ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzsubsubfz GIF version

Theorem uzsubsubfz 10003
Description: Membership of an integer greater than L decreased by ( L - M ) in an M based finite set of sequential integers. (Contributed by Alexander van der Vekens, 14-Sep-2018.)
Assertion
Ref Expression
uzsubsubfz ((𝐿 ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐿)) → (𝑁 − (𝐿𝑀)) ∈ (𝑀...𝑁))

Proof of Theorem uzsubsubfz
StepHypRef Expression
1 eluz2 9493 . . 3 (𝐿 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝑀𝐿))
2 eluz2 9493 . . . 4 (𝑁 ∈ (ℤ𝐿) ↔ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁))
3 simpr 109 . . . . . . . . . . . . 13 (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℤ)
4 simpr 109 . . . . . . . . . . . . . 14 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
54adantr 274 . . . . . . . . . . . . 13 (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → 𝑁 ∈ ℤ)
6 zsubcl 9253 . . . . . . . . . . . . . . 15 ((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐿𝑀) ∈ ℤ)
76adantlr 474 . . . . . . . . . . . . . 14 (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → (𝐿𝑀) ∈ ℤ)
85, 7zsubcld 9339 . . . . . . . . . . . . 13 (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → (𝑁 − (𝐿𝑀)) ∈ ℤ)
93, 5, 83jca 1172 . . . . . . . . . . . 12 (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁 − (𝐿𝑀)) ∈ ℤ))
109ex 114 . . . . . . . . . . 11 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ ℤ → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁 − (𝐿𝑀)) ∈ ℤ)))
11103adant3 1012 . . . . . . . . . 10 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁) → (𝑀 ∈ ℤ → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁 − (𝐿𝑀)) ∈ ℤ)))
1211com12 30 . . . . . . . . 9 (𝑀 ∈ ℤ → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁 − (𝐿𝑀)) ∈ ℤ)))
1312adantr 274 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑀𝐿) → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁 − (𝐿𝑀)) ∈ ℤ)))
1413imp 123 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁 − (𝐿𝑀)) ∈ ℤ))
15 zre 9216 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
1615adantl 275 . . . . . . . . . . . . . . . 16 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ)
1716adantr 274 . . . . . . . . . . . . . . 15 (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑀𝐿)) → 𝑁 ∈ ℝ)
18 zre 9216 . . . . . . . . . . . . . . . . 17 (𝐿 ∈ ℤ → 𝐿 ∈ ℝ)
1918adantr 274 . . . . . . . . . . . . . . . 16 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐿 ∈ ℝ)
2019adantr 274 . . . . . . . . . . . . . . 15 (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑀𝐿)) → 𝐿 ∈ ℝ)
2117, 20subge0d 8454 . . . . . . . . . . . . . 14 (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑀𝐿)) → (0 ≤ (𝑁𝐿) ↔ 𝐿𝑁))
2221exbiri 380 . . . . . . . . . . . . 13 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 ∈ ℤ ∧ 𝑀𝐿) → (𝐿𝑁 → 0 ≤ (𝑁𝐿))))
2322com23 78 . . . . . . . . . . . 12 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐿𝑁 → ((𝑀 ∈ ℤ ∧ 𝑀𝐿) → 0 ≤ (𝑁𝐿))))
24233impia 1195 . . . . . . . . . . 11 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁) → ((𝑀 ∈ ℤ ∧ 𝑀𝐿) → 0 ≤ (𝑁𝐿)))
2524impcom 124 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → 0 ≤ (𝑁𝐿))
26 zre 9216 . . . . . . . . . . . . 13 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
2726adantr 274 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑀𝐿) → 𝑀 ∈ ℝ)
2827adantr 274 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → 𝑀 ∈ ℝ)
29 resubcl 8183 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (𝑁𝐿) ∈ ℝ)
3015, 18, 29syl2anr 288 . . . . . . . . . . . . 13 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁𝐿) ∈ ℝ)
31303adant3 1012 . . . . . . . . . . . 12 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁) → (𝑁𝐿) ∈ ℝ)
3231adantl 275 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → (𝑁𝐿) ∈ ℝ)
3328, 32addge02d 8453 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → (0 ≤ (𝑁𝐿) ↔ 𝑀 ≤ ((𝑁𝐿) + 𝑀)))
3425, 33mpbid 146 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → 𝑀 ≤ ((𝑁𝐿) + 𝑀))
35 zcn 9217 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
36353ad2ant2 1014 . . . . . . . . . . 11 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁) → 𝑁 ∈ ℂ)
3736adantl 275 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → 𝑁 ∈ ℂ)
38 zcn 9217 . . . . . . . . . . . 12 (𝐿 ∈ ℤ → 𝐿 ∈ ℂ)
39383ad2ant1 1013 . . . . . . . . . . 11 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁) → 𝐿 ∈ ℂ)
4039adantl 275 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → 𝐿 ∈ ℂ)
41 zcn 9217 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
4241adantr 274 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑀𝐿) → 𝑀 ∈ ℂ)
4342adantr 274 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → 𝑀 ∈ ℂ)
4437, 40, 43subsubd 8258 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → (𝑁 − (𝐿𝑀)) = ((𝑁𝐿) + 𝑀))
4534, 44breqtrrd 4017 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → 𝑀 ≤ (𝑁 − (𝐿𝑀)))
46183ad2ant1 1013 . . . . . . . . . . . . 13 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁) → 𝐿 ∈ ℝ)
47 subge0 8394 . . . . . . . . . . . . 13 ((𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (0 ≤ (𝐿𝑀) ↔ 𝑀𝐿))
4846, 26, 47syl2anr 288 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → (0 ≤ (𝐿𝑀) ↔ 𝑀𝐿))
4948exbiri 380 . . . . . . . . . . 11 (𝑀 ∈ ℤ → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁) → (𝑀𝐿 → 0 ≤ (𝐿𝑀))))
5049com23 78 . . . . . . . . . 10 (𝑀 ∈ ℤ → (𝑀𝐿 → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁) → 0 ≤ (𝐿𝑀))))
5150imp31 254 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → 0 ≤ (𝐿𝑀))
52153ad2ant2 1014 . . . . . . . . . . 11 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁) → 𝑁 ∈ ℝ)
5352adantl 275 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → 𝑁 ∈ ℝ)
54 resubcl 8183 . . . . . . . . . . 11 ((𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝐿𝑀) ∈ ℝ)
5546, 27, 54syl2anr 288 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → (𝐿𝑀) ∈ ℝ)
5653, 55subge02d 8456 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → (0 ≤ (𝐿𝑀) ↔ (𝑁 − (𝐿𝑀)) ≤ 𝑁))
5751, 56mpbid 146 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → (𝑁 − (𝐿𝑀)) ≤ 𝑁)
5845, 57jca 304 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → (𝑀 ≤ (𝑁 − (𝐿𝑀)) ∧ (𝑁 − (𝐿𝑀)) ≤ 𝑁))
59 elfz2 9972 . . . . . . 7 ((𝑁 − (𝐿𝑀)) ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁 − (𝐿𝑀)) ∈ ℤ) ∧ (𝑀 ≤ (𝑁 − (𝐿𝑀)) ∧ (𝑁 − (𝐿𝑀)) ≤ 𝑁)))
6014, 58, 59sylanbrc 415 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → (𝑁 − (𝐿𝑀)) ∈ (𝑀...𝑁))
6160ex 114 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑀𝐿) → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁) → (𝑁 − (𝐿𝑀)) ∈ (𝑀...𝑁)))
62613adant2 1011 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝑀𝐿) → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁) → (𝑁 − (𝐿𝑀)) ∈ (𝑀...𝑁)))
632, 62syl5bi 151 . . 3 ((𝑀 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝑀𝐿) → (𝑁 ∈ (ℤ𝐿) → (𝑁 − (𝐿𝑀)) ∈ (𝑀...𝑁)))
641, 63sylbi 120 . 2 (𝐿 ∈ (ℤ𝑀) → (𝑁 ∈ (ℤ𝐿) → (𝑁 − (𝐿𝑀)) ∈ (𝑀...𝑁)))
6564imp 123 1 ((𝐿 ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐿)) → (𝑁 − (𝐿𝑀)) ∈ (𝑀...𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 973  wcel 2141   class class class wbr 3989  cfv 5198  (class class class)co 5853  cc 7772  cr 7773  0cc0 7774   + caddc 7777  cle 7955  cmin 8090  cz 9212  cuz 9487  ...cfz 9965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-fz 9966
This theorem is referenced by:  uzsubsubfz1  10004
  Copyright terms: Public domain W3C validator