| Step | Hyp | Ref
| Expression |
| 1 | | ssid 3204 |
. 2
⊢ 𝐴 ⊆ 𝐴 |
| 2 | | fsumabs.1 |
. . 3
⊢ (𝜑 → 𝐴 ∈ Fin) |
| 3 | | sseq1 3207 |
. . . . . 6
⊢ (𝑤 = ∅ → (𝑤 ⊆ 𝐴 ↔ ∅ ⊆ 𝐴)) |
| 4 | | sumeq1 11537 |
. . . . . . . 8
⊢ (𝑤 = ∅ → Σ𝑘 ∈ 𝑤 𝐵 = Σ𝑘 ∈ ∅ 𝐵) |
| 5 | 4 | fveq2d 5565 |
. . . . . . 7
⊢ (𝑤 = ∅ →
(abs‘Σ𝑘 ∈
𝑤 𝐵) = (abs‘Σ𝑘 ∈ ∅ 𝐵)) |
| 6 | | sumeq1 11537 |
. . . . . . 7
⊢ (𝑤 = ∅ → Σ𝑘 ∈ 𝑤 (abs‘𝐵) = Σ𝑘 ∈ ∅ (abs‘𝐵)) |
| 7 | 5, 6 | breq12d 4047 |
. . . . . 6
⊢ (𝑤 = ∅ →
((abs‘Σ𝑘 ∈
𝑤 𝐵) ≤ Σ𝑘 ∈ 𝑤 (abs‘𝐵) ↔ (abs‘Σ𝑘 ∈ ∅ 𝐵) ≤ Σ𝑘 ∈ ∅ (abs‘𝐵))) |
| 8 | 3, 7 | imbi12d 234 |
. . . . 5
⊢ (𝑤 = ∅ → ((𝑤 ⊆ 𝐴 → (abs‘Σ𝑘 ∈ 𝑤 𝐵) ≤ Σ𝑘 ∈ 𝑤 (abs‘𝐵)) ↔ (∅ ⊆ 𝐴 → (abs‘Σ𝑘 ∈ ∅ 𝐵) ≤ Σ𝑘 ∈ ∅ (abs‘𝐵)))) |
| 9 | 8 | imbi2d 230 |
. . . 4
⊢ (𝑤 = ∅ → ((𝜑 → (𝑤 ⊆ 𝐴 → (abs‘Σ𝑘 ∈ 𝑤 𝐵) ≤ Σ𝑘 ∈ 𝑤 (abs‘𝐵))) ↔ (𝜑 → (∅ ⊆ 𝐴 → (abs‘Σ𝑘 ∈ ∅ 𝐵) ≤ Σ𝑘 ∈ ∅ (abs‘𝐵))))) |
| 10 | | sseq1 3207 |
. . . . . 6
⊢ (𝑤 = 𝑥 → (𝑤 ⊆ 𝐴 ↔ 𝑥 ⊆ 𝐴)) |
| 11 | | sumeq1 11537 |
. . . . . . . 8
⊢ (𝑤 = 𝑥 → Σ𝑘 ∈ 𝑤 𝐵 = Σ𝑘 ∈ 𝑥 𝐵) |
| 12 | 11 | fveq2d 5565 |
. . . . . . 7
⊢ (𝑤 = 𝑥 → (abs‘Σ𝑘 ∈ 𝑤 𝐵) = (abs‘Σ𝑘 ∈ 𝑥 𝐵)) |
| 13 | | sumeq1 11537 |
. . . . . . 7
⊢ (𝑤 = 𝑥 → Σ𝑘 ∈ 𝑤 (abs‘𝐵) = Σ𝑘 ∈ 𝑥 (abs‘𝐵)) |
| 14 | 12, 13 | breq12d 4047 |
. . . . . 6
⊢ (𝑤 = 𝑥 → ((abs‘Σ𝑘 ∈ 𝑤 𝐵) ≤ Σ𝑘 ∈ 𝑤 (abs‘𝐵) ↔ (abs‘Σ𝑘 ∈ 𝑥 𝐵) ≤ Σ𝑘 ∈ 𝑥 (abs‘𝐵))) |
| 15 | 10, 14 | imbi12d 234 |
. . . . 5
⊢ (𝑤 = 𝑥 → ((𝑤 ⊆ 𝐴 → (abs‘Σ𝑘 ∈ 𝑤 𝐵) ≤ Σ𝑘 ∈ 𝑤 (abs‘𝐵)) ↔ (𝑥 ⊆ 𝐴 → (abs‘Σ𝑘 ∈ 𝑥 𝐵) ≤ Σ𝑘 ∈ 𝑥 (abs‘𝐵)))) |
| 16 | 15 | imbi2d 230 |
. . . 4
⊢ (𝑤 = 𝑥 → ((𝜑 → (𝑤 ⊆ 𝐴 → (abs‘Σ𝑘 ∈ 𝑤 𝐵) ≤ Σ𝑘 ∈ 𝑤 (abs‘𝐵))) ↔ (𝜑 → (𝑥 ⊆ 𝐴 → (abs‘Σ𝑘 ∈ 𝑥 𝐵) ≤ Σ𝑘 ∈ 𝑥 (abs‘𝐵))))) |
| 17 | | sseq1 3207 |
. . . . . 6
⊢ (𝑤 = (𝑥 ∪ {𝑦}) → (𝑤 ⊆ 𝐴 ↔ (𝑥 ∪ {𝑦}) ⊆ 𝐴)) |
| 18 | | sumeq1 11537 |
. . . . . . . 8
⊢ (𝑤 = (𝑥 ∪ {𝑦}) → Σ𝑘 ∈ 𝑤 𝐵 = Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) |
| 19 | 18 | fveq2d 5565 |
. . . . . . 7
⊢ (𝑤 = (𝑥 ∪ {𝑦}) → (abs‘Σ𝑘 ∈ 𝑤 𝐵) = (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵)) |
| 20 | | sumeq1 11537 |
. . . . . . 7
⊢ (𝑤 = (𝑥 ∪ {𝑦}) → Σ𝑘 ∈ 𝑤 (abs‘𝐵) = Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)) |
| 21 | 19, 20 | breq12d 4047 |
. . . . . 6
⊢ (𝑤 = (𝑥 ∪ {𝑦}) → ((abs‘Σ𝑘 ∈ 𝑤 𝐵) ≤ Σ𝑘 ∈ 𝑤 (abs‘𝐵) ↔ (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵))) |
| 22 | 17, 21 | imbi12d 234 |
. . . . 5
⊢ (𝑤 = (𝑥 ∪ {𝑦}) → ((𝑤 ⊆ 𝐴 → (abs‘Σ𝑘 ∈ 𝑤 𝐵) ≤ Σ𝑘 ∈ 𝑤 (abs‘𝐵)) ↔ ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)))) |
| 23 | 22 | imbi2d 230 |
. . . 4
⊢ (𝑤 = (𝑥 ∪ {𝑦}) → ((𝜑 → (𝑤 ⊆ 𝐴 → (abs‘Σ𝑘 ∈ 𝑤 𝐵) ≤ Σ𝑘 ∈ 𝑤 (abs‘𝐵))) ↔ (𝜑 → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵))))) |
| 24 | | sseq1 3207 |
. . . . . 6
⊢ (𝑤 = 𝐴 → (𝑤 ⊆ 𝐴 ↔ 𝐴 ⊆ 𝐴)) |
| 25 | | sumeq1 11537 |
. . . . . . . 8
⊢ (𝑤 = 𝐴 → Σ𝑘 ∈ 𝑤 𝐵 = Σ𝑘 ∈ 𝐴 𝐵) |
| 26 | 25 | fveq2d 5565 |
. . . . . . 7
⊢ (𝑤 = 𝐴 → (abs‘Σ𝑘 ∈ 𝑤 𝐵) = (abs‘Σ𝑘 ∈ 𝐴 𝐵)) |
| 27 | | sumeq1 11537 |
. . . . . . 7
⊢ (𝑤 = 𝐴 → Σ𝑘 ∈ 𝑤 (abs‘𝐵) = Σ𝑘 ∈ 𝐴 (abs‘𝐵)) |
| 28 | 26, 27 | breq12d 4047 |
. . . . . 6
⊢ (𝑤 = 𝐴 → ((abs‘Σ𝑘 ∈ 𝑤 𝐵) ≤ Σ𝑘 ∈ 𝑤 (abs‘𝐵) ↔ (abs‘Σ𝑘 ∈ 𝐴 𝐵) ≤ Σ𝑘 ∈ 𝐴 (abs‘𝐵))) |
| 29 | 24, 28 | imbi12d 234 |
. . . . 5
⊢ (𝑤 = 𝐴 → ((𝑤 ⊆ 𝐴 → (abs‘Σ𝑘 ∈ 𝑤 𝐵) ≤ Σ𝑘 ∈ 𝑤 (abs‘𝐵)) ↔ (𝐴 ⊆ 𝐴 → (abs‘Σ𝑘 ∈ 𝐴 𝐵) ≤ Σ𝑘 ∈ 𝐴 (abs‘𝐵)))) |
| 30 | 29 | imbi2d 230 |
. . . 4
⊢ (𝑤 = 𝐴 → ((𝜑 → (𝑤 ⊆ 𝐴 → (abs‘Σ𝑘 ∈ 𝑤 𝐵) ≤ Σ𝑘 ∈ 𝑤 (abs‘𝐵))) ↔ (𝜑 → (𝐴 ⊆ 𝐴 → (abs‘Σ𝑘 ∈ 𝐴 𝐵) ≤ Σ𝑘 ∈ 𝐴 (abs‘𝐵))))) |
| 31 | | 0le0 9096 |
. . . . . 6
⊢ 0 ≤
0 |
| 32 | | sum0 11570 |
. . . . . . . 8
⊢
Σ𝑘 ∈
∅ 𝐵 =
0 |
| 33 | 32 | fveq2i 5564 |
. . . . . . 7
⊢
(abs‘Σ𝑘
∈ ∅ 𝐵) =
(abs‘0) |
| 34 | | abs0 11240 |
. . . . . . 7
⊢
(abs‘0) = 0 |
| 35 | 33, 34 | eqtri 2217 |
. . . . . 6
⊢
(abs‘Σ𝑘
∈ ∅ 𝐵) =
0 |
| 36 | | sum0 11570 |
. . . . . 6
⊢
Σ𝑘 ∈
∅ (abs‘𝐵) =
0 |
| 37 | 31, 35, 36 | 3brtr4i 4064 |
. . . . 5
⊢
(abs‘Σ𝑘
∈ ∅ 𝐵) ≤
Σ𝑘 ∈ ∅
(abs‘𝐵) |
| 38 | 37 | 2a1i 27 |
. . . 4
⊢ (𝜑 → (∅ ⊆ 𝐴 → (abs‘Σ𝑘 ∈ ∅ 𝐵) ≤ Σ𝑘 ∈ ∅ (abs‘𝐵))) |
| 39 | | ssun1 3327 |
. . . . . . . . 9
⊢ 𝑥 ⊆ (𝑥 ∪ {𝑦}) |
| 40 | | sstr 3192 |
. . . . . . . . 9
⊢ ((𝑥 ⊆ (𝑥 ∪ {𝑦}) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝑥 ⊆ 𝐴) |
| 41 | 39, 40 | mpan 424 |
. . . . . . . 8
⊢ ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → 𝑥 ⊆ 𝐴) |
| 42 | 41 | imim1i 60 |
. . . . . . 7
⊢ ((𝑥 ⊆ 𝐴 → (abs‘Σ𝑘 ∈ 𝑥 𝐵) ≤ Σ𝑘 ∈ 𝑥 (abs‘𝐵)) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (abs‘Σ𝑘 ∈ 𝑥 𝐵) ≤ Σ𝑘 ∈ 𝑥 (abs‘𝐵))) |
| 43 | | simplrl 535 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝑥 ∈ Fin) |
| 44 | | simpll 527 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝜑) |
| 45 | | simpr 110 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (𝑥 ∪ {𝑦}) ⊆ 𝐴) |
| 46 | 45 | unssad 3341 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝑥 ⊆ 𝐴) |
| 47 | 46 | sselda 3184 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑘 ∈ 𝑥) → 𝑘 ∈ 𝐴) |
| 48 | | fsumabs.2 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| 49 | 44, 47, 48 | syl2an2r 595 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑘 ∈ 𝑥) → 𝐵 ∈ ℂ) |
| 50 | 43, 49 | fsumcl 11582 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ 𝑥 𝐵 ∈ ℂ) |
| 51 | 50 | abscld 11363 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (abs‘Σ𝑘 ∈ 𝑥 𝐵) ∈ ℝ) |
| 52 | 49 | abscld 11363 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑘 ∈ 𝑥) → (abs‘𝐵) ∈ ℝ) |
| 53 | 43, 52 | fsumrecl 11583 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ 𝑥 (abs‘𝐵) ∈ ℝ) |
| 54 | | simpr 110 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (𝑥 ∪ {𝑦}) ⊆ 𝐴) |
| 55 | 54 | unssbd 3342 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → {𝑦} ⊆ 𝐴) |
| 56 | | vex 2766 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑦 ∈ V |
| 57 | 56 | snss 3758 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ 𝐴 ↔ {𝑦} ⊆ 𝐴) |
| 58 | 55, 57 | sylibr 134 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝑦 ∈ 𝐴) |
| 59 | 58 | adantlrl 482 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝑦 ∈ 𝐴) |
| 60 | 48 | ralrimiva 2570 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
| 61 | 60 | ad2antrr 488 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
| 62 | | nfcsb1v 3117 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑘⦋𝑦 / 𝑘⦌𝐵 |
| 63 | 62 | nfel1 2350 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘⦋𝑦 / 𝑘⦌𝐵 ∈ ℂ |
| 64 | | csbeq1a 3093 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑘⦌𝐵) |
