ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzonelfzo GIF version

Theorem elfzonelfzo 10223
Description: If an element of a half-open integer range is not contained in the lower subrange, it must be in the upper subrange. (Contributed by Alexander van der Vekens, 30-Mar-2018.)
Assertion
Ref Expression
elfzonelfzo (𝑁 ∈ ℤ → ((𝐾 ∈ (𝑀..^𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) → 𝐾 ∈ (𝑁..^𝑅)))

Proof of Theorem elfzonelfzo
StepHypRef Expression
1 elfzo2 10143 . . 3 (𝐾 ∈ (𝑀..^𝑅) ↔ (𝐾 ∈ (ℤ𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅))
2 simpr 110 . . . . . 6 ((((𝐾 ∈ (ℤ𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
3 eluzelz 9531 . . . . . . . 8 (𝐾 ∈ (ℤ𝑀) → 𝐾 ∈ ℤ)
433ad2ant1 1018 . . . . . . 7 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) → 𝐾 ∈ ℤ)
54ad2antrr 488 . . . . . 6 ((((𝐾 ∈ (ℤ𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ ℤ)
63adantr 276 . . . . . . . . . . . . . . 15 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ ℤ)
7 eluzel2 9527 . . . . . . . . . . . . . . . 16 (𝐾 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
87adantr 276 . . . . . . . . . . . . . . 15 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℤ)
9 simpr 110 . . . . . . . . . . . . . . 15 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
10 elfzo 10142 . . . . . . . . . . . . . . 15 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀..^𝑁) ↔ (𝑀𝐾𝐾 < 𝑁)))
116, 8, 9, 10syl3anc 1238 . . . . . . . . . . . . . 14 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀..^𝑁) ↔ (𝑀𝐾𝐾 < 𝑁)))
12 eluzle 9534 . . . . . . . . . . . . . . . 16 (𝐾 ∈ (ℤ𝑀) → 𝑀𝐾)
1312adantr 276 . . . . . . . . . . . . . . 15 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ) → 𝑀𝐾)
1413biantrurd 305 . . . . . . . . . . . . . 14 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑁 ↔ (𝑀𝐾𝐾 < 𝑁)))
1511, 14bitr4d 191 . . . . . . . . . . . . 13 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀..^𝑁) ↔ 𝐾 < 𝑁))
1615notbid 667 . . . . . . . . . . . 12 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ) → (¬ 𝐾 ∈ (𝑀..^𝑁) ↔ ¬ 𝐾 < 𝑁))
179zred 9369 . . . . . . . . . . . . 13 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ)
186zred 9369 . . . . . . . . . . . . 13 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ ℝ)
1917, 18lenltd 8069 . . . . . . . . . . . 12 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ) → (𝑁𝐾 ↔ ¬ 𝐾 < 𝑁))
2016, 19bitr4d 191 . . . . . . . . . . 11 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ) → (¬ 𝐾 ∈ (𝑀..^𝑁) ↔ 𝑁𝐾))
2120biimpd 144 . . . . . . . . . 10 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ) → (¬ 𝐾 ∈ (𝑀..^𝑁) → 𝑁𝐾))
2221ex 115 . . . . . . . . 9 (𝐾 ∈ (ℤ𝑀) → (𝑁 ∈ ℤ → (¬ 𝐾 ∈ (𝑀..^𝑁) → 𝑁𝐾)))
2322com23 78 . . . . . . . 8 (𝐾 ∈ (ℤ𝑀) → (¬ 𝐾 ∈ (𝑀..^𝑁) → (𝑁 ∈ ℤ → 𝑁𝐾)))
24233ad2ant1 1018 . . . . . . 7 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) → (¬ 𝐾 ∈ (𝑀..^𝑁) → (𝑁 ∈ ℤ → 𝑁𝐾)))
2524imp31 256 . . . . . 6 ((((𝐾 ∈ (ℤ𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) ∧ 𝑁 ∈ ℤ) → 𝑁𝐾)
26 eluz2 9528 . . . . . 6 (𝐾 ∈ (ℤ𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁𝐾))
272, 5, 25, 26syl3anbrc 1181 . . . . 5 ((((𝐾 ∈ (ℤ𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ (ℤ𝑁))
28 simpll2 1037 . . . . 5 ((((𝐾 ∈ (ℤ𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) ∧ 𝑁 ∈ ℤ) → 𝑅 ∈ ℤ)
29 simpll3 1038 . . . . 5 ((((𝐾 ∈ (ℤ𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) ∧ 𝑁 ∈ ℤ) → 𝐾 < 𝑅)
30 elfzo2 10143 . . . . 5 (𝐾 ∈ (𝑁..^𝑅) ↔ (𝐾 ∈ (ℤ𝑁) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅))
3127, 28, 29, 30syl3anbrc 1181 . . . 4 ((((𝐾 ∈ (ℤ𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ (𝑁..^𝑅))
3231ex 115 . . 3 (((𝐾 ∈ (ℤ𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) → (𝑁 ∈ ℤ → 𝐾 ∈ (𝑁..^𝑅)))
331, 32sylanb 284 . 2 ((𝐾 ∈ (𝑀..^𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) → (𝑁 ∈ ℤ → 𝐾 ∈ (𝑁..^𝑅)))
3433com12 30 1 (𝑁 ∈ ℤ → ((𝐾 ∈ (𝑀..^𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) → 𝐾 ∈ (𝑁..^𝑅)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  w3a 978  wcel 2148   class class class wbr 4001  cfv 5213  (class class class)co 5870   < clt 7986  cle 7987  cz 9247  cuz 9522  ..^cfzo 10135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4119  ax-pow 4172  ax-pr 4207  ax-un 4431  ax-setind 4534  ax-cnex 7897  ax-resscn 7898  ax-1cn 7899  ax-1re 7900  ax-icn 7901  ax-addcl 7902  ax-addrcl 7903  ax-mulcl 7904  ax-addcom 7906  ax-addass 7908  ax-distr 7910  ax-i2m1 7911  ax-0lt1 7912  ax-0id 7914  ax-rnegex 7915  ax-cnre 7917  ax-pre-ltirr 7918  ax-pre-ltwlin 7919  ax-pre-lttrn 7920  ax-pre-ltadd 7922
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3809  df-int 3844  df-iun 3887  df-br 4002  df-opab 4063  df-mpt 4064  df-id 4291  df-xp 4630  df-rel 4631  df-cnv 4632  df-co 4633  df-dm 4634  df-rn 4635  df-res 4636  df-ima 4637  df-iota 5175  df-fun 5215  df-fn 5216  df-f 5217  df-fv 5221  df-riota 5826  df-ov 5873  df-oprab 5874  df-mpo 5875  df-1st 6136  df-2nd 6137  df-pnf 7988  df-mnf 7989  df-xr 7990  df-ltxr 7991  df-le 7992  df-sub 8124  df-neg 8125  df-inn 8914  df-n0 9171  df-z 9248  df-uz 9523  df-fz 10003  df-fzo 10136
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator