𝐶 → (Σ𝑘 𝑥𝑧 𝐵𝐶 + Σ𝑘 𝑤 / 𝑥𝐵𝐶) = (Σ𝑥𝑧 Σ𝑘𝐵 𝐶 + Σ𝑘 𝑤 / 𝑥𝐵𝐶))
41 nfcv 2349 . . . . . . . . . . . . . . . . 17 𝑧𝐵
42 nfcsb1v 3130 . . . . . . . . . . . . . . . . 17 𝑥𝑧 / 𝑥𝐵
43 csbeq1a 3106 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧𝐵 = 𝑧 / 𝑥𝐵)
4441, 42, 43cbviun 3970 . . . . . . . . . . . . . . . 16 𝑥 ∈ {𝑤}𝐵 = 𝑧 ∈ {𝑤}𝑧 / 𝑥𝐵
45 vex 2776 . . . . . . . . . . . . . . . . 17 𝑤 ∈ V
46 csbeq1 3100 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑤𝑧 / 𝑥𝐵 = 𝑤 / 𝑥𝐵)
4745, 46iunxsn 4010 . . . . . . . . . . . . . . . 16 𝑧 ∈ {𝑤}𝑧 / 𝑥𝐵 = 𝑤 / 𝑥𝐵
4844, 47eqtri 2227 . . . . . . . . . . . . . . 15 𝑥 ∈ {𝑤}𝐵 = 𝑤 / 𝑥𝐵
4948ineq2i 3375 . . . . . . . . . . . . . 14 ( 𝑥𝑧 𝐵 𝑥 ∈ {𝑤}𝐵) = ( 𝑥𝑧 𝐵𝑤 / 𝑥𝐵)
50 fsumiun.3 . . . . . . . . . . . . . . . 16 (𝜑Disj 𝑥𝐴 𝐵)
5150ad2antrr 488 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → Disj 𝑥𝐴 𝐵)
5238adantl 277 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → 𝑧𝐴)
53 simpr 110 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → (𝑧 ∪ {𝑤}) ⊆ 𝐴)
5453unssbd 3355 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → {𝑤} ⊆ 𝐴)
55 simplr 528 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → ¬ 𝑤𝑧)
56 disjsn 3700 . . . . . . . . . . . . . . . 16 ((𝑧 ∩ {𝑤}) = ∅ ↔ ¬ 𝑤𝑧)
5755, 56sylibr 134 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → (𝑧 ∩ {𝑤}) = ∅)
58 disjiun 4046 . . . . . . . . . . . . . . 15 ((Disj 𝑥𝐴 𝐵 ∧ (𝑧𝐴 ∧ {𝑤} ⊆ 𝐴 ∧ (𝑧 ∩ {𝑤}) = ∅)) → ( 𝑥𝑧 𝐵 𝑥 ∈ {𝑤}𝐵) = ∅)
5951, 52, 54, 57, 58syl13anc 1252 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → ( 𝑥𝑧 𝐵 𝑥 ∈ {𝑤}𝐵) = ∅)
6049, 59eqtr3id 2253 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → ( 𝑥𝑧 𝐵𝑤 / 𝑥𝐵) = ∅)
6160adantlrl 482 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧 ∈ Fin ∧ ¬ 𝑤𝑧)) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → ( 𝑥𝑧 𝐵𝑤 / 𝑥𝐵) = ∅)
62 iunxun 4013 . . . . . . . . . . . . . 14 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵 = ( 𝑥𝑧 𝐵 𝑥 ∈ {𝑤}𝐵)
6348uneq2i 3328 . . . . . . . . . . . . . 14 ( 𝑥𝑧 𝐵 𝑥 ∈ {𝑤}𝐵) = ( 𝑥𝑧 𝐵𝑤 / 𝑥𝐵)
6462, 63eqtri 2227 . . . . . . . . . . . . 13 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵 = ( 𝑥𝑧 𝐵𝑤 / 𝑥𝐵)
6564a1i 9 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧 ∈ Fin ∧ ¬ 𝑤𝑧)) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵 = ( 𝑥𝑧 𝐵𝑤 / 𝑥𝐵))
66 simplrl 535 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑧 ∈ Fin ∧ ¬ 𝑤𝑧)) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → 𝑧 ∈ Fin)
6745a1i 9 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑧 ∈ Fin ∧ ¬ 𝑤𝑧)) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → 𝑤 ∈ V)
6855adantlrl 482 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑧 ∈ Fin ∧ ¬ 𝑤𝑧)) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → ¬ 𝑤𝑧)
