| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0elon | GIF version | ||
| Description: The empty set is an ordinal number. Corollary 7N(b) of [Enderton] p. 193. (Contributed by NM, 17-Sep-1993.) |
| Ref | Expression |
|---|---|
| 0elon | ⊢ ∅ ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ord0 4479 | . 2 ⊢ Ord ∅ | |
| 2 | 0ex 4210 | . . 3 ⊢ ∅ ∈ V | |
| 3 | 2 | elon 4462 | . 2 ⊢ (∅ ∈ On ↔ Ord ∅) |
| 4 | 1, 3 | mpbir 146 | 1 ⊢ ∅ ∈ On |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 ∅c0 3491 Ord word 4450 Oncon0 4451 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-nul 4209 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-uni 3888 df-tr 4182 df-iord 4454 df-on 4456 |
| This theorem is referenced by: inton 4481 onn0 4488 onm 4489 limon 4602 ordtriexmid 4610 ontriexmidim 4611 ordtri2orexmid 4612 onsucsssucexmid 4616 onsucelsucexmid 4619 ordsoexmid 4651 ordpwsucexmid 4659 ordtri2or2exmid 4660 ontri2orexmidim 4661 tfr0dm 6458 1on 6559 ordgt0ge1 6571 omv 6591 oa0 6593 om0 6594 oei0 6595 omcl 6597 omv2 6601 oaword1 6607 nna0r 6614 nnm0r 6615 card0 7348 |
| Copyright terms: Public domain | W3C validator |