ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumabs GIF version

Theorem fsumabs 11630
Description: Generalized triangle inequality: the absolute value of a finite sum is less than or equal to the sum of absolute values. (Contributed by NM, 9-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
fsumabs.1 (𝜑𝐴 ∈ Fin)
fsumabs.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
fsumabs (𝜑 → (abs‘Σ𝑘𝐴 𝐵) ≤ Σ𝑘𝐴 (abs‘𝐵))
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fsumabs
Dummy variables 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3203 . 2 𝐴𝐴
2 fsumabs.1 . . 3 (𝜑𝐴 ∈ Fin)
3 sseq1 3206 . . . . . 6 (𝑤 = ∅ → (𝑤𝐴 ↔ ∅ ⊆ 𝐴))
4 sumeq1 11520 . . . . . . . 8 (𝑤 = ∅ → Σ𝑘𝑤 𝐵 = Σ𝑘 ∈ ∅ 𝐵)
54fveq2d 5562 . . . . . . 7 (𝑤 = ∅ → (abs‘Σ𝑘𝑤 𝐵) = (abs‘Σ𝑘 ∈ ∅ 𝐵))
6 sumeq1 11520 . . . . . . 7 (𝑤 = ∅ → Σ𝑘𝑤 (abs‘𝐵) = Σ𝑘 ∈ ∅ (abs‘𝐵))
75, 6breq12d 4046 . . . . . 6 (𝑤 = ∅ → ((abs‘Σ𝑘𝑤 𝐵) ≤ Σ𝑘𝑤 (abs‘𝐵) ↔ (abs‘Σ𝑘 ∈ ∅ 𝐵) ≤ Σ𝑘 ∈ ∅ (abs‘𝐵)))
83, 7imbi12d 234 . . . . 5 (𝑤 = ∅ → ((𝑤𝐴 → (abs‘Σ𝑘𝑤 𝐵) ≤ Σ𝑘𝑤 (abs‘𝐵)) ↔ (∅ ⊆ 𝐴 → (abs‘Σ𝑘 ∈ ∅ 𝐵) ≤ Σ𝑘 ∈ ∅ (abs‘𝐵))))
98imbi2d 230 . . . 4 (𝑤 = ∅ → ((𝜑 → (𝑤𝐴 → (abs‘Σ𝑘𝑤 𝐵) ≤ Σ𝑘𝑤 (abs‘𝐵))) ↔ (𝜑 → (∅ ⊆ 𝐴 → (abs‘Σ𝑘 ∈ ∅ 𝐵) ≤ Σ𝑘 ∈ ∅ (abs‘𝐵)))))
10 sseq1 3206 . . . . . 6 (𝑤 = 𝑥 → (𝑤𝐴𝑥𝐴))
11 sumeq1 11520 . . . . . . . 8 (𝑤 = 𝑥 → Σ𝑘𝑤 𝐵 = Σ𝑘𝑥 𝐵)
1211fveq2d 5562 . . . . . . 7 (𝑤 = 𝑥 → (abs‘Σ𝑘𝑤 𝐵) = (abs‘Σ𝑘𝑥 𝐵))
13 sumeq1 11520 . . . . . . 7 (𝑤 = 𝑥 → Σ𝑘𝑤 (abs‘𝐵) = Σ𝑘𝑥 (abs‘𝐵))
1412, 13breq12d 4046 . . . . . 6 (𝑤 = 𝑥 → ((abs‘Σ𝑘𝑤 𝐵) ≤ Σ𝑘𝑤 (abs‘𝐵) ↔ (abs‘Σ𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (abs‘𝐵)))
1510, 14imbi12d 234 . . . . 5 (𝑤 = 𝑥 → ((𝑤𝐴 → (abs‘Σ𝑘𝑤 𝐵) ≤ Σ𝑘𝑤 (abs‘𝐵)) ↔ (𝑥𝐴 → (abs‘Σ𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (abs‘𝐵))))
1615imbi2d 230 . . . 4 (𝑤 = 𝑥 → ((𝜑 → (𝑤𝐴 → (abs‘Σ𝑘𝑤 𝐵) ≤ Σ𝑘𝑤 (abs‘𝐵))) ↔ (𝜑 → (𝑥𝐴 → (abs‘Σ𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (abs‘𝐵)))))
17 sseq1 3206 . . . . . 6 (𝑤 = (𝑥 ∪ {𝑦}) → (𝑤𝐴 ↔ (𝑥 ∪ {𝑦}) ⊆ 𝐴))
18 sumeq1 11520 . . . . . . . 8 (𝑤 = (𝑥 ∪ {𝑦}) → Σ𝑘𝑤 𝐵 = Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵)
1918fveq2d 5562 . . . . . . 7 (𝑤 = (𝑥 ∪ {𝑦}) → (abs‘Σ𝑘𝑤 𝐵) = (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵))
20 sumeq1 11520 . . . . . . 7 (𝑤 = (𝑥 ∪ {𝑦}) → Σ𝑘𝑤 (abs‘𝐵) = Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵))
2119, 20breq12d 4046 . . . . . 6 (𝑤 = (𝑥 ∪ {𝑦}) → ((abs‘Σ𝑘𝑤 𝐵) ≤ Σ𝑘𝑤 (abs‘𝐵) ↔ (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)))
2217, 21imbi12d 234 . . . . 5 (𝑤 = (𝑥 ∪ {𝑦}) → ((𝑤𝐴 → (abs‘Σ𝑘𝑤 𝐵) ≤ Σ𝑘𝑤 (abs‘𝐵)) ↔ ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵))))
2322imbi2d 230 . . . 4 (𝑤 = (𝑥 ∪ {𝑦}) → ((𝜑 → (𝑤𝐴 → (abs‘Σ𝑘𝑤 𝐵) ≤ Σ𝑘𝑤 (abs‘𝐵))) ↔ (𝜑 → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)))))
24 sseq1 3206 . . . . . 6 (𝑤 = 𝐴 → (𝑤𝐴𝐴𝐴))
25 sumeq1 11520 . . . . . . . 8 (𝑤 = 𝐴 → Σ𝑘𝑤 𝐵 = Σ𝑘𝐴 𝐵)