69 unsnfi 7031 . . . . . . . . . . . . . 14 ((𝑧 ∈ Fin ∧ 𝑤 ∈ V ∧ ¬ 𝑤𝑧) → (𝑧 ∪ {𝑤}) ∈ Fin)
7066, 67, 68, 69syl3anc 1250 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧 ∈ Fin ∧ ¬ 𝑤𝑧)) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → (𝑧 ∪ {𝑤}) ∈ Fin)
71 fsumiun.2 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → 𝐵 ∈ Fin)
7271ralrimiva 2580 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑥𝐴 𝐵 ∈ Fin)
7372ad2antrr 488 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → ∀𝑥𝐴 𝐵 ∈ Fin)
74 ssralv 3261 . . . . . . . . . . . . . . 15 ((𝑧 ∪ {𝑤}) ⊆ 𝐴 → (∀𝑥𝐴 𝐵 ∈ Fin → ∀𝑥 ∈ (𝑧 ∪ {𝑤})𝐵 ∈ Fin))
7553, 73, 74sylc 62 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → ∀𝑥 ∈ (𝑧 ∪ {𝑤})𝐵 ∈ Fin)
7675adantlrl 482 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧 ∈ Fin ∧ ¬ 𝑤𝑧)) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → ∀𝑥 ∈ (𝑧 ∪ {𝑤})𝐵 ∈ Fin)
77 disjss1 4033 . . . . . . . . . . . . . . 15 ((𝑧 ∪ {𝑤}) ⊆ 𝐴 → (Disj 𝑥𝐴 𝐵Disj 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵))
7853, 51, 77sylc 62 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → Disj 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵)
7978adantlrl 482 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧 ∈ Fin ∧ ¬ 𝑤𝑧)) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → Disj 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵)
80 iunfidisj 7063 . . . . . . . . . . . . 13 (((𝑧 ∪ {𝑤}) ∈ Fin ∧ ∀𝑥 ∈ (𝑧 ∪ {𝑤})𝐵 ∈ Fin ∧ Disj 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵) → 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵 ∈ Fin)
8170, 76, 79, 80syl3anc 1250 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧 ∈ Fin ∧ ¬ 𝑤𝑧)) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵 ∈ Fin)
82 iunss1 3944 . . . . . . . . . . . . . . 15 ((𝑧 ∪ {𝑤}) ⊆ 𝐴 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵 𝑥𝐴 𝐵)
8382adantl 277 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑧 ∈ Fin ∧ ¬ 𝑤𝑧)) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵 𝑥𝐴 𝐵)
8483sselda 3197 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑧 ∈ Fin ∧ ¬ 𝑤𝑧)) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) ∧ 𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵) → 𝑘 𝑥𝐴 𝐵)
85 eliun 3937 . . . . . . . . . . . . . . 15 (𝑘 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑘𝐵)
86 fsumiun.4 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) → 𝐶 ∈ ℂ)
8786rexlimdvaa 2625 . . . . . . . . . . . . . . . 16 (𝜑 → (∃𝑥𝐴 𝑘𝐵𝐶 ∈ ℂ))
8887ad2antrr 488 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑧 ∈ Fin ∧ ¬ 𝑤𝑧)) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → (∃𝑥𝐴 𝑘𝐵𝐶 ∈ ℂ))
8985, 88biimtrid 152 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑧 ∈ Fin ∧ ¬ 𝑤𝑧)) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → (𝑘 𝑥𝐴 𝐵𝐶 ∈ ℂ))
9089imp 124 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑧 ∈ Fin ∧ ¬ 𝑤𝑧)) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) ∧ 𝑘 𝑥𝐴 𝐵) → 𝐶 ∈ ℂ)
9184, 90syldan 282 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑧 ∈ Fin ∧ ¬ 𝑤𝑧)) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) ∧ 𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵) → 𝐶 ∈ ℂ)
9261, 65, 81, 91fsumsplit 11793 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧 ∈ Fin ∧ ¬ 𝑤𝑧)) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → Σ𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶 = (Σ𝑘 𝑥𝑧 𝐵𝐶 + Σ𝑘 𝑤 / 𝑥𝐵𝐶))
9368, 56sylibr 134 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧 ∈ Fin ∧ ¬ 𝑤𝑧)) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → (𝑧 ∩ {𝑤}) = ∅)
94 eqidd 2207 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧 ∈ Fin ∧ ¬ 𝑤𝑧)) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → (𝑧 ∪ {𝑤}) = (𝑧 ∪ {𝑤}))
95 simplr 528 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑧 ∈ Fin ∧ ¬ 𝑤𝑧)) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) ∧ 𝑥 ∈ (𝑧 ∪ {𝑤})) → (𝑧 ∪ {𝑤}) ⊆ 𝐴)
96 simpr 110 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑧 ∈ Fin ∧ ¬ 𝑤𝑧)) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) ∧ 𝑥 ∈ (𝑧 ∪ {𝑤})) → 𝑥 ∈ (𝑧 ∪ {𝑤}))
9795, 96sseldd 3198 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑧 ∈ Fin ∧ ¬ 𝑤𝑧)) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) ∧ 𝑥 ∈ (𝑧 ∪ {𝑤})) → 𝑥𝐴)
9886anassrs 400 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝐴) ∧ 𝑘𝐵) → 𝐶 ∈ ℂ)
9971, 98fsumcl 11786 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → Σ𝑘𝐵 𝐶 ∈ ℂ)
10099ralrimiva 2580 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑥𝐴 Σ𝑘𝐵 𝐶 ∈ ℂ)
101100ad2antrr 488 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑧 ∈ Fin ∧ ¬ 𝑤𝑧)) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → ∀𝑥𝐴 Σ𝑘𝐵 𝐶 ∈ ℂ)
102101r19.21bi 2595 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑧 ∈ Fin ∧ ¬ 𝑤𝑧)) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) ∧ 𝑥𝐴) → Σ𝑘𝐵 𝐶 ∈ ℂ)
10397, 102syldan 282 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑧 ∈ Fin ∧ ¬ 𝑤𝑧)) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) ∧ 𝑥 ∈ (𝑧 ∪ {𝑤})) → Σ𝑘𝐵 𝐶 ∈ ℂ)
10493, 94, 70, 103fsumsplit 11793 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧 ∈ Fin ∧ ¬ 𝑤𝑧)) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → Σ𝑥 ∈ (𝑧 ∪ {𝑤})Σ𝑘𝐵 𝐶 = (Σ𝑥𝑧 Σ𝑘𝐵 𝐶 + Σ𝑥 ∈ {𝑤𝑘𝐵 𝐶))
105 nfcv 2349 . . . . . . . . . . . . . . . 16 𝑧Σ𝑘𝐵 𝐶
106 nfcv 2349 . . . . . . . . . . . . . . . . 17 𝑥𝐶
10742, 106nfsum 11743 . . . . . . . . . . . . . . . 16 𝑥Σ𝑘 𝑧 / 𝑥𝐵𝐶
10843sumeq1d 11752 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → Σ𝑘𝐵 𝐶 = Σ𝑘 𝑧 / 𝑥𝐵𝐶)
109105, 107, 108cbvsumi 11748 . . . . . . . . . . . . . . 15 Σ𝑥 ∈ {𝑤𝑘𝐵 𝐶 = Σ𝑧 ∈ {𝑤𝑘 𝑧 / 𝑥𝐵𝐶
11045snss 3774 . . . . . . . . . . . . . . . . . 18 (𝑤𝐴 ↔ {𝑤} ⊆ 𝐴)
11154, 110sylibr 134 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → 𝑤𝐴)
112100ad2antrr 488 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → ∀𝑥𝐴 Σ𝑘𝐵 𝐶 ∈ ℂ)
113 nfcsb1v 3130 . . . . . . . . . . . . . . . . . . . 20 𝑥𝑤 / 𝑥𝐵
114113, 106nfsum 11743 . . . . . . . . . . . . . . . . . . 19 𝑥Σ𝑘 𝑤 / 𝑥𝐵𝐶
115114nfel1 2360 . . . . . . . . . . . . . . . . . 18 𝑥Σ𝑘 𝑤 / 𝑥𝐵𝐶 ∈ ℂ
116 csbeq1a 3106 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑤𝐵 = 𝑤 / 𝑥𝐵)
117116sumeq1d 11752 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑤 → Σ𝑘𝐵 𝐶 = Σ𝑘 𝑤 / 𝑥𝐵𝐶)
118117eleq1d 2275 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑤 → (Σ𝑘𝐵 𝐶 ∈ ℂ ↔ Σ𝑘 𝑤 / 𝑥𝐵𝐶 ∈ ℂ))
119115, 118rspc 2875 . . . . . . . . . . . . . . . . 17 (𝑤𝐴 → (∀𝑥𝐴 Σ𝑘𝐵 𝐶 ∈ ℂ → Σ𝑘 𝑤 / 𝑥𝐵𝐶 ∈ ℂ))
120111, 112, 119sylc 62 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → Σ𝑘 𝑤 / 𝑥𝐵𝐶 ∈ ℂ)
12146sumeq1d 11752 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑤 → Σ𝑘 𝑧 / 𝑥𝐵𝐶 = Σ𝑘 𝑤 / 𝑥𝐵𝐶)
122121sumsn 11797 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ V ∧ Σ𝑘 𝑤 / 𝑥𝐵𝐶 ∈ ℂ) → Σ𝑧 ∈ {𝑤𝑘 𝑧 / 𝑥𝐵𝐶 = Σ𝑘 𝑤 / 𝑥𝐵𝐶)
12345, 120, 122sylancr 414 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → Σ𝑧 ∈ {𝑤𝑘 𝑧 / 𝑥𝐵𝐶 = Σ𝑘 𝑤 / 𝑥𝐵𝐶)
124109, 123eqtrid 2251 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → Σ𝑥 ∈ {𝑤𝑘𝐵 𝐶 = Σ𝑘 𝑤 / 𝑥𝐵𝐶)
125124oveq2d 5973 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → (Σ𝑥𝑧 Σ𝑘𝐵 𝐶 + Σ𝑥 ∈ {𝑤𝑘𝐵 𝐶) = (Σ𝑥𝑧 Σ𝑘𝐵 𝐶 + Σ𝑘 𝑤 / 𝑥𝐵𝐶))
126125adantlrl 482 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧 ∈ Fin ∧ ¬ 𝑤𝑧)) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → (Σ𝑥𝑧 Σ𝑘𝐵 𝐶 + Σ𝑥 ∈ {𝑤𝑘𝐵 𝐶) = (Σ𝑥𝑧 Σ𝑘𝐵 𝐶 + Σ𝑘 𝑤 / 𝑥𝐵𝐶))
127104, 126eqtrd 2239 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧 ∈ Fin ∧ ¬ 𝑤𝑧)) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → Σ𝑥 ∈ (𝑧 ∪ {𝑤})Σ𝑘𝐵 𝐶 = (Σ𝑥𝑧 Σ𝑘𝐵 𝐶 + Σ𝑘 𝑤 / 𝑥𝐵𝐶))
12892, 127eqeq12d 2221 . . . . . . . . . 10 (((𝜑 ∧ (𝑧 ∈ Fin ∧ ¬ 𝑤𝑧)) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → (Σ𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶 = Σ𝑥 ∈ (𝑧 ∪ {𝑤})Σ𝑘𝐵 𝐶 ↔ (Σ𝑘 𝑥𝑧 𝐵𝐶 + Σ𝑘 𝑤 / 𝑥𝐵𝐶) = (Σ𝑥𝑧 Σ𝑘𝐵 𝐶 + Σ𝑘 𝑤 / 𝑥𝐵𝐶)))
12940, 128imbitrrid 156 . . . . . . . . 9 (((𝜑 ∧ (𝑧 ∈ Fin ∧ ¬ 𝑤𝑧)) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → (Σ𝑘 𝑥𝑧 𝐵𝐶 = Σ𝑥𝑧 Σ𝑘𝐵 𝐶 → Σ𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶 = Σ𝑥 ∈ (𝑧 ∪ {𝑤})Σ𝑘𝐵 𝐶))
130129ex 115 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ Fin ∧ ¬ 𝑤𝑧)) → ((𝑧 ∪ {𝑤}) ⊆ 𝐴 → (Σ𝑘 𝑥𝑧 𝐵𝐶 = Σ𝑥𝑧 Σ𝑘𝐵 𝐶 → Σ𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶 = Σ𝑥 ∈ (𝑧 ∪ {𝑤})Σ𝑘𝐵 𝐶)))
131130a2d 26 . . . . . . 7 ((𝜑 ∧ (𝑧 ∈ Fin ∧ ¬ 𝑤𝑧)) → (((𝑧 ∪ {𝑤}) ⊆ 𝐴 → Σ𝑘 𝑥𝑧 𝐵𝐶 = Σ𝑥𝑧 Σ𝑘𝐵 𝐶) → ((𝑧 ∪ {𝑤}) ⊆ 𝐴 → Σ𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶 = Σ𝑥 ∈ (𝑧 ∪ {𝑤})Σ𝑘𝐵 𝐶)))
13239, 131syl5 32 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ Fin ∧ ¬ 𝑤𝑧)) → ((𝑧𝐴 → Σ𝑘 𝑥𝑧 𝐵𝐶 = Σ𝑥𝑧 Σ𝑘𝐵 𝐶) → ((𝑧 ∪ {𝑤}) ⊆ 𝐴 → Σ𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶 = Σ𝑥 ∈ (𝑧 ∪ {𝑤})Σ𝑘𝐵 𝐶)))
133132expcom 116 . . . . 5 ((𝑧 ∈ Fin ∧ ¬ 𝑤𝑧) → (𝜑 → ((𝑧𝐴 → Σ𝑘 𝑥𝑧 𝐵𝐶 = Σ𝑥𝑧 Σ𝑘𝐵 𝐶) → ((𝑧 ∪ {𝑤}) ⊆ 𝐴 → Σ𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶 = Σ𝑥 ∈ (𝑧 ∪ {𝑤})Σ𝑘𝐵 𝐶))))
134133a2d 26 . . . 4 ((𝑧 ∈ Fin ∧ ¬ 𝑤𝑧) → ((𝜑 → (𝑧𝐴 → Σ𝑘 𝑥𝑧 𝐵𝐶 = Σ𝑥𝑧 Σ𝑘𝐵 𝐶)) → (𝜑 → ((𝑧 ∪ {𝑤}) ⊆ 𝐴 → Σ𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶 = Σ𝑥 ∈ (𝑧 ∪ {𝑤})Σ𝑘𝐵 𝐶))))
13511, 18, 25, 32, 36, 134findcard2s 7002 . . 3 (𝐴 ∈ Fin → (𝜑 → (𝐴𝐴 → Σ𝑘 𝑥𝐴 𝐵𝐶 = Σ𝑥𝐴 Σ𝑘𝐵 𝐶)))
1362, 135mpcom 36 . 2 (𝜑 → (𝐴𝐴 → Σ𝑘 𝑥𝐴 𝐵𝐶 = Σ𝑥𝐴 Σ𝑘𝐵 𝐶))
1371, 136mpi 15 1 (𝜑 → Σ𝑘 𝑥𝐴 𝐵𝐶 = Σ𝑥𝐴 Σ𝑘𝐵 𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104   = wceq 1373  wcel 2177  wral 2485  wrex 2486  Vcvv 2773  csb 3097  cun 3168  cin 3169  wss 3170  c0 3464  {csn 3638   ciun 3933  Disj wdisj 4027  (class class class)co 5957  Fincfn 6840  cc 7943  0cc0 7945   + caddc 7948  Σcsu 11739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-mulrcl 8044  ax-addcom 8045  ax-mulcom 8046  ax-addass 8047  ax-mulass 8048  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-1rid 8052  ax-0id 8053  ax-rnegex 8054  ax-precex 8055  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061  ax-pre-mulgt0 8062  ax-pre-mulext 8063  ax-arch 8064  ax-caucvg 8065
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-disj 4028  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-po 4351  df-iso 4352  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-isom 5289  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-irdg 6469  df-frec 6490  df-1o 6515  df-oadd 6519  df-er 6633  df-en 6841  df-dom 6842  df-fin 6843  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-reap 8668  df-ap 8675  df-div 8766  df-inn 9057  df-2 9115  df-3 9116  df-4 9117  df-n0 9316  df-z 9393  df-uz 9669  df-q 9761  df-rp 9796  df-fz 10151  df-fzo 10285  df-seqfrec 10615  df-exp 10706  df-ihash 10943  df-cj 11228  df-re 11229  df-im 11230  df-rsqrt 11384  df-abs 11385  df-clim 11665  df-sumdc 11740
This theorem is referenced by:  hashiun  11864
  Copyright terms: Public domain W3C validator