![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nzadd | GIF version |
Description: The sum of a real number not being an integer and an integer is not an integer. Note that "not being an integer" in this case means "the negation of is an integer" rather than "is apart from any integer" (given excluded middle, those two would be equivalent). (Contributed by AV, 19-Jul-2021.) |
Ref | Expression |
---|---|
nzadd | ⊢ ((𝐴 ∈ (ℝ ∖ ℤ) ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ (ℝ ∖ ℤ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3163 | . . 3 ⊢ (𝐴 ∈ (ℝ ∖ ℤ) ↔ (𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℤ)) | |
2 | zre 9324 | . . . . . 6 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℝ) | |
3 | readdcl 8000 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) | |
4 | 2, 3 | sylan2 286 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℝ) |
5 | 4 | adantlr 477 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℤ) ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℝ) |
6 | zsubcl 9361 | . . . . . . . . . . 11 ⊢ (((𝐴 + 𝐵) ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 + 𝐵) − 𝐵) ∈ ℤ) | |
7 | 6 | expcom 116 | . . . . . . . . . 10 ⊢ (𝐵 ∈ ℤ → ((𝐴 + 𝐵) ∈ ℤ → ((𝐴 + 𝐵) − 𝐵) ∈ ℤ)) |
8 | 7 | adantl 277 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((𝐴 + 𝐵) ∈ ℤ → ((𝐴 + 𝐵) − 𝐵) ∈ ℤ)) |
9 | recn 8007 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
10 | zcn 9325 | . . . . . . . . . . 11 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℂ) | |
11 | pncan 8227 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴) | |
12 | 9, 10, 11 | syl2an 289 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴) |
13 | 12 | eleq1d 2262 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (((𝐴 + 𝐵) − 𝐵) ∈ ℤ ↔ 𝐴 ∈ ℤ)) |
14 | 8, 13 | sylibd 149 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((𝐴 + 𝐵) ∈ ℤ → 𝐴 ∈ ℤ)) |
15 | 14 | con3d 632 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (¬ 𝐴 ∈ ℤ → ¬ (𝐴 + 𝐵) ∈ ℤ)) |
16 | 15 | ex 115 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (𝐵 ∈ ℤ → (¬ 𝐴 ∈ ℤ → ¬ (𝐴 + 𝐵) ∈ ℤ))) |
17 | 16 | com23 78 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (¬ 𝐴 ∈ ℤ → (𝐵 ∈ ℤ → ¬ (𝐴 + 𝐵) ∈ ℤ))) |
18 | 17 | imp31 256 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℤ) ∧ 𝐵 ∈ ℤ) → ¬ (𝐴 + 𝐵) ∈ ℤ) |
19 | 5, 18 | jca 306 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℤ) ∧ 𝐵 ∈ ℤ) → ((𝐴 + 𝐵) ∈ ℝ ∧ ¬ (𝐴 + 𝐵) ∈ ℤ)) |
20 | 1, 19 | sylanb 284 | . 2 ⊢ ((𝐴 ∈ (ℝ ∖ ℤ) ∧ 𝐵 ∈ ℤ) → ((𝐴 + 𝐵) ∈ ℝ ∧ ¬ (𝐴 + 𝐵) ∈ ℤ)) |
21 | eldif 3163 | . 2 ⊢ ((𝐴 + 𝐵) ∈ (ℝ ∖ ℤ) ↔ ((𝐴 + 𝐵) ∈ ℝ ∧ ¬ (𝐴 + 𝐵) ∈ ℤ)) | |
22 | 20, 21 | sylibr 134 | 1 ⊢ ((𝐴 ∈ (ℝ ∖ ℤ) ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ (ℝ ∖ ℤ)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ∖ cdif 3151 (class class class)co 5919 ℂcc 7872 ℝcr 7873 + caddc 7877 − cmin 8192 ℤcz 9320 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-inn 8985 df-n0 9244 df-z 9321 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |