Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0elon | GIF version |
Description: The empty set is an ordinal number. Corollary 7N(b) of [Enderton] p. 193. (Contributed by NM, 17-Sep-1993.) |
Ref | Expression |
---|---|
0elon | ⊢ ∅ ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ord0 4369 | . 2 ⊢ Ord ∅ | |
2 | 0ex 4109 | . . 3 ⊢ ∅ ∈ V | |
3 | 2 | elon 4352 | . 2 ⊢ (∅ ∈ On ↔ Ord ∅) |
4 | 1, 3 | mpbir 145 | 1 ⊢ ∅ ∈ On |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 ∅c0 3409 Ord word 4340 Oncon0 4341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-nul 4108 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-uni 3790 df-tr 4081 df-iord 4344 df-on 4346 |
This theorem is referenced by: inton 4371 onn0 4378 onm 4379 limon 4490 ordtriexmid 4498 ontriexmidim 4499 ordtri2orexmid 4500 onsucsssucexmid 4504 onsucelsucexmid 4507 ordsoexmid 4539 ordpwsucexmid 4547 ordtri2or2exmid 4548 ontri2orexmidim 4549 tfr0dm 6290 1on 6391 ordgt0ge1 6403 omv 6423 oa0 6425 om0 6426 oei0 6427 omcl 6429 omv2 6433 oaword1 6439 nna0r 6446 nnm0r 6447 card0 7144 |
Copyright terms: Public domain | W3C validator |