ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcanpig GIF version

Theorem mulcanpig 6797
Description: Multiplication cancellation law for positive integers. (Contributed by Jim Kingdon, 29-Aug-2019.)
Assertion
Ref Expression
mulcanpig ((𝐴N𝐵N𝐶N) → ((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) ↔ 𝐵 = 𝐶))

Proof of Theorem mulcanpig
StepHypRef Expression
1 mulpiord 6779 . . . . . 6 ((𝐴N𝐵N) → (𝐴 ·N 𝐵) = (𝐴 ·𝑜 𝐵))
21adantr 270 . . . . 5 (((𝐴N𝐵N) ∧ 𝐶N) → (𝐴 ·N 𝐵) = (𝐴 ·𝑜 𝐵))
3 mulpiord 6779 . . . . . 6 ((𝐴N𝐶N) → (𝐴 ·N 𝐶) = (𝐴 ·𝑜 𝐶))
43adantlr 461 . . . . 5 (((𝐴N𝐵N) ∧ 𝐶N) → (𝐴 ·N 𝐶) = (𝐴 ·𝑜 𝐶))
52, 4eqeq12d 2097 . . . 4 (((𝐴N𝐵N) ∧ 𝐶N) → ((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) ↔ (𝐴 ·𝑜 𝐵) = (𝐴 ·𝑜 𝐶)))
6 pinn 6771 . . . . . . . . 9 (𝐴N𝐴 ∈ ω)
7 pinn 6771 . . . . . . . . 9 (𝐵N𝐵 ∈ ω)
8 pinn 6771 . . . . . . . . 9 (𝐶N𝐶 ∈ ω)
9 elni2 6776 . . . . . . . . . . . 12 (𝐴N ↔ (𝐴 ∈ ω ∧ ∅ ∈ 𝐴))
109simprbi 269 . . . . . . . . . . 11 (𝐴N → ∅ ∈ 𝐴)
11 nnmcan 6208 . . . . . . . . . . . 12 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐴) → ((𝐴 ·𝑜 𝐵) = (𝐴 ·𝑜 𝐶) ↔ 𝐵 = 𝐶))
1211biimpd 142 . . . . . . . . . . 11 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐴) → ((𝐴 ·𝑜 𝐵) = (𝐴 ·𝑜 𝐶) → 𝐵 = 𝐶))
1310, 12sylan2 280 . . . . . . . . . 10 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ 𝐴N) → ((𝐴 ·𝑜 𝐵) = (𝐴 ·𝑜 𝐶) → 𝐵 = 𝐶))
1413ex 113 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴N → ((𝐴 ·𝑜 𝐵) = (𝐴 ·𝑜 𝐶) → 𝐵 = 𝐶)))
156, 7, 8, 14syl3an 1212 . . . . . . . 8 ((𝐴N𝐵N𝐶N) → (𝐴N → ((𝐴 ·𝑜 𝐵) = (𝐴 ·𝑜 𝐶) → 𝐵 = 𝐶)))
16153exp 1138 . . . . . . 7 (𝐴N → (𝐵N → (𝐶N → (𝐴N → ((𝐴 ·𝑜 𝐵) = (𝐴 ·𝑜 𝐶) → 𝐵 = 𝐶)))))
1716com4r 85 . . . . . 6 (𝐴N → (𝐴N → (𝐵N → (𝐶N → ((𝐴 ·𝑜 𝐵) = (𝐴 ·𝑜 𝐶) → 𝐵 = 𝐶)))))
1817pm2.43i 48 . . . . 5 (𝐴N → (𝐵N → (𝐶N → ((𝐴 ·𝑜 𝐵) = (𝐴 ·𝑜 𝐶) → 𝐵 = 𝐶))))
1918imp31 252 . . . 4 (((𝐴N𝐵N) ∧ 𝐶N) → ((𝐴 ·𝑜 𝐵) = (𝐴 ·𝑜 𝐶) → 𝐵 = 𝐶))
205, 19sylbid 148 . . 3 (((𝐴N𝐵N) ∧ 𝐶N) → ((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) → 𝐵 = 𝐶))
21203impa 1134 . 2 ((𝐴N𝐵N𝐶N) → ((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) → 𝐵 = 𝐶))
22 oveq2 5599 . 2 (𝐵 = 𝐶 → (𝐴 ·N 𝐵) = (𝐴 ·N 𝐶))
2321, 22impbid1 140 1 ((𝐴N𝐵N𝐶N) → ((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) ↔ 𝐵 = 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 920   = wceq 1285  wcel 1434  c0 3269  ωcom 4368  (class class class)co 5591   ·𝑜 comu 6111  Ncnpi 6734   ·N cmi 6736
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3919  ax-sep 3922  ax-nul 3930  ax-pow 3974  ax-pr 4000  ax-un 4224  ax-setind 4316  ax-iinf 4366
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2614  df-sbc 2827  df-csb 2920  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-nul 3270  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-iun 3706  df-br 3812  df-opab 3866  df-mpt 3867  df-tr 3902  df-id 4084  df-iord 4157  df-on 4159  df-suc 4162  df-iom 4369  df-xp 4407  df-rel 4408  df-cnv 4409  df-co 4410  df-dm 4411  df-rn 4412  df-res 4413  df-ima 4414  df-iota 4934  df-fun 4971  df-fn 4972  df-f 4973  df-f1 4974  df-fo 4975  df-f1o 4976  df-fv 4977  df-ov 5594  df-oprab 5595  df-mpt2 5596  df-1st 5846  df-2nd 5847  df-recs 6002  df-irdg 6067  df-oadd 6117  df-omul 6118  df-ni 6766  df-mi 6768
This theorem is referenced by:  enqer  6820
  Copyright terms: Public domain W3C validator