2625fveq2d 5562 . . . . . . 7 (𝑤 = 𝐴 → (abs‘Σ𝑘𝑤 𝐵) = (abs‘Σ𝑘𝐴 𝐵))
27 sumeq1 11520 . . . . . . 7 (𝑤 = 𝐴 → Σ𝑘𝑤 (abs‘𝐵) = Σ𝑘𝐴 (abs‘𝐵))
2826, 27breq12d 4046 . . . . . 6 (𝑤 = 𝐴 → ((abs‘Σ𝑘𝑤 𝐵) ≤ Σ𝑘𝑤 (abs‘𝐵) ↔ (abs‘Σ𝑘𝐴 𝐵) ≤ Σ𝑘𝐴 (abs‘𝐵)))
2924, 28imbi12d 234 . . . . 5 (𝑤 = 𝐴 → ((𝑤𝐴 → (abs‘Σ𝑘𝑤 𝐵) ≤ Σ𝑘𝑤 (abs‘𝐵)) ↔ (𝐴𝐴 → (abs‘Σ𝑘𝐴 𝐵) ≤ Σ𝑘𝐴 (abs‘𝐵))))
3029imbi2d 230 . . . 4 (𝑤 = 𝐴 → ((𝜑 → (𝑤𝐴 → (abs‘Σ𝑘𝑤 𝐵) ≤ Σ𝑘𝑤 (abs‘𝐵))) ↔ (𝜑 → (𝐴𝐴 → (abs‘Σ𝑘𝐴 𝐵) ≤ Σ𝑘𝐴 (abs‘𝐵)))))
31 0le0 9079 . . . . . 6 0 ≤ 0
32 sum0 11553 . . . . . . . 8 Σ𝑘 ∈ ∅ 𝐵 = 0
3332fveq2i 5561 . . . . . . 7 (abs‘Σ𝑘 ∈ ∅ 𝐵) = (abs‘0)
34 abs0 11223 . . . . . . 7 (abs‘0) = 0
3533, 34eqtri 2217 . . . . . 6 (abs‘Σ𝑘 ∈ ∅ 𝐵) = 0
36 sum0 11553 . . . . . 6 Σ𝑘 ∈ ∅ (abs‘𝐵) = 0
3731, 35, 363brtr4i 4063 . . . . 5 (abs‘Σ𝑘 ∈ ∅ 𝐵) ≤ Σ𝑘 ∈ ∅ (abs‘𝐵)
38372a1i 27 . . . 4 (𝜑 → (∅ ⊆ 𝐴 → (abs‘Σ𝑘 ∈ ∅ 𝐵) ≤ Σ𝑘 ∈ ∅ (abs‘𝐵)))
39 ssun1 3326 . . . . . . . . 9 𝑥 ⊆ (𝑥 ∪ {𝑦})
40 sstr 3191 . . . . . . . . 9 ((𝑥 ⊆ (𝑥 ∪ {𝑦}) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝑥𝐴)
4139, 40mpan 424 . . . . . . . 8 ((𝑥 ∪ {𝑦}) ⊆ 𝐴𝑥𝐴)
4241imim1i 60 . . . . . . 7 ((𝑥𝐴 → (abs‘Σ𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (abs‘𝐵)) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (abs‘Σ𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (abs‘𝐵)))
43 simplrl 535 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝑥 ∈ Fin)
44 simpll 527 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝜑)
45 simpr 110 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (𝑥 ∪ {𝑦}) ⊆ 𝐴)
4645unssad 3340 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝑥𝐴)
4746sselda 3183 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑘𝑥) → 𝑘𝐴)
48 fsumabs.2 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
4944, 47, 48syl2an2r 595 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑘𝑥) → 𝐵 ∈ ℂ)
5043, 49fsumcl 11565 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘𝑥 𝐵 ∈ ℂ)
5150abscld 11346 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (abs‘Σ𝑘𝑥 𝐵) ∈ ℝ)
5249abscld 11346 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑘𝑥) → (abs‘𝐵) ∈ ℝ)
5343, 52fsumrecl 11566 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘𝑥 (abs‘𝐵) ∈ ℝ)
54 simpr 110 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (𝑥 ∪ {𝑦}) ⊆ 𝐴)
5554unssbd 3341 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → {𝑦} ⊆ 𝐴)
56 vex 2766 . . . . . . . . . . . . . . . . 17 𝑦 ∈ V
5756snss 3757 . . . . . . . . . . . . . . . 16 (𝑦𝐴 ↔ {𝑦} ⊆ 𝐴)
5855, 57sylibr 134 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝑦𝐴)
5958adantlrl 482 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝑦𝐴)
6048ralrimiva 2570 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℂ)
6160ad2antrr 488 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ∀𝑘𝐴 𝐵 ∈ ℂ)
