![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nzadd | GIF version |
Description: The sum of a real number not being an integer and an integer is not an integer. Note that "not being an integer" in this case means "the negation of is an integer" rather than "is apart from any integer" (given excluded middle, those two would be equivalent). (Contributed by AV, 19-Jul-2021.) |
Ref | Expression |
---|---|
nzadd | ⊢ ((𝐴 ∈ (ℝ ∖ ℤ) ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ (ℝ ∖ ℤ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3150 | . . 3 ⊢ (𝐴 ∈ (ℝ ∖ ℤ) ↔ (𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℤ)) | |
2 | zre 9270 | . . . . . 6 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℝ) | |
3 | readdcl 7950 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) | |
4 | 2, 3 | sylan2 286 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℝ) |
5 | 4 | adantlr 477 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℤ) ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℝ) |
6 | zsubcl 9307 | . . . . . . . . . . 11 ⊢ (((𝐴 + 𝐵) ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 + 𝐵) − 𝐵) ∈ ℤ) | |
7 | 6 | expcom 116 | . . . . . . . . . 10 ⊢ (𝐵 ∈ ℤ → ((𝐴 + 𝐵) ∈ ℤ → ((𝐴 + 𝐵) − 𝐵) ∈ ℤ)) |
8 | 7 | adantl 277 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((𝐴 + 𝐵) ∈ ℤ → ((𝐴 + 𝐵) − 𝐵) ∈ ℤ)) |
9 | recn 7957 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
10 | zcn 9271 | . . . . . . . . . . 11 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℂ) | |
11 | pncan 8176 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴) | |
12 | 9, 10, 11 | syl2an 289 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴) |
13 | 12 | eleq1d 2256 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (((𝐴 + 𝐵) − 𝐵) ∈ ℤ ↔ 𝐴 ∈ ℤ)) |
14 | 8, 13 | sylibd 149 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((𝐴 + 𝐵) ∈ ℤ → 𝐴 ∈ ℤ)) |
15 | 14 | con3d 632 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (¬ 𝐴 ∈ ℤ → ¬ (𝐴 + 𝐵) ∈ ℤ)) |
16 | 15 | ex 115 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (𝐵 ∈ ℤ → (¬ 𝐴 ∈ ℤ → ¬ (𝐴 + 𝐵) ∈ ℤ))) |
17 | 16 | com23 78 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (¬ 𝐴 ∈ ℤ → (𝐵 ∈ ℤ → ¬ (𝐴 + 𝐵) ∈ ℤ))) |
18 | 17 | imp31 256 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℤ) ∧ 𝐵 ∈ ℤ) → ¬ (𝐴 + 𝐵) ∈ ℤ) |
19 | 5, 18 | jca 306 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℤ) ∧ 𝐵 ∈ ℤ) → ((𝐴 + 𝐵) ∈ ℝ ∧ ¬ (𝐴 + 𝐵) ∈ ℤ)) |
20 | 1, 19 | sylanb 284 | . 2 ⊢ ((𝐴 ∈ (ℝ ∖ ℤ) ∧ 𝐵 ∈ ℤ) → ((𝐴 + 𝐵) ∈ ℝ ∧ ¬ (𝐴 + 𝐵) ∈ ℤ)) |
21 | eldif 3150 | . 2 ⊢ ((𝐴 + 𝐵) ∈ (ℝ ∖ ℤ) ↔ ((𝐴 + 𝐵) ∈ ℝ ∧ ¬ (𝐴 + 𝐵) ∈ ℤ)) | |
22 | 20, 21 | sylibr 134 | 1 ⊢ ((𝐴 ∈ (ℝ ∖ ℤ) ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ (ℝ ∖ ℤ)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 = wceq 1363 ∈ wcel 2158 ∖ cdif 3138 (class class class)co 5888 ℂcc 7822 ℝcr 7823 + caddc 7827 − cmin 8141 ℤcz 9266 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-cnex 7915 ax-resscn 7916 ax-1cn 7917 ax-1re 7918 ax-icn 7919 ax-addcl 7920 ax-addrcl 7921 ax-mulcl 7922 ax-addcom 7924 ax-addass 7926 ax-distr 7928 ax-i2m1 7929 ax-0lt1 7930 ax-0id 7932 ax-rnegex 7933 ax-cnre 7935 ax-pre-ltirr 7936 ax-pre-ltwlin 7937 ax-pre-lttrn 7938 ax-pre-ltadd 7940 |
This theorem depends on definitions: df-bi 117 df-3or 980 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-nel 2453 df-ral 2470 df-rex 2471 df-reu 2472 df-rab 2474 df-v 2751 df-sbc 2975 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-br 4016 df-opab 4077 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-iota 5190 df-fun 5230 df-fv 5236 df-riota 5844 df-ov 5891 df-oprab 5892 df-mpo 5893 df-pnf 8007 df-mnf 8008 df-xr 8009 df-ltxr 8010 df-le 8011 df-sub 8143 df-neg 8144 df-inn 8933 df-n0 9190 df-z 9267 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |