ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nzadd GIF version

Theorem nzadd 9318
Description: The sum of a real number not being an integer and an integer is not an integer. Note that "not being an integer" in this case means "the negation of is an integer" rather than "is apart from any integer" (given excluded middle, those two would be equivalent). (Contributed by AV, 19-Jul-2021.)
Assertion
Ref Expression
nzadd ((𝐴 ∈ (ℝ ∖ ℤ) ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ (ℝ ∖ ℤ))

Proof of Theorem nzadd
StepHypRef Expression
1 eldif 3150 . . 3 (𝐴 ∈ (ℝ ∖ ℤ) ↔ (𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℤ))
2 zre 9270 . . . . . 6 (𝐵 ∈ ℤ → 𝐵 ∈ ℝ)
3 readdcl 7950 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)
42, 3sylan2 286 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℝ)
54adantlr 477 . . . 4 (((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℤ) ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℝ)
6 zsubcl 9307 . . . . . . . . . . 11 (((𝐴 + 𝐵) ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 + 𝐵) − 𝐵) ∈ ℤ)
76expcom 116 . . . . . . . . . 10 (𝐵 ∈ ℤ → ((𝐴 + 𝐵) ∈ ℤ → ((𝐴 + 𝐵) − 𝐵) ∈ ℤ))
87adantl 277 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((𝐴 + 𝐵) ∈ ℤ → ((𝐴 + 𝐵) − 𝐵) ∈ ℤ))
9 recn 7957 . . . . . . . . . . 11 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
10 zcn 9271 . . . . . . . . . . 11 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
11 pncan 8176 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴)
129, 10, 11syl2an 289 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴)
1312eleq1d 2256 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (((𝐴 + 𝐵) − 𝐵) ∈ ℤ ↔ 𝐴 ∈ ℤ))
148, 13sylibd 149 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((𝐴 + 𝐵) ∈ ℤ → 𝐴 ∈ ℤ))
1514con3d 632 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (¬ 𝐴 ∈ ℤ → ¬ (𝐴 + 𝐵) ∈ ℤ))
1615ex 115 . . . . . 6 (𝐴 ∈ ℝ → (𝐵 ∈ ℤ → (¬ 𝐴 ∈ ℤ → ¬ (𝐴 + 𝐵) ∈ ℤ)))
1716com23 78 . . . . 5 (𝐴 ∈ ℝ → (¬ 𝐴 ∈ ℤ → (𝐵 ∈ ℤ → ¬ (𝐴 + 𝐵) ∈ ℤ)))
1817imp31 256 . . . 4 (((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℤ) ∧ 𝐵 ∈ ℤ) → ¬ (𝐴 + 𝐵) ∈ ℤ)
195, 18jca 306 . . 3 (((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℤ) ∧ 𝐵 ∈ ℤ) → ((𝐴 + 𝐵) ∈ ℝ ∧ ¬ (𝐴 + 𝐵) ∈ ℤ))
201, 19sylanb 284 . 2 ((𝐴 ∈ (ℝ ∖ ℤ) ∧ 𝐵 ∈ ℤ) → ((𝐴 + 𝐵) ∈ ℝ ∧ ¬ (𝐴 + 𝐵) ∈ ℤ))
21 eldif 3150 . 2 ((𝐴 + 𝐵) ∈ (ℝ ∖ ℤ) ↔ ((𝐴 + 𝐵) ∈ ℝ ∧ ¬ (𝐴 + 𝐵) ∈ ℤ))
2220, 21sylibr 134 1 ((𝐴 ∈ (ℝ ∖ ℤ) ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ (ℝ ∖ ℤ))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104   = wceq 1363  wcel 2158  cdif 3138  (class class class)co 5888  cc 7822  cr 7823   + caddc 7827  cmin 8141  cz 9266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7915  ax-resscn 7916  ax-1cn 7917  ax-1re 7918  ax-icn 7919  ax-addcl 7920  ax-addrcl 7921  ax-mulcl 7922  ax-addcom 7924  ax-addass 7926  ax-distr 7928  ax-i2m1 7929  ax-0lt1 7930  ax-0id 7932  ax-rnegex 7933  ax-cnre 7935  ax-pre-ltirr 7936  ax-pre-ltwlin 7937  ax-pre-lttrn 7938  ax-pre-ltadd 7940
This theorem depends on definitions:  df-bi 117  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-br 4016  df-opab 4077  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-iota 5190  df-fun 5230  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-pnf 8007  df-mnf 8008  df-xr 8009  df-ltxr 8010  df-le 8011  df-sub 8143  df-neg 8144  df-inn 8933  df-n0 9190  df-z 9267
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator