ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzsubsubfz GIF version

Theorem uzsubsubfz 10047
Description: Membership of an integer greater than L decreased by ( L - M ) in an M based finite set of sequential integers. (Contributed by Alexander van der Vekens, 14-Sep-2018.)
Assertion
Ref Expression
uzsubsubfz ((𝐿 ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐿)) → (𝑁 − (𝐿𝑀)) ∈ (𝑀...𝑁))

Proof of Theorem uzsubsubfz
StepHypRef Expression
1 eluz2 9534 . . 3 (𝐿 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝑀𝐿))
2 eluz2 9534 . . . 4 (𝑁 ∈ (ℤ𝐿) ↔ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁))
3 simpr 110 . . . . . . . . . . . . 13 (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℤ)
4 simpr 110 . . . . . . . . . . . . . 14 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
54adantr 276 . . . . . . . . . . . . 13 (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → 𝑁 ∈ ℤ)
6 zsubcl 9294 . . . . . . . . . . . . . . 15 ((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐿𝑀) ∈ ℤ)
76adantlr 477 . . . . . . . . . . . . . 14 (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → (𝐿𝑀) ∈ ℤ)
85, 7zsubcld 9380 . . . . . . . . . . . . 13 (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → (𝑁 − (𝐿𝑀)) ∈ ℤ)
93, 5, 83jca 1177 . . . . . . . . . . . 12 (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁 − (𝐿𝑀)) ∈ ℤ))
109ex 115 . . . . . . . . . . 11 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ ℤ → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁 − (𝐿𝑀)) ∈ ℤ)))
11103adant3 1017 . . . . . . . . . 10 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁) → (𝑀 ∈ ℤ → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁 − (𝐿𝑀)) ∈ ℤ)))
1211com12 30 . . . . . . . . 9 (𝑀 ∈ ℤ → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁 − (𝐿𝑀)) ∈ ℤ)))
1312adantr 276 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑀𝐿) → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁 − (𝐿𝑀)) ∈ ℤ)))
1413imp 124 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁 − (𝐿𝑀)) ∈ ℤ))
15 zre 9257 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
1615adantl 277 . . . . . . . . . . . . . . . 16 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ)
1716adantr 276 . . . . . . . . . . . . . . 15 (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑀𝐿)) → 𝑁 ∈ ℝ)
18 zre 9257 . . . . . . . . . . . . . . . . 17 (𝐿 ∈ ℤ → 𝐿 ∈ ℝ)
1918adantr 276 . . . . . . . . . . . . . . . 16 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐿 ∈ ℝ)
2019adantr 276 . . . . . . . . . . . . . . 15 (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑀𝐿)) → 𝐿 ∈ ℝ)
2117, 20subge0d 8492 . . . . . . . . . . . . . 14 (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑀𝐿)) → (0 ≤ (𝑁𝐿) ↔ 𝐿𝑁))
2221exbiri 382 . . . . . . . . . . . . 13 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 ∈ ℤ ∧ 𝑀𝐿) → (𝐿𝑁 → 0 ≤ (𝑁𝐿))))
2322com23 78 . . . . . . . . . . . 12 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐿𝑁 → ((𝑀 ∈ ℤ ∧ 𝑀𝐿) → 0 ≤ (𝑁𝐿))))
24233impia 1200 . . . . . . . . . . 11 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁) → ((𝑀 ∈ ℤ ∧ 𝑀𝐿) → 0 ≤ (𝑁𝐿)))
2524impcom 125 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → 0 ≤ (𝑁𝐿))
26 zre 9257 . . . . . . . . . . . . 13 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
2726adantr 276 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑀𝐿) → 𝑀 ∈ ℝ)
2827adantr 276 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → 𝑀 ∈ ℝ)
29 resubcl 8221 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (𝑁𝐿) ∈ ℝ)
3015, 18, 29syl2anr 290 . . . . . . . . . . . . 13 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁𝐿) ∈ ℝ)
31303adant3 1017 . . . . . . . . . . . 12 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁) → (𝑁𝐿) ∈ ℝ)
3231adantl 277 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → (𝑁𝐿) ∈ ℝ)
3328, 32addge02d 8491 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → (0 ≤ (𝑁𝐿) ↔ 𝑀 ≤ ((𝑁𝐿) + 𝑀)))
3425, 33mpbid 147 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → 𝑀 ≤ ((𝑁𝐿) + 𝑀))
35 zcn 9258 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
36353ad2ant2 1019 . . . . . . . . . . 11 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁) → 𝑁 ∈ ℂ)
3736adantl 277 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → 𝑁 ∈ ℂ)
38 zcn 9258 . . . . . . . . . . . 12 (𝐿 ∈ ℤ → 𝐿 ∈ ℂ)
39383ad2ant1 1018 . . . . . . . . . . 11 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁) → 𝐿 ∈ ℂ)
4039adantl 277 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → 𝐿 ∈ ℂ)
41 zcn 9258 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
4241adantr 276 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑀𝐿) → 𝑀 ∈ ℂ)
4342adantr 276 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → 𝑀 ∈ ℂ)
4437, 40, 43subsubd 8296 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → (𝑁 − (𝐿𝑀)) = ((𝑁𝐿) + 𝑀))
4534, 44breqtrrd 4032 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → 𝑀 ≤ (𝑁 − (𝐿𝑀)))
46183ad2ant1 1018 . . . . . . . . . . . . 13 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁) → 𝐿 ∈ ℝ)
47 subge0 8432 . . . . . . . . . . . . 13 ((𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (0 ≤ (𝐿𝑀) ↔ 𝑀𝐿))
4846, 26, 47syl2anr 290 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → (0 ≤ (𝐿𝑀) ↔ 𝑀𝐿))
4948exbiri 382 . . . . . . . . . . 11 (𝑀 ∈ ℤ → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁) → (𝑀𝐿 → 0 ≤ (𝐿𝑀))))
5049com23 78 . . . . . . . . . 10 (𝑀 ∈ ℤ → (𝑀𝐿 → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁) → 0 ≤ (𝐿𝑀))))
5150imp31 256 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → 0 ≤ (𝐿𝑀))
52153ad2ant2 1019 . . . . . . . . . . 11 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁) → 𝑁 ∈ ℝ)
5352adantl 277 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → 𝑁 ∈ ℝ)
54 resubcl 8221 . . . . . . . . . . 11 ((𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝐿𝑀) ∈ ℝ)
5546, 27, 54syl2anr 290 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → (𝐿𝑀) ∈ ℝ)
5653, 55subge02d 8494 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → (0 ≤ (𝐿𝑀) ↔ (𝑁 − (𝐿𝑀)) ≤ 𝑁))
5751, 56mpbid 147 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → (𝑁 − (𝐿𝑀)) ≤ 𝑁)
5845, 57jca 306 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → (𝑀 ≤ (𝑁 − (𝐿𝑀)) ∧ (𝑁 − (𝐿𝑀)) ≤ 𝑁))
59 elfz2 10015 . . . . . . 7 ((𝑁 − (𝐿𝑀)) ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁 − (𝐿𝑀)) ∈ ℤ) ∧ (𝑀 ≤ (𝑁 − (𝐿𝑀)) ∧ (𝑁 − (𝐿𝑀)) ≤ 𝑁)))
6014, 58, 59sylanbrc 417 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → (𝑁 − (𝐿𝑀)) ∈ (𝑀...𝑁))
6160ex 115 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑀𝐿) → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁) → (𝑁 − (𝐿𝑀)) ∈ (𝑀...𝑁)))
62613adant2 1016 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝑀𝐿) → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁) → (𝑁 − (𝐿𝑀)) ∈ (𝑀...𝑁)))
632, 62biimtrid 152 . . 3 ((𝑀 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝑀𝐿) → (𝑁 ∈ (ℤ𝐿) → (𝑁 − (𝐿𝑀)) ∈ (𝑀...𝑁)))
641, 63sylbi 121 . 2 (𝐿 ∈ (ℤ𝑀) → (𝑁 ∈ (ℤ𝐿) → (𝑁 − (𝐿𝑀)) ∈ (𝑀...𝑁)))
6564imp 124 1 ((𝐿 ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐿)) → (𝑁 − (𝐿𝑀)) ∈ (𝑀...𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 978  wcel 2148   class class class wbr 4004  cfv 5217  (class class class)co 5875  cc 7809  cr 7810  0cc0 7811   + caddc 7814  cle 7993  cmin 8128  cz 9253  cuz 9528  ...cfz 10008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-addcom 7911  ax-addass 7913  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-0id 7919  ax-rnegex 7920  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-ltadd 7927
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-inn 8920  df-n0 9177  df-z 9254  df-uz 9529  df-fz 10009
This theorem is referenced by:  uzsubsubfz1  10048
  Copyright terms: Public domain W3C validator