Step | Hyp | Ref
| Expression |
1 | | ssid 3148 |
. 2
⊢ 𝐴 ⊆ 𝐴 |
2 | | fsumabs.1 |
. . 3
⊢ (𝜑 → 𝐴 ∈ Fin) |
3 | | sseq1 3151 |
. . . . . 6
⊢ (𝑤 = ∅ → (𝑤 ⊆ 𝐴 ↔ ∅ ⊆ 𝐴)) |
4 | | sumeq1 11245 |
. . . . . . . 8
⊢ (𝑤 = ∅ → Σ𝑘 ∈ 𝑤 𝐵 = Σ𝑘 ∈ ∅ 𝐵) |
5 | 4 | fveq2d 5471 |
. . . . . . 7
⊢ (𝑤 = ∅ →
(abs‘Σ𝑘 ∈
𝑤 𝐵) = (abs‘Σ𝑘 ∈ ∅ 𝐵)) |
6 | | sumeq1 11245 |
. . . . . . 7
⊢ (𝑤 = ∅ → Σ𝑘 ∈ 𝑤 (abs‘𝐵) = Σ𝑘 ∈ ∅ (abs‘𝐵)) |
7 | 5, 6 | breq12d 3978 |
. . . . . 6
⊢ (𝑤 = ∅ →
((abs‘Σ𝑘 ∈
𝑤 𝐵) ≤ Σ𝑘 ∈ 𝑤 (abs‘𝐵) ↔ (abs‘Σ𝑘 ∈ ∅ 𝐵) ≤ Σ𝑘 ∈ ∅ (abs‘𝐵))) |
8 | 3, 7 | imbi12d 233 |
. . . . 5
⊢ (𝑤 = ∅ → ((𝑤 ⊆ 𝐴 → (abs‘Σ𝑘 ∈ 𝑤 𝐵) ≤ Σ𝑘 ∈ 𝑤 (abs‘𝐵)) ↔ (∅ ⊆ 𝐴 → (abs‘Σ𝑘 ∈ ∅ 𝐵) ≤ Σ𝑘 ∈ ∅ (abs‘𝐵)))) |
9 | 8 | imbi2d 229 |
. . . 4
⊢ (𝑤 = ∅ → ((𝜑 → (𝑤 ⊆ 𝐴 → (abs‘Σ𝑘 ∈ 𝑤 𝐵) ≤ Σ𝑘 ∈ 𝑤 (abs‘𝐵))) ↔ (𝜑 → (∅ ⊆ 𝐴 → (abs‘Σ𝑘 ∈ ∅ 𝐵) ≤ Σ𝑘 ∈ ∅ (abs‘𝐵))))) |
10 | | sseq1 3151 |
. . . . . 6
⊢ (𝑤 = 𝑥 → (𝑤 ⊆ 𝐴 ↔ 𝑥 ⊆ 𝐴)) |
11 | | sumeq1 11245 |
. . . . . . . 8
⊢ (𝑤 = 𝑥 → Σ𝑘 ∈ 𝑤 𝐵 = Σ𝑘 ∈ 𝑥 𝐵) |
12 | 11 | fveq2d 5471 |
. . . . . . 7
⊢ (𝑤 = 𝑥 → (abs‘Σ𝑘 ∈ 𝑤 𝐵) = (abs‘Σ𝑘 ∈ 𝑥 𝐵)) |
13 | | sumeq1 11245 |
. . . . . . 7
⊢ (𝑤 = 𝑥 → Σ𝑘 ∈ 𝑤 (abs‘𝐵) = Σ𝑘 ∈ 𝑥 (abs‘𝐵)) |
14 | 12, 13 | breq12d 3978 |
. . . . . 6
⊢ (𝑤 = 𝑥 → ((abs‘Σ𝑘 ∈ 𝑤 𝐵) ≤ Σ𝑘 ∈ 𝑤 (abs‘𝐵) ↔ (abs‘Σ𝑘 ∈ 𝑥 𝐵) ≤ Σ𝑘 ∈ 𝑥 (abs‘𝐵))) |
15 | 10, 14 | imbi12d 233 |
. . . . 5
⊢ (𝑤 = 𝑥 → ((𝑤 ⊆ 𝐴 → (abs‘Σ𝑘 ∈ 𝑤 𝐵) ≤ Σ𝑘 ∈ 𝑤 (abs‘𝐵)) ↔ (𝑥 ⊆ 𝐴 → (abs‘Σ𝑘 ∈ 𝑥 𝐵) ≤ Σ𝑘 ∈ 𝑥 (abs‘𝐵)))) |
16 | 15 | imbi2d 229 |
. . . 4
⊢ (𝑤 = 𝑥 → ((𝜑 → (𝑤 ⊆ 𝐴 → (abs‘Σ𝑘 ∈ 𝑤 𝐵) ≤ Σ𝑘 ∈ 𝑤 (abs‘𝐵))) ↔ (𝜑 → (𝑥 ⊆ 𝐴 → (abs‘Σ𝑘 ∈ 𝑥 𝐵) ≤ Σ𝑘 ∈ 𝑥 (abs‘𝐵))))) |
17 | | sseq1 3151 |
. . . . . 6
⊢ (𝑤 = (𝑥 ∪ {𝑦}) → (𝑤 ⊆ 𝐴 ↔ (𝑥 ∪ {𝑦}) ⊆ 𝐴)) |
18 | | sumeq1 11245 |
. . . . . . . 8
⊢ (𝑤 = (𝑥 ∪ {𝑦}) → Σ𝑘 ∈ 𝑤 𝐵 = Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) |
19 | 18 | fveq2d 5471 |
. . . . . . 7
⊢ (𝑤 = (𝑥 ∪ {𝑦}) → (abs‘Σ𝑘 ∈ 𝑤 𝐵) = (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵)) |
20 | | sumeq1 11245 |
. . . . . . 7
⊢ (𝑤 = (𝑥 ∪ {𝑦}) → Σ𝑘 ∈ 𝑤 (abs‘𝐵) = Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)) |
21 | 19, 20 | breq12d 3978 |
. . . . . 6
⊢ (𝑤 = (𝑥 ∪ {𝑦}) → ((abs‘Σ𝑘 ∈ 𝑤 𝐵) ≤ Σ𝑘 ∈ 𝑤 (abs‘𝐵) ↔ (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵))) |
22 | 17, 21 | imbi12d 233 |
. . . . 5
⊢ (𝑤 = (𝑥 ∪ {𝑦}) → ((𝑤 ⊆ 𝐴 → (abs‘Σ𝑘 ∈ 𝑤 𝐵) ≤ Σ𝑘 ∈ 𝑤 (abs‘𝐵)) ↔ ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)))) |
23 | 22 | imbi2d 229 |
. . . 4
⊢ (𝑤 = (𝑥 ∪ {𝑦}) → ((𝜑 → (𝑤 ⊆ 𝐴 → (abs‘Σ𝑘 ∈ 𝑤 𝐵) ≤ Σ𝑘 ∈ 𝑤 (abs‘𝐵))) ↔ (𝜑 → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵))))) |
24 | | sseq1 3151 |
. . . . . 6
⊢ (𝑤 = 𝐴 → (𝑤 ⊆ 𝐴 ↔ 𝐴 ⊆ 𝐴)) |
25 | | sumeq1 11245 |
. . . . . . . 8
⊢ (𝑤 = 𝐴 → Σ𝑘 ∈ 𝑤 𝐵 = Σ𝑘 ∈ 𝐴 𝐵) |
26 | 25 | fveq2d 5471 |
. . . . . . 7
⊢ (𝑤 = 𝐴 → (abs‘Σ𝑘 ∈ 𝑤 𝐵) = (abs‘Σ𝑘 ∈ 𝐴 𝐵)) |
27 | | sumeq1 11245 |
. . . . . . 7
⊢ (𝑤 = 𝐴 → Σ𝑘 ∈ 𝑤 (abs‘𝐵) = Σ𝑘 ∈ 𝐴 (abs‘𝐵)) |
28 | 26, 27 | breq12d 3978 |
. . . . . 6
⊢ (𝑤 = 𝐴 → ((abs‘Σ𝑘 ∈ 𝑤 𝐵) ≤ Σ𝑘 ∈ 𝑤 (abs‘𝐵) ↔ (abs‘Σ𝑘 ∈ 𝐴 𝐵) ≤ Σ𝑘 ∈ 𝐴 (abs‘𝐵))) |
29 | 24, 28 | imbi12d 233 |
. . . . 5
⊢ (𝑤 = 𝐴 → ((𝑤 ⊆ 𝐴 → (abs‘Σ𝑘 ∈ 𝑤 𝐵) ≤ Σ𝑘 ∈ 𝑤 (abs‘𝐵)) ↔ (𝐴 ⊆ 𝐴 → (abs‘Σ𝑘 ∈ 𝐴 𝐵) ≤ Σ𝑘 ∈ 𝐴 (abs‘𝐵)))) |
30 | 29 | imbi2d 229 |
. . . 4
⊢ (𝑤 = 𝐴 → ((𝜑 → (𝑤 ⊆ 𝐴 → (abs‘Σ𝑘 ∈ 𝑤 𝐵) ≤ Σ𝑘 ∈ 𝑤 (abs‘𝐵))) ↔ (𝜑 → (𝐴 ⊆ 𝐴 → (abs‘Σ𝑘 ∈ 𝐴 𝐵) ≤ Σ𝑘 ∈ 𝐴 (abs‘𝐵))))) |
31 | | 0le0 8916 |
. . . . . 6
⊢ 0 ≤
0 |
32 | | sum0 11278 |
. . . . . . . 8
⊢
Σ𝑘 ∈
∅ 𝐵 =
0 |
33 | 32 | fveq2i 5470 |
. . . . . . 7
⊢
(abs‘Σ𝑘
∈ ∅ 𝐵) =
(abs‘0) |
34 | | abs0 10951 |
. . . . . . 7
⊢
(abs‘0) = 0 |
35 | 33, 34 | eqtri 2178 |
. . . . . 6
⊢
(abs‘Σ𝑘
∈ ∅ 𝐵) =
0 |
36 | | sum0 11278 |
. . . . . 6
⊢
Σ𝑘 ∈
∅ (abs‘𝐵) =
0 |
37 | 31, 35, 36 | 3brtr4i 3994 |
. . . . 5
⊢
(abs‘Σ𝑘
∈ ∅ 𝐵) ≤
Σ𝑘 ∈ ∅
(abs‘𝐵) |
38 | 37 | 2a1i 27 |
. . . 4
⊢ (𝜑 → (∅ ⊆ 𝐴 → (abs‘Σ𝑘 ∈ ∅ 𝐵) ≤ Σ𝑘 ∈ ∅ (abs‘𝐵))) |
39 | | ssun1 3270 |
. . . . . . . . 9
⊢ 𝑥 ⊆ (𝑥 ∪ {𝑦}) |
40 | | sstr 3136 |
. . . . . . . . 9
⊢ ((𝑥 ⊆ (𝑥 ∪ {𝑦}) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝑥 ⊆ 𝐴) |
41 | 39, 40 | mpan 421 |
. . . . . . . 8
⊢ ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → 𝑥 ⊆ 𝐴) |
42 | 41 | imim1i 60 |
. . . . . . 7
⊢ ((𝑥 ⊆ 𝐴 → (abs‘Σ𝑘 ∈ 𝑥 𝐵) ≤ Σ𝑘 ∈ 𝑥 (abs‘𝐵)) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (abs‘Σ𝑘 ∈ 𝑥 𝐵) ≤ Σ𝑘 ∈ 𝑥 (abs‘𝐵))) |
43 | | simplrl 525 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝑥 ∈ Fin) |
44 | | simpll 519 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝜑) |
45 | | simpr 109 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (𝑥 ∪ {𝑦}) ⊆ 𝐴) |
46 | 45 | unssad 3284 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝑥 ⊆ 𝐴) |
47 | 46 | sselda 3128 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑘 ∈ 𝑥) → 𝑘 ∈ 𝐴) |
48 | | fsumabs.2 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
49 | 44, 47, 48 | syl2an2r 585 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑘 ∈ 𝑥) → 𝐵 ∈ ℂ) |
50 | 43, 49 | fsumcl 11290 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ 𝑥 𝐵 ∈ ℂ) |
51 | 50 | abscld 11074 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (abs‘Σ𝑘 ∈ 𝑥 𝐵) ∈ ℝ) |
52 | 49 | abscld 11074 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑘 ∈ 𝑥) → (abs‘𝐵) ∈ ℝ) |
53 | 43, 52 | fsumrecl 11291 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ 𝑥 (abs‘𝐵) ∈ ℝ) |
54 | | simpr 109 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (𝑥 ∪ {𝑦}) ⊆ 𝐴) |
55 | 54 | unssbd 3285 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → {𝑦} ⊆ 𝐴) |
56 | | vex 2715 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑦 ∈ V |
57 | 56 | snss 3685 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ 𝐴 ↔ {𝑦} ⊆ 𝐴) |
58 | 55, 57 | sylibr 133 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝑦 ∈ 𝐴) |
59 | 58 | adantlrl 474 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝑦 ∈ 𝐴) |
60 | 48 | ralrimiva 2530 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
61 | 60 | ad2antrr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
62 | | nfcsb1v 3064 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑘⦋𝑦 / 𝑘⦌𝐵 |
63 | 62 | nfel1 2310 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘⦋𝑦 / 𝑘⦌𝐵 ∈ ℂ |
64 | | csbeq1a 3040 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑘⦌𝐵) |
65 | 64 | eleq1d 2226 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑦 → (𝐵 ∈ ℂ ↔ ⦋𝑦 / 𝑘⦌𝐵 ∈ ℂ)) |
66 | 63, 65 | rspc 2810 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ 𝐴 → (∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ → ⦋𝑦 / 𝑘⦌𝐵 ∈ ℂ)) |
67 | 59, 61, 66 | sylc 62 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ⦋𝑦 / 𝑘⦌𝐵 ∈ ℂ) |
68 | 67 | abscld 11074 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (abs‘⦋𝑦 / 𝑘⦌𝐵) ∈ ℝ) |
69 | 51, 53, 68 | leadd1d 8408 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ((abs‘Σ𝑘 ∈ 𝑥 𝐵) ≤ Σ𝑘 ∈ 𝑥 (abs‘𝐵) ↔ ((abs‘Σ𝑘 ∈ 𝑥 𝐵) + (abs‘⦋𝑦 / 𝑘⦌𝐵)) ≤ (Σ𝑘 ∈ 𝑥 (abs‘𝐵) + (abs‘⦋𝑦 / 𝑘⦌𝐵)))) |
70 | | simplr 520 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ¬ 𝑦 ∈ 𝑥) |
71 | 70 | adantlrl 474 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ¬ 𝑦 ∈ 𝑥) |
72 | | disjsn 3621 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∩ {𝑦}) = ∅ ↔ ¬ 𝑦 ∈ 𝑥) |
73 | 71, 72 | sylibr 133 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (𝑥 ∩ {𝑦}) = ∅) |
74 | | eqidd 2158 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (𝑥 ∪ {𝑦}) = (𝑥 ∪ {𝑦})) |
75 | 56 | a1i 9 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝑦 ∈ V) |
76 | | unsnfi 6860 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ Fin ∧ 𝑦 ∈ V ∧ ¬ 𝑦 ∈ 𝑥) → (𝑥 ∪ {𝑦}) ∈ Fin) |
77 | 43, 75, 71, 76 | syl3anc 1220 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (𝑥 ∪ {𝑦}) ∈ Fin) |
78 | 45 | sselda 3128 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑘 ∈ (𝑥 ∪ {𝑦})) → 𝑘 ∈ 𝐴) |
79 | 44, 78, 48 | syl2an2r 585 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑘 ∈ (𝑥 ∪ {𝑦})) → 𝐵 ∈ ℂ) |
80 | 79 | abscld 11074 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑘 ∈ (𝑥 ∪ {𝑦})) → (abs‘𝐵) ∈ ℝ) |
81 | 80 | recnd 7900 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑘 ∈ (𝑥 ∪ {𝑦})) → (abs‘𝐵) ∈ ℂ) |
82 | 73, 74, 77, 81 | fsumsplit 11297 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵) = (Σ𝑘 ∈ 𝑥 (abs‘𝐵) + Σ𝑘 ∈ {𝑦} (abs‘𝐵))) |
83 | | csbfv2g 5504 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ V →
⦋𝑦 / 𝑘⦌(abs‘𝐵) =
(abs‘⦋𝑦
/ 𝑘⦌𝐵)) |
84 | 83 | elv 2716 |
. . . . . . . . . . . . . . . . . 18
⊢
⦋𝑦 /
𝑘⦌(abs‘𝐵) = (abs‘⦋𝑦 / 𝑘⦌𝐵) |
85 | 60 | ad2antrr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
86 | 58, 85, 66 | sylc 62 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ⦋𝑦 / 𝑘⦌𝐵 ∈ ℂ) |
87 | 86 | abscld 11074 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (abs‘⦋𝑦 / 𝑘⦌𝐵) ∈ ℝ) |
88 | 87 | recnd 7900 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (abs‘⦋𝑦 / 𝑘⦌𝐵) ∈ ℂ) |
89 | 84, 88 | eqeltrid 2244 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ⦋𝑦 / 𝑘⦌(abs‘𝐵) ∈ ℂ) |
90 | | sumsns 11305 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ V ∧
⦋𝑦 / 𝑘⦌(abs‘𝐵) ∈ ℂ) →
Σ𝑘 ∈ {𝑦} (abs‘𝐵) = ⦋𝑦 / 𝑘⦌(abs‘𝐵)) |
91 | 56, 89, 90 | sylancr 411 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ {𝑦} (abs‘𝐵) = ⦋𝑦 / 𝑘⦌(abs‘𝐵)) |
92 | 91, 84 | eqtrdi 2206 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ {𝑦} (abs‘𝐵) = (abs‘⦋𝑦 / 𝑘⦌𝐵)) |
93 | 92 | oveq2d 5837 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (Σ𝑘 ∈ 𝑥 (abs‘𝐵) + Σ𝑘 ∈ {𝑦} (abs‘𝐵)) = (Σ𝑘 ∈ 𝑥 (abs‘𝐵) + (abs‘⦋𝑦 / 𝑘⦌𝐵))) |
94 | 93 | adantlrl 474 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (Σ𝑘 ∈ 𝑥 (abs‘𝐵) + Σ𝑘 ∈ {𝑦} (abs‘𝐵)) = (Σ𝑘 ∈ 𝑥 (abs‘𝐵) + (abs‘⦋𝑦 / 𝑘⦌𝐵))) |
95 | 82, 94 | eqtrd 2190 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵) = (Σ𝑘 ∈ 𝑥 (abs‘𝐵) + (abs‘⦋𝑦 / 𝑘⦌𝐵))) |
96 | 95 | breq2d 3977 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (((abs‘Σ𝑘 ∈ 𝑥 𝐵) + (abs‘⦋𝑦 / 𝑘⦌𝐵)) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵) ↔ ((abs‘Σ𝑘 ∈ 𝑥 𝐵) + (abs‘⦋𝑦 / 𝑘⦌𝐵)) ≤ (Σ𝑘 ∈ 𝑥 (abs‘𝐵) + (abs‘⦋𝑦 / 𝑘⦌𝐵)))) |
97 | 69, 96 | bitr4d 190 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ((abs‘Σ𝑘 ∈ 𝑥 𝐵) ≤ Σ𝑘 ∈ 𝑥 (abs‘𝐵) ↔ ((abs‘Σ𝑘 ∈ 𝑥 𝐵) + (abs‘⦋𝑦 / 𝑘⦌𝐵)) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵))) |
98 | 70, 72 | sylibr 133 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (𝑥 ∩ {𝑦}) = ∅) |
99 | 98 | adantlrl 474 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (𝑥 ∩ {𝑦}) = ∅) |
100 | 99, 74, 77, 79 | fsumsplit 11297 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵 = (Σ𝑘 ∈ 𝑥 𝐵 + Σ𝑘 ∈ {𝑦}𝐵)) |
101 | | sumsns 11305 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ 𝐴 ∧ ⦋𝑦 / 𝑘⦌𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑦}𝐵 = ⦋𝑦 / 𝑘⦌𝐵) |
102 | 58, 86, 101 | syl2anc 409 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ {𝑦}𝐵 = ⦋𝑦 / 𝑘⦌𝐵) |
103 | 102 | oveq2d 5837 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (Σ𝑘 ∈ 𝑥 𝐵 + Σ𝑘 ∈ {𝑦}𝐵) = (Σ𝑘 ∈ 𝑥 𝐵 + ⦋𝑦 / 𝑘⦌𝐵)) |
104 | 103 | adantlrl 474 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (Σ𝑘 ∈ 𝑥 𝐵 + Σ𝑘 ∈ {𝑦}𝐵) = (Σ𝑘 ∈ 𝑥 𝐵 + ⦋𝑦 / 𝑘⦌𝐵)) |
105 | 100, 104 | eqtrd 2190 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵 = (Σ𝑘 ∈ 𝑥 𝐵 + ⦋𝑦 / 𝑘⦌𝐵)) |
106 | 105 | fveq2d 5471 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) = (abs‘(Σ𝑘 ∈ 𝑥 𝐵 + ⦋𝑦 / 𝑘⦌𝐵))) |
107 | 86 | adantlrl 474 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ⦋𝑦 / 𝑘⦌𝐵 ∈ ℂ) |
108 | 50, 107 | abstrid 11089 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (abs‘(Σ𝑘 ∈ 𝑥 𝐵 + ⦋𝑦 / 𝑘⦌𝐵)) ≤ ((abs‘Σ𝑘 ∈ 𝑥 𝐵) + (abs‘⦋𝑦 / 𝑘⦌𝐵))) |
109 | 106, 108 | eqbrtrd 3986 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ ((abs‘Σ𝑘 ∈ 𝑥 𝐵) + (abs‘⦋𝑦 / 𝑘⦌𝐵))) |
110 | 77, 79 | fsumcl 11290 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵 ∈ ℂ) |
111 | 110 | abscld 11074 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ∈ ℝ) |
112 | 51, 68 | readdcld 7901 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ((abs‘Σ𝑘 ∈ 𝑥 𝐵) + (abs‘⦋𝑦 / 𝑘⦌𝐵)) ∈ ℝ) |
113 | 77, 80 | fsumrecl 11291 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵) ∈ ℝ) |
114 | | letr 7954 |
. . . . . . . . . . . 12
⊢
(((abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ∈ ℝ ∧
((abs‘Σ𝑘 ∈
𝑥 𝐵) + (abs‘⦋𝑦 / 𝑘⦌𝐵)) ∈ ℝ ∧ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵) ∈ ℝ) →
(((abs‘Σ𝑘
∈ (𝑥 ∪ {𝑦})𝐵) ≤ ((abs‘Σ𝑘 ∈ 𝑥 𝐵) + (abs‘⦋𝑦 / 𝑘⦌𝐵)) ∧ ((abs‘Σ𝑘 ∈ 𝑥 𝐵) + (abs‘⦋𝑦 / 𝑘⦌𝐵)) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)) → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵))) |
115 | 111, 112,
113, 114 | syl3anc 1220 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (((abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ ((abs‘Σ𝑘 ∈ 𝑥 𝐵) + (abs‘⦋𝑦 / 𝑘⦌𝐵)) ∧ ((abs‘Σ𝑘 ∈ 𝑥 𝐵) + (abs‘⦋𝑦 / 𝑘⦌𝐵)) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)) → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵))) |
116 | 109, 115 | mpand 426 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (((abs‘Σ𝑘 ∈ 𝑥 𝐵) + (abs‘⦋𝑦 / 𝑘⦌𝐵)) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵) → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵))) |
117 | 97, 116 | sylbid 149 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ((abs‘Σ𝑘 ∈ 𝑥 𝐵) ≤ Σ𝑘 ∈ 𝑥 (abs‘𝐵) → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵))) |
118 | 117 | ex 114 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → ((abs‘Σ𝑘 ∈ 𝑥 𝐵) ≤ Σ𝑘 ∈ 𝑥 (abs‘𝐵) → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)))) |
119 | 118 | a2d 26 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) → (((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (abs‘Σ𝑘 ∈ 𝑥 𝐵) ≤ Σ𝑘 ∈ 𝑥 (abs‘𝐵)) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)))) |
120 | 42, 119 | syl5 32 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) → ((𝑥 ⊆ 𝐴 → (abs‘Σ𝑘 ∈ 𝑥 𝐵) ≤ Σ𝑘 ∈ 𝑥 (abs‘𝐵)) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)))) |
121 | 120 | expcom 115 |
. . . . 5
⊢ ((𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥) → (𝜑 → ((𝑥 ⊆ 𝐴 → (abs‘Σ𝑘 ∈ 𝑥 𝐵) ≤ Σ𝑘 ∈ 𝑥 (abs‘𝐵)) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵))))) |
122 | 121 | a2d 26 |
. . . 4
⊢ ((𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥) → ((𝜑 → (𝑥 ⊆ 𝐴 → (abs‘Σ𝑘 ∈ 𝑥 𝐵) ≤ Σ𝑘 ∈ 𝑥 (abs‘𝐵))) → (𝜑 → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵))))) |
123 | 9, 16, 23, 30, 38, 122 | findcard2s 6832 |
. . 3
⊢ (𝐴 ∈ Fin → (𝜑 → (𝐴 ⊆ 𝐴 → (abs‘Σ𝑘 ∈ 𝐴 𝐵) ≤ Σ𝑘 ∈ 𝐴 (abs‘𝐵)))) |
124 | 2, 123 | mpcom 36 |
. 2
⊢ (𝜑 → (𝐴 ⊆ 𝐴 → (abs‘Σ𝑘 ∈ 𝐴 𝐵) ≤ Σ𝑘 ∈ 𝐴 (abs‘𝐵))) |
125 | 1, 124 | mpi 15 |
1
⊢ (𝜑 → (abs‘Σ𝑘 ∈ 𝐴 𝐵) ≤ Σ𝑘 ∈ 𝐴 (abs‘𝐵)) |