| 65 | 64 | eleq1d 2265 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑦 → (𝐵 ∈ ℂ ↔ ⦋𝑦 / 𝑘⦌𝐵 ∈ ℂ)) |
| 66 | 63, 65 | rspc 2862 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ 𝐴 → (∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ → ⦋𝑦 / 𝑘⦌𝐵 ∈ ℂ)) |
| 67 | 59, 61, 66 | sylc 62 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ⦋𝑦 / 𝑘⦌𝐵 ∈ ℂ) |
| 68 | 67 | abscld 11363 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (abs‘⦋𝑦 / 𝑘⦌𝐵) ∈ ℝ) |
| 69 | 51, 53, 68 | leadd1d 8583 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ((abs‘Σ𝑘 ∈ 𝑥 𝐵) ≤ Σ𝑘 ∈ 𝑥 (abs‘𝐵) ↔ ((abs‘Σ𝑘 ∈ 𝑥 𝐵) + (abs‘⦋𝑦 / 𝑘⦌𝐵)) ≤ (Σ𝑘 ∈ 𝑥 (abs‘𝐵) + (abs‘⦋𝑦 / 𝑘⦌𝐵)))) |
| 70 | | simplr 528 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ¬ 𝑦 ∈ 𝑥) |
| 71 | 70 | adantlrl 482 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ¬ 𝑦 ∈ 𝑥) |
| 72 | | disjsn 3685 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∩ {𝑦}) = ∅ ↔ ¬ 𝑦 ∈ 𝑥) |
| 73 | 71, 72 | sylibr 134 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (𝑥 ∩ {𝑦}) = ∅) |
| 74 | | eqidd 2197 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (𝑥 ∪ {𝑦}) = (𝑥 ∪ {𝑦})) |
| 75 | 56 | a1i 9 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝑦 ∈ V) |
| 76 | | unsnfi 6989 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ Fin ∧ 𝑦 ∈ V ∧ ¬ 𝑦 ∈ 𝑥) → (𝑥 ∪ {𝑦}) ∈ Fin) |
| 77 | 43, 75, 71, 76 | syl3anc 1249 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (𝑥 ∪ {𝑦}) ∈ Fin) |
| 78 | 45 | sselda 3184 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑘 ∈ (𝑥 ∪ {𝑦})) → 𝑘 ∈ 𝐴) |
| 79 | 44, 78, 48 | syl2an2r 595 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑘 ∈ (𝑥 ∪ {𝑦})) → 𝐵 ∈ ℂ) |
| 80 | 79 | abscld 11363 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑘 ∈ (𝑥 ∪ {𝑦})) → (abs‘𝐵) ∈ ℝ) |
| 81 | 80 | recnd 8072 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑘 ∈ (𝑥 ∪ {𝑦})) → (abs‘𝐵) ∈ ℂ) |
| 82 | 73, 74, 77, 81 | fsumsplit 11589 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵) = (Σ𝑘 ∈ 𝑥 (abs‘𝐵) + Σ𝑘 ∈ {𝑦} (abs‘𝐵))) |
| 83 | | csbfv2g 5600 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ V →
⦋𝑦 / 𝑘⦌(abs‘𝐵) =
(abs‘⦋𝑦
/ 𝑘⦌𝐵)) |
| 84 | 83 | elv 2767 |
. . . . . . . . . . . . . . . . . 18
⊢
⦋𝑦 /
𝑘⦌(abs‘𝐵) = (abs‘⦋𝑦 / 𝑘⦌𝐵) |
| 85 | 60 | ad2antrr 488 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
| 86 | 58, 85, 66 | sylc 62 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ⦋𝑦 / 𝑘⦌𝐵 ∈ ℂ) |
| 87 | 86 | abscld 11363 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (abs‘⦋𝑦 / 𝑘⦌𝐵) ∈ ℝ) |
| 88 | 87 | recnd 8072 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (abs‘⦋𝑦 / 𝑘⦌𝐵) ∈ ℂ) |
| 89 | 84, 88 | eqeltrid 2283 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ⦋𝑦 / 𝑘⦌(abs‘𝐵) ∈ ℂ) |
| 90 | | sumsns 11597 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ V ∧
⦋𝑦 / 𝑘⦌(abs‘𝐵) ∈ ℂ) →
Σ𝑘 ∈ {𝑦} (abs‘𝐵) = ⦋𝑦 / 𝑘⦌(abs‘𝐵)) |
| 91 | 56, 89, 90 | sylancr 414 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ {𝑦} (abs‘𝐵) = ⦋𝑦 / 𝑘⦌(abs‘𝐵)) |
| 92 | 91, 84 | eqtrdi 2245 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ {𝑦} (abs‘𝐵) = (abs‘⦋𝑦 / 𝑘⦌𝐵)) |
| 93 | 92 | oveq2d 5941 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (Σ𝑘 ∈ 𝑥 (abs‘𝐵) + Σ𝑘 ∈ {𝑦} (abs‘𝐵)) = (Σ𝑘 ∈ 𝑥 (abs‘𝐵) + (abs‘⦋𝑦 / 𝑘⦌𝐵))) |
| 94 | 93 | adantlrl 482 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (Σ𝑘 ∈ 𝑥 (abs‘𝐵) + Σ𝑘 ∈ {𝑦} (abs‘𝐵)) = (Σ𝑘 ∈ 𝑥 (abs‘𝐵) + (abs‘⦋𝑦 / 𝑘⦌𝐵))) |
| 95 | 82, 94 | eqtrd 2229 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵) = (Σ𝑘 ∈ 𝑥 (abs‘𝐵) + (abs‘⦋𝑦 / 𝑘⦌𝐵))) |
| 96 | 95 | breq2d 4046 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (((abs‘Σ𝑘 ∈ 𝑥 𝐵) + (abs‘⦋𝑦 / 𝑘⦌𝐵)) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵) ↔ ((abs‘Σ𝑘 ∈ 𝑥 𝐵) + (abs‘⦋𝑦 / 𝑘⦌𝐵)) ≤ (Σ𝑘 ∈ 𝑥 (abs‘𝐵) + (abs‘⦋𝑦 / 𝑘⦌𝐵)))) |
| 97 | 69, 96 | bitr4d 191 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ((abs‘Σ𝑘 ∈ 𝑥 𝐵) ≤ Σ𝑘 ∈ 𝑥 (abs‘𝐵) ↔ ((abs‘Σ𝑘 ∈ 𝑥 𝐵) + (abs‘⦋𝑦 / 𝑘⦌𝐵)) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵))) |
| 98 | 70, 72 | sylibr 134 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (𝑥 ∩ {𝑦}) = ∅) |
| 99 | 98 | adantlrl 482 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (𝑥 ∩ {𝑦}) = ∅) |
| 100 | 99, 74, 77, 79 | fsumsplit 11589 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵 = (Σ𝑘 ∈ 𝑥 𝐵 + Σ𝑘 ∈ {𝑦}𝐵)) |
| 101 | | sumsns 11597 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ 𝐴 ∧ ⦋𝑦 / 𝑘⦌𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑦}𝐵 = ⦋𝑦 / 𝑘⦌𝐵) |
| 102 | 58, 86, 101 | syl2anc 411 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ {𝑦}𝐵 = ⦋𝑦 / 𝑘⦌𝐵) |
| 103 | 102 | oveq2d 5941 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (Σ𝑘 ∈ 𝑥 𝐵 + Σ𝑘 ∈ {𝑦}𝐵) = (Σ𝑘 ∈ 𝑥 𝐵 + ⦋𝑦 / 𝑘⦌𝐵)) |
| 104 | 103 | adantlrl 482 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (Σ𝑘 ∈ 𝑥 𝐵 + Σ𝑘 ∈ {𝑦}𝐵) = (Σ𝑘 ∈ 𝑥 𝐵 + ⦋𝑦 / 𝑘⦌𝐵)) |
| 105 | 100, 104 | eqtrd 2229 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵 = (Σ𝑘 ∈ 𝑥 𝐵 + ⦋𝑦 / 𝑘⦌𝐵)) |
| 106 | 105 | fveq2d 5565 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) = (abs‘(Σ𝑘 ∈ 𝑥 𝐵 + ⦋𝑦 / 𝑘⦌𝐵))) |
| 107 | 86 | adantlrl 482 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ⦋𝑦 / 𝑘⦌𝐵 ∈ ℂ) |
| 108 | 50, 107 | abstrid 11378 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (abs‘(Σ𝑘 ∈ 𝑥 𝐵 + ⦋𝑦 / 𝑘⦌𝐵)) ≤ ((abs‘Σ𝑘 ∈ 𝑥 𝐵) + (abs‘⦋𝑦 / 𝑘⦌𝐵))) |
| 109 | 106, 108 | eqbrtrd 4056 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ ((abs‘Σ𝑘 ∈ 𝑥 𝐵) + (abs‘⦋𝑦 / 𝑘⦌𝐵))) |
| 110 | 77, 79 | fsumcl 11582 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵 ∈ ℂ) |
| 111 | 110 | abscld 11363 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ∈ ℝ) |
| 112 | 51, 68 | readdcld 8073 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ((abs‘Σ𝑘 ∈ 𝑥 𝐵) + (abs‘⦋𝑦 / 𝑘⦌𝐵)) ∈ ℝ) |
| 113 | 77, 80 | fsumrecl 11583 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵) ∈ ℝ) |
| 114 | | letr 8126 |
. . . . . . . . . . . 12
⊢
(((abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ∈ ℝ ∧
((abs‘Σ𝑘 ∈
𝑥 𝐵) + (abs‘⦋𝑦 / 𝑘⦌𝐵)) ∈ ℝ ∧ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵) ∈ ℝ) →
(((abs‘Σ𝑘
∈ (𝑥 ∪ {𝑦})𝐵) ≤ ((abs‘Σ𝑘 ∈ 𝑥 𝐵) + (abs‘⦋𝑦 / 𝑘⦌𝐵)) ∧ ((abs‘Σ𝑘 ∈ 𝑥 𝐵) + (abs‘⦋𝑦 / 𝑘⦌𝐵)) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)) → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵))) |
| 115 | 111, 112,
113, 114 | syl3anc 1249 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (((abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ ((abs‘Σ𝑘 ∈ 𝑥 𝐵) + (abs‘⦋𝑦 / 𝑘⦌𝐵)) ∧ ((abs‘Σ𝑘 ∈ 𝑥 𝐵) + (abs‘⦋𝑦 / 𝑘⦌𝐵)) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)) → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵))) |
| 116 | 109, 115 | mpand 429 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (((abs‘Σ𝑘 ∈ 𝑥 𝐵) + (abs‘⦋𝑦 / 𝑘⦌𝐵)) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵) → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵))) |
| 117 | 97, 116 | sylbid 150 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ((abs‘Σ𝑘 ∈ 𝑥 𝐵) ≤ Σ𝑘 ∈ 𝑥 (abs‘𝐵) → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵))) |
| 118 | 117 | ex 115 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → ((abs‘Σ𝑘 ∈ 𝑥 𝐵) ≤ Σ𝑘 ∈ 𝑥 (abs‘𝐵) → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)))) |
| 119 | 118 | a2d 26 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) → (((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (abs‘Σ𝑘 ∈ 𝑥 𝐵) ≤ Σ𝑘 ∈ 𝑥 (abs‘𝐵)) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)))) |
| 120 | 42, 119 | syl5 32 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) → ((𝑥 ⊆ 𝐴 → (abs‘Σ𝑘 ∈ 𝑥 𝐵) ≤ Σ𝑘 ∈ 𝑥 (abs‘𝐵)) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)))) |
| 121 | 120 | expcom 116 |
. . . . 5
⊢ ((𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥) → (𝜑 → ((𝑥 ⊆ 𝐴 → (abs‘Σ𝑘 ∈ 𝑥 𝐵) ≤ Σ𝑘 ∈ 𝑥 (abs‘𝐵)) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵))))) |
| 122 | 121 | a2d 26 |
. . . 4
⊢ ((𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥) → ((𝜑 → (𝑥 ⊆ 𝐴 → (abs‘Σ𝑘 ∈ 𝑥 𝐵) ≤ Σ𝑘 ∈ 𝑥 (abs‘𝐵))) → (𝜑 → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵))))) |
| 123 | 9, 16, 23, 30, 38, 122 | findcard2s 6960 |
. . 3
⊢ (𝐴 ∈ Fin → (𝜑 → (𝐴 ⊆ 𝐴 → (abs‘Σ𝑘 ∈ 𝐴 𝐵) ≤ Σ𝑘 ∈ 𝐴 (abs‘𝐵)))) |
| 124 | 2, 123 | mpcom 36 |
. 2
⊢ (𝜑 → (𝐴 ⊆ 𝐴 → (abs‘Σ𝑘 ∈ 𝐴 𝐵) ≤ Σ𝑘 ∈ 𝐴 (abs‘𝐵))) |
| 125 | 1, 124 | mpi 15 |
1
⊢ (𝜑 → (abs‘Σ𝑘 ∈ 𝐴 𝐵) ≤ Σ𝑘 ∈ 𝐴 (abs‘𝐵)) |