| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mulcanpig | GIF version | ||
| Description: Multiplication cancellation law for positive integers. (Contributed by Jim Kingdon, 29-Aug-2019.) | 
| Ref | Expression | 
|---|---|
| mulcanpig | ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → ((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) ↔ 𝐵 = 𝐶)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mulpiord 7384 | . . . . . 6 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵)) | |
| 2 | 1 | adantr 276 | . . . . 5 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ 𝐶 ∈ N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵)) | 
| 3 | mulpiord 7384 | . . . . . 6 ⊢ ((𝐴 ∈ N ∧ 𝐶 ∈ N) → (𝐴 ·N 𝐶) = (𝐴 ·o 𝐶)) | |
| 4 | 3 | adantlr 477 | . . . . 5 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ 𝐶 ∈ N) → (𝐴 ·N 𝐶) = (𝐴 ·o 𝐶)) | 
| 5 | 2, 4 | eqeq12d 2211 | . . . 4 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ 𝐶 ∈ N) → ((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) ↔ (𝐴 ·o 𝐵) = (𝐴 ·o 𝐶))) | 
| 6 | pinn 7376 | . . . . . . . . 9 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) | |
| 7 | pinn 7376 | . . . . . . . . 9 ⊢ (𝐵 ∈ N → 𝐵 ∈ ω) | |
| 8 | pinn 7376 | . . . . . . . . 9 ⊢ (𝐶 ∈ N → 𝐶 ∈ ω) | |
| 9 | elni2 7381 | . . . . . . . . . . . 12 ⊢ (𝐴 ∈ N ↔ (𝐴 ∈ ω ∧ ∅ ∈ 𝐴)) | |
| 10 | 9 | simprbi 275 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ N → ∅ ∈ 𝐴) | 
| 11 | nnmcan 6577 | . . . . . . . . . . . 12 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐴) → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) ↔ 𝐵 = 𝐶)) | |
| 12 | 11 | biimpd 144 | . . . . . . . . . . 11 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐴) → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) → 𝐵 = 𝐶)) | 
| 13 | 10, 12 | sylan2 286 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ 𝐴 ∈ N) → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) → 𝐵 = 𝐶)) | 
| 14 | 13 | ex 115 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴 ∈ N → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) → 𝐵 = 𝐶))) | 
| 15 | 6, 7, 8, 14 | syl3an 1291 | . . . . . . . 8 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → (𝐴 ∈ N → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) → 𝐵 = 𝐶))) | 
| 16 | 15 | 3exp 1204 | . . . . . . 7 ⊢ (𝐴 ∈ N → (𝐵 ∈ N → (𝐶 ∈ N → (𝐴 ∈ N → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) → 𝐵 = 𝐶))))) | 
| 17 | 16 | com4r 86 | . . . . . 6 ⊢ (𝐴 ∈ N → (𝐴 ∈ N → (𝐵 ∈ N → (𝐶 ∈ N → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) → 𝐵 = 𝐶))))) | 
| 18 | 17 | pm2.43i 49 | . . . . 5 ⊢ (𝐴 ∈ N → (𝐵 ∈ N → (𝐶 ∈ N → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) → 𝐵 = 𝐶)))) | 
| 19 | 18 | imp31 256 | . . . 4 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ 𝐶 ∈ N) → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) → 𝐵 = 𝐶)) | 
| 20 | 5, 19 | sylbid 150 | . . 3 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ 𝐶 ∈ N) → ((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) → 𝐵 = 𝐶)) | 
| 21 | 20 | 3impa 1196 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → ((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) → 𝐵 = 𝐶)) | 
| 22 | oveq2 5930 | . 2 ⊢ (𝐵 = 𝐶 → (𝐴 ·N 𝐵) = (𝐴 ·N 𝐶)) | |
| 23 | 21, 22 | impbid1 142 | 1 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → ((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) ↔ 𝐵 = 𝐶)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 ∅c0 3450 ωcom 4626 (class class class)co 5922 ·o comu 6472 Ncnpi 7339 ·N cmi 7341 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-oadd 6478 df-omul 6479 df-ni 7371 df-mi 7373 | 
| This theorem is referenced by: enqer 7425 | 
| Copyright terms: Public domain | W3C validator |