62 nfcsb1v 3117 . . . . . . . . . . . . . . . 16 𝑘𝑦 / 𝑘𝐵
6362nfel1 2350 . . . . . . . . . . . . . . 15 𝑘𝑦 / 𝑘𝐵 ∈ ℂ
64 csbeq1a 3093 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑦𝐵 = 𝑦 / 𝑘𝐵)
6564eleq1d 2265 . . . . . . . . . . . . . . 15 (𝑘 = 𝑦 → (𝐵 ∈ ℂ ↔ 𝑦 / 𝑘𝐵 ∈ ℂ))
6663, 65rspc 2862 . . . . . . . . . . . . . 14 (𝑦𝐴 → (∀𝑘𝐴 𝐵 ∈ ℂ → 𝑦 / 𝑘𝐵 ∈ ℂ))
6759, 61, 66sylc 62 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝑦 / 𝑘𝐵 ∈ ℂ)
6867abscld 11346 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (abs‘𝑦 / 𝑘𝐵) ∈ ℝ)
6951, 53, 68leadd1d 8566 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ((abs‘Σ𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (abs‘𝐵) ↔ ((abs‘Σ𝑘𝑥 𝐵) + (abs‘𝑦 / 𝑘𝐵)) ≤ (Σ𝑘𝑥 (abs‘𝐵) + (abs‘𝑦 / 𝑘𝐵))))
70 simplr 528 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ¬ 𝑦𝑥)
7170adantlrl 482 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ¬ 𝑦𝑥)
72 disjsn 3684 . . . . . . . . . . . . . . 15 ((𝑥 ∩ {𝑦}) = ∅ ↔ ¬ 𝑦𝑥)
7371, 72sylibr 134 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (𝑥 ∩ {𝑦}) = ∅)
74 eqidd 2197 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (𝑥 ∪ {𝑦}) = (𝑥 ∪ {𝑦}))
7556a1i 9 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝑦 ∈ V)
76 unsnfi 6980 . . . . . . . . . . . . . . 15 ((𝑥 ∈ Fin ∧ 𝑦 ∈ V ∧ ¬ 𝑦𝑥) → (𝑥 ∪ {𝑦}) ∈ Fin)
7743, 75, 71, 76syl3anc 1249 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (𝑥 ∪ {𝑦}) ∈ Fin)
7845sselda 3183 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑘 ∈ (𝑥 ∪ {𝑦})) → 𝑘𝐴)
7944, 78, 48syl2an2r 595 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑘 ∈ (𝑥 ∪ {𝑦})) → 𝐵 ∈ ℂ)
8079abscld 11346 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑘 ∈ (𝑥 ∪ {𝑦})) → (abs‘𝐵) ∈ ℝ)
8180recnd 8055 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑘 ∈ (𝑥 ∪ {𝑦})) → (abs‘𝐵) ∈ ℂ)
8273, 74, 77, 81fsumsplit 11572 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵) = (Σ𝑘𝑥 (abs‘𝐵) + Σ𝑘 ∈ {𝑦} (abs‘𝐵)))
83 csbfv2g 5597 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ V → 𝑦 / 𝑘(abs‘𝐵) = (abs‘𝑦 / 𝑘𝐵))
8483elv 2767 . . . . . . . . . . . . . . . . . 18 𝑦 / 𝑘(abs‘𝐵) = (abs‘𝑦 / 𝑘𝐵)
8560ad2antrr 488 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ∀𝑘𝐴 𝐵 ∈ ℂ)
8658, 85, 66sylc 62 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝑦 / 𝑘𝐵 ∈ ℂ)
8786abscld 11346 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (abs‘𝑦 / 𝑘𝐵) ∈ ℝ)
8887recnd 8055 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (abs‘𝑦 / 𝑘𝐵) ∈ ℂ)
8984, 88eqeltrid 2283 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝑦 / 𝑘(abs‘𝐵) ∈ ℂ)
90 sumsns 11580 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ V ∧ 𝑦 / 𝑘(abs‘𝐵) ∈ ℂ) → Σ𝑘 ∈ {𝑦} (abs‘𝐵) = 𝑦 / 𝑘(abs‘𝐵))
9156, 89, 90sylancr 414 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ {𝑦} (abs‘𝐵) = 𝑦 / 𝑘(abs‘𝐵))
9291, 84eqtrdi 2245 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ {𝑦} (abs‘𝐵) = (abs‘𝑦 / 𝑘𝐵))
9392oveq2d 5938 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (Σ𝑘𝑥 (abs‘𝐵) + Σ𝑘 ∈ {𝑦} (abs‘𝐵)) = (Σ𝑘𝑥 (abs‘𝐵) + (abs‘𝑦 / 𝑘𝐵)))
9493adantlrl 482 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (Σ𝑘𝑥 (abs‘𝐵) + Σ𝑘 ∈ {𝑦} (abs‘𝐵)) = (Σ𝑘𝑥 (abs‘𝐵) + (abs‘𝑦 / 𝑘𝐵)))
9582, 94eqtrd 2229 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵) = (Σ𝑘𝑥 (abs‘𝐵) + (abs‘𝑦 / 𝑘𝐵)))
9695breq2d 4045 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (((abs‘Σ𝑘𝑥 𝐵) + (abs‘𝑦 / 𝑘𝐵)) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵) ↔ ((abs‘Σ𝑘𝑥 𝐵) + (abs‘𝑦 / 𝑘𝐵)) ≤ (Σ𝑘𝑥 (abs‘𝐵) + (abs‘𝑦 / 𝑘𝐵))))
9769, 96bitr4d 191 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ((abs‘Σ𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (abs‘𝐵) ↔ ((abs‘Σ𝑘𝑥 𝐵) + (abs‘𝑦 / 𝑘𝐵)) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)))
9870, 72sylibr 134 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (𝑥 ∩ {𝑦}) = ∅)
9998adantlrl 482 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (𝑥 ∩ {𝑦}) = ∅)
10099, 74, 77, 79fsumsplit 11572 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵 = (Σ𝑘𝑥 𝐵 + Σ𝑘 ∈ {𝑦}𝐵))
101 sumsns 11580 . . . . . . . . . . . . . . . . 17 ((𝑦𝐴𝑦 / 𝑘𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑦}𝐵 = 𝑦 / 𝑘𝐵)
10258, 86, 101syl2anc 411 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ {𝑦}𝐵 = 𝑦 / 𝑘𝐵)
103102oveq2d 5938 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (Σ𝑘𝑥 𝐵 + Σ𝑘 ∈ {𝑦}𝐵) = (Σ𝑘𝑥 𝐵 + 𝑦 / 𝑘𝐵))
104103adantlrl 482 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (Σ𝑘𝑥 𝐵 + Σ𝑘 ∈ {𝑦}𝐵) = (Σ𝑘𝑥 𝐵 + 𝑦 / 𝑘𝐵))
105100, 104eqtrd 2229 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵 = (Σ𝑘𝑥 𝐵 + 𝑦 / 𝑘𝐵))
106105fveq2d 5562 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) = (abs‘(Σ𝑘𝑥 𝐵 + 𝑦 / 𝑘𝐵)))
10786adantlrl 482 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝑦 / 𝑘𝐵 ∈ ℂ)
10850, 107abstrid 11361 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (abs‘(Σ𝑘𝑥 𝐵 + 𝑦 / 𝑘𝐵)) ≤ ((abs‘Σ𝑘𝑥 𝐵) + (abs‘𝑦 / 𝑘𝐵)))
109106, 108eqbrtrd 4055 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ ((abs‘Σ𝑘𝑥 𝐵) + (abs‘𝑦 / 𝑘𝐵)))
11077, 79fsumcl 11565 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵 ∈ ℂ)
111110abscld 11346 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ∈ ℝ)
11251, 68readdcld 8056 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ((abs‘Σ𝑘𝑥 𝐵) + (abs‘𝑦 / 𝑘𝐵)) ∈ ℝ)
11377, 80fsumrecl 11566 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵) ∈ ℝ)
114 letr 8109 . . . . . . . . . . . 12 (((abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ∈ ℝ ∧ ((abs‘Σ𝑘𝑥 𝐵) + (abs‘𝑦 / 𝑘𝐵)) ∈ ℝ ∧ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵) ∈ ℝ) → (((abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ ((abs‘Σ𝑘𝑥 𝐵) + (abs‘𝑦 / 𝑘𝐵)) ∧ ((abs‘Σ𝑘𝑥 𝐵) + (abs‘𝑦 / 𝑘𝐵)) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)) → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)))
