![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mulcanpig | GIF version |
Description: Multiplication cancellation law for positive integers. (Contributed by Jim Kingdon, 29-Aug-2019.) |
Ref | Expression |
---|---|
mulcanpig | ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → ((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) ↔ 𝐵 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulpiord 6937 | . . . . . 6 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵)) | |
2 | 1 | adantr 271 | . . . . 5 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ 𝐶 ∈ N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵)) |
3 | mulpiord 6937 | . . . . . 6 ⊢ ((𝐴 ∈ N ∧ 𝐶 ∈ N) → (𝐴 ·N 𝐶) = (𝐴 ·o 𝐶)) | |
4 | 3 | adantlr 462 | . . . . 5 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ 𝐶 ∈ N) → (𝐴 ·N 𝐶) = (𝐴 ·o 𝐶)) |
5 | 2, 4 | eqeq12d 2103 | . . . 4 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ 𝐶 ∈ N) → ((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) ↔ (𝐴 ·o 𝐵) = (𝐴 ·o 𝐶))) |
6 | pinn 6929 | . . . . . . . . 9 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) | |
7 | pinn 6929 | . . . . . . . . 9 ⊢ (𝐵 ∈ N → 𝐵 ∈ ω) | |
8 | pinn 6929 | . . . . . . . . 9 ⊢ (𝐶 ∈ N → 𝐶 ∈ ω) | |
9 | elni2 6934 | . . . . . . . . . . . 12 ⊢ (𝐴 ∈ N ↔ (𝐴 ∈ ω ∧ ∅ ∈ 𝐴)) | |
10 | 9 | simprbi 270 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ N → ∅ ∈ 𝐴) |
11 | nnmcan 6292 | . . . . . . . . . . . 12 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐴) → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) ↔ 𝐵 = 𝐶)) | |
12 | 11 | biimpd 143 | . . . . . . . . . . 11 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐴) → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) → 𝐵 = 𝐶)) |
13 | 10, 12 | sylan2 281 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ 𝐴 ∈ N) → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) → 𝐵 = 𝐶)) |
14 | 13 | ex 114 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴 ∈ N → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) → 𝐵 = 𝐶))) |
15 | 6, 7, 8, 14 | syl3an 1217 | . . . . . . . 8 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → (𝐴 ∈ N → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) → 𝐵 = 𝐶))) |
16 | 15 | 3exp 1143 | . . . . . . 7 ⊢ (𝐴 ∈ N → (𝐵 ∈ N → (𝐶 ∈ N → (𝐴 ∈ N → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) → 𝐵 = 𝐶))))) |
17 | 16 | com4r 86 | . . . . . 6 ⊢ (𝐴 ∈ N → (𝐴 ∈ N → (𝐵 ∈ N → (𝐶 ∈ N → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) → 𝐵 = 𝐶))))) |
18 | 17 | pm2.43i 49 | . . . . 5 ⊢ (𝐴 ∈ N → (𝐵 ∈ N → (𝐶 ∈ N → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) → 𝐵 = 𝐶)))) |
19 | 18 | imp31 253 | . . . 4 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ 𝐶 ∈ N) → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) → 𝐵 = 𝐶)) |
20 | 5, 19 | sylbid 149 | . . 3 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ 𝐶 ∈ N) → ((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) → 𝐵 = 𝐶)) |
21 | 20 | 3impa 1139 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → ((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) → 𝐵 = 𝐶)) |
22 | oveq2 5674 | . 2 ⊢ (𝐵 = 𝐶 → (𝐴 ·N 𝐵) = (𝐴 ·N 𝐶)) | |
23 | 21, 22 | impbid1 141 | 1 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → ((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) ↔ 𝐵 = 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 925 = wceq 1290 ∈ wcel 1439 ∅c0 3287 ωcom 4418 (class class class)co 5666 ·o comu 6193 Ncnpi 6892 ·N cmi 6894 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 580 ax-in2 581 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-13 1450 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-coll 3960 ax-sep 3963 ax-nul 3971 ax-pow 4015 ax-pr 4045 ax-un 4269 ax-setind 4366 ax-iinf 4416 |
This theorem depends on definitions: df-bi 116 df-dc 782 df-3or 926 df-3an 927 df-tru 1293 df-fal 1296 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ne 2257 df-ral 2365 df-rex 2366 df-reu 2367 df-rab 2369 df-v 2622 df-sbc 2842 df-csb 2935 df-dif 3002 df-un 3004 df-in 3006 df-ss 3013 df-nul 3288 df-pw 3435 df-sn 3456 df-pr 3457 df-op 3459 df-uni 3660 df-int 3695 df-iun 3738 df-br 3852 df-opab 3906 df-mpt 3907 df-tr 3943 df-id 4129 df-iord 4202 df-on 4204 df-suc 4207 df-iom 4419 df-xp 4458 df-rel 4459 df-cnv 4460 df-co 4461 df-dm 4462 df-rn 4463 df-res 4464 df-ima 4465 df-iota 4993 df-fun 5030 df-fn 5031 df-f 5032 df-f1 5033 df-fo 5034 df-f1o 5035 df-fv 5036 df-ov 5669 df-oprab 5670 df-mpt2 5671 df-1st 5925 df-2nd 5926 df-recs 6084 df-irdg 6149 df-oadd 6199 df-omul 6200 df-ni 6924 df-mi 6926 |
This theorem is referenced by: enqer 6978 |
Copyright terms: Public domain | W3C validator |