ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nzadd GIF version

Theorem nzadd 8792
Description: The sum of a real number not being an integer and an integer is not an integer. Note that "not being an integer" in this case means "the negation of is an integer" rather than "is apart from any integer" (given excluded middle, those two would be equivalent). (Contributed by AV, 19-Jul-2021.)
Assertion
Ref Expression
nzadd ((𝐴 ∈ (ℝ ∖ ℤ) ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ (ℝ ∖ ℤ))

Proof of Theorem nzadd
StepHypRef Expression
1 eldif 3008 . . 3 (𝐴 ∈ (ℝ ∖ ℤ) ↔ (𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℤ))
2 zre 8744 . . . . . 6 (𝐵 ∈ ℤ → 𝐵 ∈ ℝ)
3 readdcl 7458 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)
42, 3sylan2 280 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℝ)
54adantlr 461 . . . 4 (((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℤ) ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℝ)
6 zsubcl 8781 . . . . . . . . . . 11 (((𝐴 + 𝐵) ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 + 𝐵) − 𝐵) ∈ ℤ)
76expcom 114 . . . . . . . . . 10 (𝐵 ∈ ℤ → ((𝐴 + 𝐵) ∈ ℤ → ((𝐴 + 𝐵) − 𝐵) ∈ ℤ))
87adantl 271 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((𝐴 + 𝐵) ∈ ℤ → ((𝐴 + 𝐵) − 𝐵) ∈ ℤ))
9 recn 7465 . . . . . . . . . . 11 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
10 zcn 8745 . . . . . . . . . . 11 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
11 pncan 7678 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴)
129, 10, 11syl2an 283 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴)
1312eleq1d 2156 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (((𝐴 + 𝐵) − 𝐵) ∈ ℤ ↔ 𝐴 ∈ ℤ))
148, 13sylibd 147 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((𝐴 + 𝐵) ∈ ℤ → 𝐴 ∈ ℤ))
1514con3d 596 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (¬ 𝐴 ∈ ℤ → ¬ (𝐴 + 𝐵) ∈ ℤ))
1615ex 113 . . . . . 6 (𝐴 ∈ ℝ → (𝐵 ∈ ℤ → (¬ 𝐴 ∈ ℤ → ¬ (𝐴 + 𝐵) ∈ ℤ)))
1716com23 77 . . . . 5 (𝐴 ∈ ℝ → (¬ 𝐴 ∈ ℤ → (𝐵 ∈ ℤ → ¬ (𝐴 + 𝐵) ∈ ℤ)))
1817imp31 252 . . . 4 (((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℤ) ∧ 𝐵 ∈ ℤ) → ¬ (𝐴 + 𝐵) ∈ ℤ)
195, 18jca 300 . . 3 (((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℤ) ∧ 𝐵 ∈ ℤ) → ((𝐴 + 𝐵) ∈ ℝ ∧ ¬ (𝐴 + 𝐵) ∈ ℤ))
201, 19sylanb 278 . 2 ((𝐴 ∈ (ℝ ∖ ℤ) ∧ 𝐵 ∈ ℤ) → ((𝐴 + 𝐵) ∈ ℝ ∧ ¬ (𝐴 + 𝐵) ∈ ℤ))
21 eldif 3008 . 2 ((𝐴 + 𝐵) ∈ (ℝ ∖ ℤ) ↔ ((𝐴 + 𝐵) ∈ ℝ ∧ ¬ (𝐴 + 𝐵) ∈ ℤ))
2220, 21sylibr 132 1 ((𝐴 ∈ (ℝ ∖ ℤ) ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ (ℝ ∖ ℤ))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102   = wceq 1289  wcel 1438  cdif 2996  (class class class)co 5644  cc 7338  cr 7339   + caddc 7343  cmin 7643  cz 8740
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3955  ax-pow 4007  ax-pr 4034  ax-un 4258  ax-setind 4351  ax-cnex 7426  ax-resscn 7427  ax-1cn 7428  ax-1re 7429  ax-icn 7430  ax-addcl 7431  ax-addrcl 7432  ax-mulcl 7433  ax-addcom 7435  ax-addass 7437  ax-distr 7439  ax-i2m1 7440  ax-0lt1 7441  ax-0id 7443  ax-rnegex 7444  ax-cnre 7446  ax-pre-ltirr 7447  ax-pre-ltwlin 7448  ax-pre-lttrn 7449  ax-pre-ltadd 7451
This theorem depends on definitions:  df-bi 115  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2841  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-pw 3429  df-sn 3450  df-pr 3451  df-op 3453  df-uni 3652  df-int 3687  df-br 3844  df-opab 3898  df-id 4118  df-xp 4442  df-rel 4443  df-cnv 4444  df-co 4445  df-dm 4446  df-iota 4975  df-fun 5012  df-fv 5018  df-riota 5600  df-ov 5647  df-oprab 5648  df-mpt2 5649  df-pnf 7514  df-mnf 7515  df-xr 7516  df-ltxr 7517  df-le 7518  df-sub 7645  df-neg 7646  df-inn 8413  df-n0 8664  df-z 8741
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator