ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumabs GIF version

Theorem fsumabs 11234
Description: Generalized triangle inequality: the absolute value of a finite sum is less than or equal to the sum of absolute values. (Contributed by NM, 9-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
fsumabs.1 (𝜑𝐴 ∈ Fin)
fsumabs.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
fsumabs (𝜑 → (abs‘Σ𝑘𝐴 𝐵) ≤ Σ𝑘𝐴 (abs‘𝐵))
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fsumabs
Dummy variables 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3117 . 2 𝐴𝐴
2 fsumabs.1 . . 3 (𝜑𝐴 ∈ Fin)
3 sseq1 3120 . . . . . 6 (𝑤 = ∅ → (𝑤𝐴 ↔ ∅ ⊆ 𝐴))
4 sumeq1 11124 . . . . . . . 8 (𝑤 = ∅ → Σ𝑘𝑤 𝐵 = Σ𝑘 ∈ ∅ 𝐵)
54fveq2d 5425 . . . . . . 7 (𝑤 = ∅ → (abs‘Σ𝑘𝑤 𝐵) = (abs‘Σ𝑘 ∈ ∅ 𝐵))
6 sumeq1 11124 . . . . . . 7 (𝑤 = ∅ → Σ𝑘𝑤 (abs‘𝐵) = Σ𝑘 ∈ ∅ (abs‘𝐵))
75, 6breq12d 3942 . . . . . 6 (𝑤 = ∅ → ((abs‘Σ𝑘𝑤 𝐵) ≤ Σ𝑘𝑤 (abs‘𝐵) ↔ (abs‘Σ𝑘 ∈ ∅ 𝐵) ≤ Σ𝑘 ∈ ∅ (abs‘𝐵)))
83, 7imbi12d 233 . . . . 5 (𝑤 = ∅ → ((𝑤𝐴 → (abs‘Σ𝑘𝑤 𝐵) ≤ Σ𝑘𝑤 (abs‘𝐵)) ↔ (∅ ⊆ 𝐴 → (abs‘Σ𝑘 ∈ ∅ 𝐵) ≤ Σ𝑘 ∈ ∅ (abs‘𝐵))))
98imbi2d 229 . . . 4 (𝑤 = ∅ → ((𝜑 → (𝑤𝐴 → (abs‘Σ𝑘𝑤 𝐵) ≤ Σ𝑘𝑤 (abs‘𝐵))) ↔ (𝜑 → (∅ ⊆ 𝐴 → (abs‘Σ𝑘 ∈ ∅ 𝐵) ≤ Σ𝑘 ∈ ∅ (abs‘𝐵)))))
10 sseq1 3120 . . . . . 6 (𝑤 = 𝑥 → (𝑤𝐴𝑥𝐴))
11 sumeq1 11124 . . . . . . . 8 (𝑤 = 𝑥 → Σ𝑘𝑤 𝐵 = Σ𝑘𝑥 𝐵)
1211fveq2d 5425 . . . . . . 7 (𝑤 = 𝑥 → (abs‘Σ𝑘𝑤 𝐵) = (abs‘Σ𝑘𝑥 𝐵))
13 sumeq1 11124 . . . . . . 7 (𝑤 = 𝑥 → Σ𝑘𝑤 (abs‘𝐵) = Σ𝑘𝑥 (abs‘𝐵))
1412, 13breq12d 3942 . . . . . 6 (𝑤 = 𝑥 → ((abs‘Σ𝑘𝑤 𝐵) ≤ Σ𝑘𝑤 (abs‘𝐵) ↔ (abs‘Σ𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (abs‘𝐵)))
1510, 14imbi12d 233 . . . . 5 (𝑤 = 𝑥 → ((𝑤𝐴 → (abs‘Σ𝑘𝑤 𝐵) ≤ Σ𝑘𝑤 (abs‘𝐵)) ↔ (𝑥𝐴 → (abs‘Σ𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (abs‘𝐵))))
1615imbi2d 229 . . . 4 (𝑤 = 𝑥 → ((𝜑 → (𝑤𝐴 → (abs‘Σ𝑘𝑤 𝐵) ≤ Σ𝑘𝑤 (abs‘𝐵))) ↔ (𝜑 → (𝑥𝐴 → (abs‘Σ𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (abs‘𝐵)))))
17 sseq1 3120 . . . . . 6 (𝑤 = (𝑥 ∪ {𝑦}) → (𝑤𝐴 ↔ (𝑥 ∪ {𝑦}) ⊆ 𝐴))
18 sumeq1 11124 . . . . . . . 8 (𝑤 = (𝑥 ∪ {𝑦}) → Σ𝑘𝑤 𝐵 = Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵)
1918fveq2d 5425 . . . . . . 7 (𝑤 = (𝑥 ∪ {𝑦}) → (abs‘Σ𝑘𝑤 𝐵) = (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵))
20 sumeq1 11124 . . . . . . 7 (𝑤 = (𝑥 ∪ {𝑦}) → Σ𝑘𝑤 (abs‘𝐵) = Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵))
2119, 20breq12d 3942 . . . . . 6 (𝑤 = (𝑥 ∪ {𝑦}) → ((abs‘Σ𝑘𝑤 𝐵) ≤ Σ𝑘𝑤 (abs‘𝐵) ↔ (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)))
2217, 21imbi12d 233 . . . . 5 (𝑤 = (𝑥 ∪ {𝑦}) → ((𝑤𝐴 → (abs‘Σ𝑘𝑤 𝐵) ≤ Σ𝑘𝑤 (abs‘𝐵)) ↔ ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵))))
2322imbi2d 229 . . . 4 (𝑤 = (𝑥 ∪ {𝑦}) → ((𝜑 → (𝑤𝐴 → (abs‘Σ𝑘𝑤 𝐵) ≤ Σ𝑘𝑤 (abs‘𝐵))) ↔ (𝜑 → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)))))
24 sseq1 3120 . . . . . 6 (𝑤 = 𝐴 → (𝑤𝐴𝐴𝐴))
25 sumeq1 11124 . . . . . . . 8 (𝑤 = 𝐴 → Σ𝑘𝑤 𝐵 = Σ𝑘𝐴 𝐵)
2625fveq2d 5425 . . . . . . 7 (𝑤 = 𝐴 → (abs‘Σ𝑘𝑤 𝐵) = (abs‘Σ𝑘𝐴 𝐵))
27 sumeq1 11124 . . . . . . 7 (𝑤 = 𝐴 → Σ𝑘𝑤 (abs‘𝐵) = Σ𝑘𝐴 (abs‘𝐵))
2826, 27breq12d 3942 . . . . . 6 (𝑤 = 𝐴 → ((abs‘Σ𝑘𝑤 𝐵) ≤ Σ𝑘𝑤 (abs‘𝐵) ↔ (abs‘Σ𝑘𝐴 𝐵) ≤ Σ𝑘𝐴 (abs‘𝐵)))
2924, 28imbi12d 233 . . . . 5 (𝑤 = 𝐴 → ((𝑤𝐴 → (abs‘Σ𝑘𝑤 𝐵) ≤ Σ𝑘𝑤 (abs‘𝐵)) ↔ (𝐴𝐴 → (abs‘Σ𝑘𝐴 𝐵) ≤ Σ𝑘𝐴 (abs‘𝐵))))
3029imbi2d 229 . . . 4 (𝑤 = 𝐴 → ((𝜑 → (𝑤𝐴 → (abs‘Σ𝑘𝑤 𝐵) ≤ Σ𝑘𝑤 (abs‘𝐵))) ↔ (𝜑 → (𝐴𝐴 → (abs‘Σ𝑘𝐴 𝐵) ≤ Σ𝑘𝐴 (abs‘𝐵)))))
31 0le0 8809 . . . . . 6 0 ≤ 0
32 sum0 11157 . . . . . . . 8 Σ𝑘 ∈ ∅ 𝐵 = 0
3332fveq2i 5424 . . . . . . 7 (abs‘Σ𝑘 ∈ ∅ 𝐵) = (abs‘0)
34 abs0 10830 . . . . . . 7 (abs‘0) = 0
3533, 34eqtri 2160 . . . . . 6 (abs‘Σ𝑘 ∈ ∅ 𝐵) = 0
36 sum0 11157 . . . . . 6 Σ𝑘 ∈ ∅ (abs‘𝐵) = 0
3731, 35, 363brtr4i 3958 . . . . 5 (abs‘Σ𝑘 ∈ ∅ 𝐵) ≤ Σ𝑘 ∈ ∅ (abs‘𝐵)
38372a1i 27 . . . 4 (𝜑 → (∅ ⊆ 𝐴 → (abs‘Σ𝑘 ∈ ∅ 𝐵) ≤ Σ𝑘 ∈ ∅ (abs‘𝐵)))
39 ssun1 3239 . . . . . . . . 9 𝑥 ⊆ (𝑥 ∪ {𝑦})
40 sstr 3105 . . . . . . . . 9 ((𝑥 ⊆ (𝑥 ∪ {𝑦}) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝑥𝐴)
4139, 40mpan 420 . . . . . . . 8 ((𝑥 ∪ {𝑦}) ⊆ 𝐴𝑥𝐴)
4241imim1i 60 . . . . . . 7 ((𝑥𝐴 → (abs‘Σ𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (abs‘𝐵)) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (abs‘Σ𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (abs‘𝐵)))
43 simplrl 524 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝑥 ∈ Fin)
44 simpll 518 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝜑)
45 simpr 109 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (𝑥 ∪ {𝑦}) ⊆ 𝐴)
4645unssad 3253 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝑥𝐴)
4746sselda 3097 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑘𝑥) → 𝑘𝐴)
48 fsumabs.2 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
4944, 47, 48syl2an2r 584 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑘𝑥) → 𝐵 ∈ ℂ)
5043, 49fsumcl 11169 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘𝑥 𝐵 ∈ ℂ)
5150abscld 10953 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (abs‘Σ𝑘𝑥 𝐵) ∈ ℝ)
5249abscld 10953 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑘𝑥) → (abs‘𝐵) ∈ ℝ)
5343, 52fsumrecl 11170 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘𝑥 (abs‘𝐵) ∈ ℝ)
54 simpr 109 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (𝑥 ∪ {𝑦}) ⊆ 𝐴)
5554unssbd 3254 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → {𝑦} ⊆ 𝐴)
56 vex 2689 . . . . . . . . . . . . . . . . 17 𝑦 ∈ V
5756snss 3649 . . . . . . . . . . . . . . . 16 (𝑦𝐴 ↔ {𝑦} ⊆ 𝐴)
5855, 57sylibr 133 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝑦𝐴)
5958adantlrl 473 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝑦𝐴)
6048ralrimiva 2505 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℂ)
6160ad2antrr 479 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ∀𝑘𝐴 𝐵 ∈ ℂ)
62 nfcsb1v 3035 . . . . . . . . . . . . . . . 16 𝑘𝑦 / 𝑘𝐵
6362nfel1 2292 . . . . . . . . . . . . . . 15 𝑘𝑦 / 𝑘𝐵 ∈ ℂ
64 csbeq1a 3012 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑦𝐵 = 𝑦 / 𝑘𝐵)
6564eleq1d 2208 . . . . . . . . . . . . . . 15 (𝑘 = 𝑦 → (𝐵 ∈ ℂ ↔ 𝑦 / 𝑘𝐵 ∈ ℂ))
6663, 65rspc 2783 . . . . . . . . . . . . . 14 (𝑦𝐴 → (∀𝑘𝐴 𝐵 ∈ ℂ → 𝑦 / 𝑘𝐵 ∈ ℂ))
6759, 61, 66sylc 62 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝑦 / 𝑘𝐵 ∈ ℂ)
6867abscld 10953 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (abs‘𝑦 / 𝑘𝐵) ∈ ℝ)
6951, 53, 68leadd1d 8301 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ((abs‘Σ𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (abs‘𝐵) ↔ ((abs‘Σ𝑘𝑥 𝐵) + (abs‘𝑦 / 𝑘𝐵)) ≤ (Σ𝑘𝑥 (abs‘𝐵) + (abs‘𝑦 / 𝑘𝐵))))
70 simplr 519 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ¬ 𝑦𝑥)
7170adantlrl 473 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ¬ 𝑦𝑥)
72 disjsn 3585 . . . . . . . . . . . . . . 15 ((𝑥 ∩ {𝑦}) = ∅ ↔ ¬ 𝑦𝑥)
7371, 72sylibr 133 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (𝑥 ∩ {𝑦}) = ∅)
74 eqidd 2140 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (𝑥 ∪ {𝑦}) = (𝑥 ∪ {𝑦}))
7556a1i 9 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝑦 ∈ V)
76 unsnfi 6807 . . . . . . . . . . . . . . 15 ((𝑥 ∈ Fin ∧ 𝑦 ∈ V ∧ ¬ 𝑦𝑥) → (𝑥 ∪ {𝑦}) ∈ Fin)
7743, 75, 71, 76syl3anc 1216 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (𝑥 ∪ {𝑦}) ∈ Fin)
7845sselda 3097 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑘 ∈ (𝑥 ∪ {𝑦})) → 𝑘𝐴)
7944, 78, 48syl2an2r 584 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑘 ∈ (𝑥 ∪ {𝑦})) → 𝐵 ∈ ℂ)
8079abscld 10953 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑘 ∈ (𝑥 ∪ {𝑦})) → (abs‘𝐵) ∈ ℝ)
8180recnd 7794 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑘 ∈ (𝑥 ∪ {𝑦})) → (abs‘𝐵) ∈ ℂ)
8273, 74, 77, 81fsumsplit 11176 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵) = (Σ𝑘𝑥 (abs‘𝐵) + Σ𝑘 ∈ {𝑦} (abs‘𝐵)))
83 csbfv2g 5458 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ V → 𝑦 / 𝑘(abs‘𝐵) = (abs‘𝑦 / 𝑘𝐵))
8483elv 2690 . . . . . . . . . . . . . . . . . 18 𝑦 / 𝑘(abs‘𝐵) = (abs‘𝑦 / 𝑘𝐵)
8560ad2antrr 479 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ∀𝑘𝐴 𝐵 ∈ ℂ)
8658, 85, 66sylc 62 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝑦 / 𝑘𝐵 ∈ ℂ)
8786abscld 10953 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (abs‘𝑦 / 𝑘𝐵) ∈ ℝ)
8887recnd 7794 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (abs‘𝑦 / 𝑘𝐵) ∈ ℂ)
8984, 88eqeltrid 2226 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝑦 / 𝑘(abs‘𝐵) ∈ ℂ)
90 sumsns 11184 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ V ∧ 𝑦 / 𝑘(abs‘𝐵) ∈ ℂ) → Σ𝑘 ∈ {𝑦} (abs‘𝐵) = 𝑦 / 𝑘(abs‘𝐵))
9156, 89, 90sylancr 410 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ {𝑦} (abs‘𝐵) = 𝑦 / 𝑘(abs‘𝐵))
9291, 84syl6eq 2188 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ {𝑦} (abs‘𝐵) = (abs‘𝑦 / 𝑘𝐵))
9392oveq2d 5790 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (Σ𝑘𝑥 (abs‘𝐵) + Σ𝑘 ∈ {𝑦} (abs‘𝐵)) = (Σ𝑘𝑥 (abs‘𝐵) + (abs‘𝑦 / 𝑘𝐵)))
9493adantlrl 473 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (Σ𝑘𝑥 (abs‘𝐵) + Σ𝑘 ∈ {𝑦} (abs‘𝐵)) = (Σ𝑘𝑥 (abs‘𝐵) + (abs‘𝑦 / 𝑘𝐵)))
9582, 94eqtrd 2172 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵) = (Σ𝑘𝑥 (abs‘𝐵) + (abs‘𝑦 / 𝑘𝐵)))
9695breq2d 3941 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (((abs‘Σ𝑘𝑥 𝐵) + (abs‘𝑦 / 𝑘𝐵)) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵) ↔ ((abs‘Σ𝑘𝑥 𝐵) + (abs‘𝑦 / 𝑘𝐵)) ≤ (Σ𝑘𝑥 (abs‘𝐵) + (abs‘𝑦 / 𝑘𝐵))))
9769, 96bitr4d 190 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ((abs‘Σ𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (abs‘𝐵) ↔ ((abs‘Σ𝑘𝑥 𝐵) + (abs‘𝑦 / 𝑘𝐵)) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)))
9870, 72sylibr 133 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (𝑥 ∩ {𝑦}) = ∅)
9998adantlrl 473 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (𝑥 ∩ {𝑦}) = ∅)
10099, 74, 77, 79fsumsplit 11176 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵 = (Σ𝑘𝑥 𝐵 + Σ𝑘 ∈ {𝑦}𝐵))
101 sumsns 11184 . . . . . . . . . . . . . . . . 17 ((𝑦𝐴𝑦 / 𝑘𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑦}𝐵 = 𝑦 / 𝑘𝐵)
10258, 86, 101syl2anc 408 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ {𝑦}𝐵 = 𝑦 / 𝑘𝐵)
103102oveq2d 5790 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (Σ𝑘𝑥 𝐵 + Σ𝑘 ∈ {𝑦}𝐵) = (Σ𝑘𝑥 𝐵 + 𝑦 / 𝑘𝐵))
104103adantlrl 473 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (Σ𝑘𝑥 𝐵 + Σ𝑘 ∈ {𝑦}𝐵) = (Σ𝑘𝑥 𝐵 + 𝑦 / 𝑘𝐵))
105100, 104eqtrd 2172 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵 = (Σ𝑘𝑥 𝐵 + 𝑦 / 𝑘𝐵))
106105fveq2d 5425 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) = (abs‘(Σ𝑘𝑥 𝐵 + 𝑦 / 𝑘𝐵)))
10786adantlrl 473 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝑦 / 𝑘𝐵 ∈ ℂ)
10850, 107abstrid 10968 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (abs‘(Σ𝑘𝑥 𝐵 + 𝑦 / 𝑘𝐵)) ≤ ((abs‘Σ𝑘𝑥 𝐵) + (abs‘𝑦 / 𝑘𝐵)))
109106, 108eqbrtrd 3950 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ ((abs‘Σ𝑘𝑥 𝐵) + (abs‘𝑦 / 𝑘𝐵)))
11077, 79fsumcl 11169 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵 ∈ ℂ)
111110abscld 10953 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ∈ ℝ)
11251, 68readdcld 7795 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ((abs‘Σ𝑘𝑥 𝐵) + (abs‘𝑦 / 𝑘𝐵)) ∈ ℝ)
11377, 80fsumrecl 11170 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵) ∈ ℝ)
114 letr 7847 . . . . . . . . . . . 12 (((abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ∈ ℝ ∧ ((abs‘Σ𝑘𝑥 𝐵) + (abs‘𝑦 / 𝑘𝐵)) ∈ ℝ ∧ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵) ∈ ℝ) → (((abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ ((abs‘Σ𝑘𝑥 𝐵) + (abs‘𝑦 / 𝑘𝐵)) ∧ ((abs‘Σ𝑘𝑥 𝐵) + (abs‘𝑦 / 𝑘𝐵)) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)) → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)))
115111, 112, 113, 114syl3anc 1216 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (((abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ ((abs‘Σ𝑘𝑥 𝐵) + (abs‘𝑦 / 𝑘𝐵)) ∧ ((abs‘Σ𝑘𝑥 𝐵) + (abs‘𝑦 / 𝑘𝐵)) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)) → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)))
116109, 115mpand 425 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (((abs‘Σ𝑘𝑥 𝐵) + (abs‘𝑦 / 𝑘𝐵)) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵) → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)))
11797, 116sylbid 149 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ((abs‘Σ𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (abs‘𝐵) → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)))
118117ex 114 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → ((abs‘Σ𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (abs‘𝐵) → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵))))
119118a2d 26 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) → (((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (abs‘Σ𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (abs‘𝐵)) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵))))
12042, 119syl5 32 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) → ((𝑥𝐴 → (abs‘Σ𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (abs‘𝐵)) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵))))
121120expcom 115 . . . . 5 ((𝑥 ∈ Fin ∧ ¬ 𝑦𝑥) → (𝜑 → ((𝑥𝐴 → (abs‘Σ𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (abs‘𝐵)) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)))))
122121a2d 26 . . . 4 ((𝑥 ∈ Fin ∧ ¬ 𝑦𝑥) → ((𝜑 → (𝑥𝐴 → (abs‘Σ𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (abs‘𝐵))) → (𝜑 → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)))))
1239, 16, 23, 30, 38, 122findcard2s 6784 . . 3 (𝐴 ∈ Fin → (𝜑 → (𝐴𝐴 → (abs‘Σ𝑘𝐴 𝐵) ≤ Σ𝑘𝐴 (abs‘𝐵))))
1242, 123mpcom 36 . 2 (𝜑 → (𝐴𝐴 → (abs‘Σ𝑘𝐴 𝐵) ≤ Σ𝑘𝐴 (abs‘𝐵)))
1251, 124mpi 15 1 (𝜑 → (abs‘Σ𝑘𝐴 𝐵) ≤ Σ𝑘𝐴 (abs‘𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103   = wceq 1331  wcel 1480  wral 2416  Vcvv 2686  csb 3003  cun 3069  cin 3070  wss 3071  c0 3363  {csn 3527   class class class wbr 3929  cfv 5123  (class class class)co 5774  Fincfn 6634  cc 7618  cr 7619  0cc0 7620   + caddc 7623  cle 7801  abscabs 10769  Σcsu 11122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-en 6635  df-dom 6636  df-fin 6637  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-fz 9791  df-fzo 9920  df-seqfrec 10219  df-exp 10293  df-ihash 10522  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-clim 11048  df-sumdc 11123
This theorem is referenced by:  iserabs  11244  cvgratnnlemabsle  11296  mertenslemi1  11304
  Copyright terms: Public domain W3C validator