115111, 112, 113, 114syl3anc 1249 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (((abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ ((abs‘Σ𝑘𝑥 𝐵) + (abs‘𝑦 / 𝑘𝐵)) ∧ ((abs‘Σ𝑘𝑥 𝐵) + (abs‘𝑦 / 𝑘𝐵)) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)) → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)))
116109, 115mpand 429 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (((abs‘Σ𝑘𝑥 𝐵) + (abs‘𝑦 / 𝑘𝐵)) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵) → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)))
11797, 116sylbid 150 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ((abs‘Σ𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (abs‘𝐵) → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)))
118117ex 115 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → ((abs‘Σ𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (abs‘𝐵) → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵))))
119118a2d 26 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) → (((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (abs‘Σ𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (abs‘𝐵)) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵))))
12042, 119syl5 32 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) → ((𝑥𝐴 → (abs‘Σ𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (abs‘𝐵)) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵))))
121120expcom 116 . . . . 5 ((𝑥 ∈ Fin ∧ ¬ 𝑦𝑥) → (𝜑 → ((𝑥𝐴 → (abs‘Σ𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (abs‘𝐵)) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)))))
122121a2d 26 . . . 4 ((𝑥 ∈ Fin ∧ ¬ 𝑦𝑥) → ((𝜑 → (𝑥𝐴 → (abs‘Σ𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (abs‘𝐵))) → (𝜑 → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)))))
1239, 16, 23, 30, 38, 122findcard2s 6951 . . 3 (𝐴 ∈ Fin → (𝜑 → (𝐴𝐴 → (abs‘Σ𝑘𝐴 𝐵) ≤ Σ𝑘𝐴 (abs‘𝐵))))
1242, 123mpcom 36 . 2 (𝜑 → (𝐴𝐴 → (abs‘Σ𝑘𝐴 𝐵) ≤ Σ𝑘𝐴 (abs‘𝐵)))
1251, 124mpi 15 1 (𝜑 → (abs‘Σ𝑘𝐴 𝐵) ≤ Σ𝑘𝐴 (abs‘𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104   = wceq 1364  wcel 2167  wral 2475  Vcvv 2763  csb 3084  cun 3155  cin 3156  wss 3157  c0 3450  {csn 3622   class class class wbr 4033  cfv 5258  (class class class)co 5922  Fincfn 6799  cc 7877  cr 7878  0cc0 7879   + caddc 7882  cle 8062  abscabs 11162  Σcsu 11518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-oadd 6478  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-seqfrec 10540  df-exp 10631  df-ihash 10868  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-sumdc 11519
This theorem is referenced by:  iserabs  11640  cvgratnnlemabsle  11692  mertenslemi1  11700
  Copyright terms: Public domain W3C validator