ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcanpig GIF version

Theorem mulcanpig 7455
Description: Multiplication cancellation law for positive integers. (Contributed by Jim Kingdon, 29-Aug-2019.)
Assertion
Ref Expression
mulcanpig ((𝐴N𝐵N𝐶N) → ((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) ↔ 𝐵 = 𝐶))

Proof of Theorem mulcanpig
StepHypRef Expression
1 mulpiord 7437 . . . . . 6 ((𝐴N𝐵N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵))
21adantr 276 . . . . 5 (((𝐴N𝐵N) ∧ 𝐶N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵))
3 mulpiord 7437 . . . . . 6 ((𝐴N𝐶N) → (𝐴 ·N 𝐶) = (𝐴 ·o 𝐶))
43adantlr 477 . . . . 5 (((𝐴N𝐵N) ∧ 𝐶N) → (𝐴 ·N 𝐶) = (𝐴 ·o 𝐶))
52, 4eqeq12d 2221 . . . 4 (((𝐴N𝐵N) ∧ 𝐶N) → ((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) ↔ (𝐴 ·o 𝐵) = (𝐴 ·o 𝐶)))
6 pinn 7429 . . . . . . . . 9 (𝐴N𝐴 ∈ ω)
7 pinn 7429 . . . . . . . . 9 (𝐵N𝐵 ∈ ω)
8 pinn 7429 . . . . . . . . 9 (𝐶N𝐶 ∈ ω)
9 elni2 7434 . . . . . . . . . . . 12 (𝐴N ↔ (𝐴 ∈ ω ∧ ∅ ∈ 𝐴))
109simprbi 275 . . . . . . . . . . 11 (𝐴N → ∅ ∈ 𝐴)
11 nnmcan 6612 . . . . . . . . . . . 12 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐴) → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) ↔ 𝐵 = 𝐶))
1211biimpd 144 . . . . . . . . . . 11 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐴) → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) → 𝐵 = 𝐶))
1310, 12sylan2 286 . . . . . . . . . 10 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ 𝐴N) → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) → 𝐵 = 𝐶))
1413ex 115 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴N → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) → 𝐵 = 𝐶)))
156, 7, 8, 14syl3an 1292 . . . . . . . 8 ((𝐴N𝐵N𝐶N) → (𝐴N → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) → 𝐵 = 𝐶)))
16153exp 1205 . . . . . . 7 (𝐴N → (𝐵N → (𝐶N → (𝐴N → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) → 𝐵 = 𝐶)))))
1716com4r 86 . . . . . 6 (𝐴N → (𝐴N → (𝐵N → (𝐶N → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) → 𝐵 = 𝐶)))))
1817pm2.43i 49 . . . . 5 (𝐴N → (𝐵N → (𝐶N → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) → 𝐵 = 𝐶))))
1918imp31 256 . . . 4 (((𝐴N𝐵N) ∧ 𝐶N) → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) → 𝐵 = 𝐶))
205, 19sylbid 150 . . 3 (((𝐴N𝐵N) ∧ 𝐶N) → ((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) → 𝐵 = 𝐶))
21203impa 1197 . 2 ((𝐴N𝐵N𝐶N) → ((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) → 𝐵 = 𝐶))
22 oveq2 5959 . 2 (𝐵 = 𝐶 → (𝐴 ·N 𝐵) = (𝐴 ·N 𝐶))
2321, 22impbid1 142 1 ((𝐴N𝐵N𝐶N) → ((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) ↔ 𝐵 = 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981   = wceq 1373  wcel 2177  c0 3461  ωcom 4642  (class class class)co 5951   ·o comu 6507  Ncnpi 7392   ·N cmi 7394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-iord 4417  df-on 4419  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-irdg 6463  df-oadd 6513  df-omul 6514  df-ni 7424  df-mi 7426
This theorem is referenced by:  enqer  7478
  Copyright terms: Public domain W3C validator