![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0elon | GIF version |
Description: The empty set is an ordinal number. Corollary 7N(b) of [Enderton] p. 193. (Contributed by NM, 17-Sep-1993.) |
Ref | Expression |
---|---|
0elon | ⊢ ∅ ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ord0 4422 | . 2 ⊢ Ord ∅ | |
2 | 0ex 4156 | . . 3 ⊢ ∅ ∈ V | |
3 | 2 | elon 4405 | . 2 ⊢ (∅ ∈ On ↔ Ord ∅) |
4 | 1, 3 | mpbir 146 | 1 ⊢ ∅ ∈ On |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 ∅c0 3446 Ord word 4393 Oncon0 4394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-nul 4155 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3155 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-uni 3836 df-tr 4128 df-iord 4397 df-on 4399 |
This theorem is referenced by: inton 4424 onn0 4431 onm 4432 limon 4545 ordtriexmid 4553 ontriexmidim 4554 ordtri2orexmid 4555 onsucsssucexmid 4559 onsucelsucexmid 4562 ordsoexmid 4594 ordpwsucexmid 4602 ordtri2or2exmid 4603 ontri2orexmidim 4604 tfr0dm 6375 1on 6476 ordgt0ge1 6488 omv 6508 oa0 6510 om0 6511 oei0 6512 omcl 6514 omv2 6518 oaword1 6524 nna0r 6531 nnm0r 6532 card0 7248 |
Copyright terms: Public domain | W3C validator |