Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulcanpig | GIF version |
Description: Multiplication cancellation law for positive integers. (Contributed by Jim Kingdon, 29-Aug-2019.) |
Ref | Expression |
---|---|
mulcanpig | ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → ((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) ↔ 𝐵 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulpiord 7279 | . . . . . 6 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵)) | |
2 | 1 | adantr 274 | . . . . 5 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ 𝐶 ∈ N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵)) |
3 | mulpiord 7279 | . . . . . 6 ⊢ ((𝐴 ∈ N ∧ 𝐶 ∈ N) → (𝐴 ·N 𝐶) = (𝐴 ·o 𝐶)) | |
4 | 3 | adantlr 474 | . . . . 5 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ 𝐶 ∈ N) → (𝐴 ·N 𝐶) = (𝐴 ·o 𝐶)) |
5 | 2, 4 | eqeq12d 2185 | . . . 4 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ 𝐶 ∈ N) → ((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) ↔ (𝐴 ·o 𝐵) = (𝐴 ·o 𝐶))) |
6 | pinn 7271 | . . . . . . . . 9 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) | |
7 | pinn 7271 | . . . . . . . . 9 ⊢ (𝐵 ∈ N → 𝐵 ∈ ω) | |
8 | pinn 7271 | . . . . . . . . 9 ⊢ (𝐶 ∈ N → 𝐶 ∈ ω) | |
9 | elni2 7276 | . . . . . . . . . . . 12 ⊢ (𝐴 ∈ N ↔ (𝐴 ∈ ω ∧ ∅ ∈ 𝐴)) | |
10 | 9 | simprbi 273 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ N → ∅ ∈ 𝐴) |
11 | nnmcan 6498 | . . . . . . . . . . . 12 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐴) → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) ↔ 𝐵 = 𝐶)) | |
12 | 11 | biimpd 143 | . . . . . . . . . . 11 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐴) → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) → 𝐵 = 𝐶)) |
13 | 10, 12 | sylan2 284 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ 𝐴 ∈ N) → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) → 𝐵 = 𝐶)) |
14 | 13 | ex 114 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴 ∈ N → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) → 𝐵 = 𝐶))) |
15 | 6, 7, 8, 14 | syl3an 1275 | . . . . . . . 8 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → (𝐴 ∈ N → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) → 𝐵 = 𝐶))) |
16 | 15 | 3exp 1197 | . . . . . . 7 ⊢ (𝐴 ∈ N → (𝐵 ∈ N → (𝐶 ∈ N → (𝐴 ∈ N → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) → 𝐵 = 𝐶))))) |
17 | 16 | com4r 86 | . . . . . 6 ⊢ (𝐴 ∈ N → (𝐴 ∈ N → (𝐵 ∈ N → (𝐶 ∈ N → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) → 𝐵 = 𝐶))))) |
18 | 17 | pm2.43i 49 | . . . . 5 ⊢ (𝐴 ∈ N → (𝐵 ∈ N → (𝐶 ∈ N → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) → 𝐵 = 𝐶)))) |
19 | 18 | imp31 254 | . . . 4 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ 𝐶 ∈ N) → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) → 𝐵 = 𝐶)) |
20 | 5, 19 | sylbid 149 | . . 3 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ 𝐶 ∈ N) → ((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) → 𝐵 = 𝐶)) |
21 | 20 | 3impa 1189 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → ((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) → 𝐵 = 𝐶)) |
22 | oveq2 5861 | . 2 ⊢ (𝐵 = 𝐶 → (𝐴 ·N 𝐵) = (𝐴 ·N 𝐶)) | |
23 | 21, 22 | impbid1 141 | 1 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → ((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) ↔ 𝐵 = 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 973 = wceq 1348 ∈ wcel 2141 ∅c0 3414 ωcom 4574 (class class class)co 5853 ·o comu 6393 Ncnpi 7234 ·N cmi 7236 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-oadd 6399 df-omul 6400 df-ni 7266 df-mi 7268 |
This theorem is referenced by: enqer 7320 |
Copyright terms: Public domain | W3C validator |