Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  eroprf GIF version

Theorem eroprf 6534
 Description: Functionality of an operation defined on equivalence classes. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
eropr.1 𝐽 = (𝐴 / 𝑅)
eropr.2 𝐾 = (𝐵 / 𝑆)
eropr.3 (𝜑𝑇𝑍)
eropr.4 (𝜑𝑅 Er 𝑈)
eropr.5 (𝜑𝑆 Er 𝑉)
eropr.6 (𝜑𝑇 Er 𝑊)
eropr.7 (𝜑𝐴𝑈)
eropr.8 (𝜑𝐵𝑉)
eropr.9 (𝜑𝐶𝑊)
eropr.10 (𝜑+ :(𝐴 × 𝐵)⟶𝐶)
eropr.11 ((𝜑 ∧ ((𝑟𝐴𝑠𝐴) ∧ (𝑡𝐵𝑢𝐵))) → ((𝑟𝑅𝑠𝑡𝑆𝑢) → (𝑟 + 𝑡)𝑇(𝑠 + 𝑢)))
eropr.12 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ∃𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)}
eropr.13 (𝜑𝑅𝑋)
eropr.14 (𝜑𝑆𝑌)
eropr.15 𝐿 = (𝐶 / 𝑇)
Assertion
Ref Expression
eroprf (𝜑 :(𝐽 × 𝐾)⟶𝐿)
Distinct variable groups:   𝑞,𝑝,𝑟,𝑠,𝑡,𝑢,𝑥,𝑦,𝑧,𝐴   𝐵,𝑝,𝑞,𝑟,𝑠,𝑡,𝑢,𝑥,𝑦,𝑧   𝐿,𝑝,𝑞,𝑥,𝑦,𝑧   𝐽,𝑝,𝑞,𝑥,𝑦,𝑧   𝑅,𝑝,𝑞,𝑟,𝑠,𝑡,𝑢,𝑥,𝑦,𝑧   𝐾,𝑝,𝑞,𝑥,𝑦,𝑧   𝑆,𝑝,𝑞,𝑟,𝑠,𝑡,𝑢,𝑥,𝑦,𝑧   + ,𝑝,𝑞,𝑟,𝑠,𝑡,𝑢,𝑥,𝑦,𝑧   𝜑,𝑝,𝑞,𝑟,𝑠,𝑡,𝑢,𝑥,𝑦,𝑧   𝑇,𝑝,𝑞,𝑟,𝑠,𝑡,𝑢,𝑥,𝑦,𝑧   𝑋,𝑝,𝑞,𝑟,𝑠,𝑡,𝑢,𝑧   𝑌,𝑝,𝑞,𝑟,𝑠,𝑡,𝑢,𝑧
Allowed substitution hints:   𝐶(𝑥,𝑦,𝑧,𝑢,𝑡,𝑠,𝑟,𝑞,𝑝)   (𝑥,𝑦,𝑧,𝑢,𝑡,𝑠,𝑟,𝑞,𝑝)   𝑈(𝑥,𝑦,𝑧,𝑢,𝑡,𝑠,𝑟,𝑞,𝑝)   𝐽(𝑢,𝑡,𝑠,𝑟)   𝐾(𝑢,𝑡,𝑠,𝑟)   𝐿(𝑢,𝑡,𝑠,𝑟)   𝑉(𝑥,𝑦,𝑧,𝑢,𝑡,𝑠,𝑟,𝑞,𝑝)   𝑊(𝑥,𝑦,𝑧,𝑢,𝑡,𝑠,𝑟,𝑞,𝑝)   𝑋(𝑥,𝑦)   𝑌(𝑥,𝑦)   𝑍(𝑥,𝑦,𝑧,𝑢,𝑡,𝑠,𝑟,𝑞,𝑝)

Proof of Theorem eroprf
StepHypRef Expression
1 eropr.3 . . . . . . . . . . . 12 (𝜑𝑇𝑍)
21ad2antrr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ (𝑝𝐴𝑞𝐵)) → 𝑇𝑍)
3 eropr.10 . . . . . . . . . . . . 13 (𝜑+ :(𝐴 × 𝐵)⟶𝐶)
43adantr 274 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝐽𝑦𝐾)) → + :(𝐴 × 𝐵)⟶𝐶)
54fovrnda 5926 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ (𝑝𝐴𝑞𝐵)) → (𝑝 + 𝑞) ∈ 𝐶)
6 ecelqsg 6494 . . . . . . . . . . 11 ((𝑇𝑍 ∧ (𝑝 + 𝑞) ∈ 𝐶) → [(𝑝 + 𝑞)]𝑇 ∈ (𝐶 / 𝑇))
72, 5, 6syl2anc 409 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ (𝑝𝐴𝑞𝐵)) → [(𝑝 + 𝑞)]𝑇 ∈ (𝐶 / 𝑇))
8 eropr.15 . . . . . . . . . 10 𝐿 = (𝐶 / 𝑇)
97, 8eleqtrrdi 2235 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ (𝑝𝐴𝑞𝐵)) → [(𝑝 + 𝑞)]𝑇𝐿)
10 eleq1a 2213 . . . . . . . . 9 ([(𝑝 + 𝑞)]𝑇𝐿 → (𝑧 = [(𝑝 + 𝑞)]𝑇𝑧𝐿))
119, 10syl 14 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ (𝑝𝐴𝑞𝐵)) → (𝑧 = [(𝑝 + 𝑞)]𝑇𝑧𝐿))
1211adantld 276 . . . . . . 7 (((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ (𝑝𝐴𝑞𝐵)) → (((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇) → 𝑧𝐿))
1312rexlimdvva 2562 . . . . . 6 ((𝜑 ∧ (𝑥𝐽𝑦𝐾)) → (∃𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇) → 𝑧𝐿))
1413abssdv 3178 . . . . 5 ((𝜑 ∧ (𝑥𝐽𝑦𝐾)) → {𝑧 ∣ ∃𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)} ⊆ 𝐿)
15 eropr.1 . . . . . . 7 𝐽 = (𝐴 / 𝑅)
16 eropr.2 . . . . . . 7 𝐾 = (𝐵 / 𝑆)
17 eropr.4 . . . . . . 7 (𝜑𝑅 Er 𝑈)
18 eropr.5 . . . . . . 7 (𝜑𝑆 Er 𝑉)
19 eropr.6 . . . . . . 7 (𝜑𝑇 Er 𝑊)
20 eropr.7 . . . . . . 7 (𝜑𝐴𝑈)
21 eropr.8 . . . . . . 7 (𝜑𝐵𝑉)
22 eropr.9 . . . . . . 7 (𝜑𝐶𝑊)
23 eropr.11 . . . . . . 7 ((𝜑 ∧ ((𝑟𝐴𝑠𝐴) ∧ (𝑡𝐵𝑢𝐵))) → ((𝑟𝑅𝑠𝑡𝑆𝑢) → (𝑟 + 𝑡)𝑇(𝑠 + 𝑢)))
2415, 16, 1, 17, 18, 19, 20, 21, 22, 3, 23eroveu 6532 . . . . . 6 ((𝜑 ∧ (𝑥𝐽𝑦𝐾)) → ∃!𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))
25 iotacl 5123 . . . . . 6 (∃!𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇) → (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)) ∈ {𝑧 ∣ ∃𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)})
2624, 25syl 14 . . . . 5 ((𝜑 ∧ (𝑥𝐽𝑦𝐾)) → (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)) ∈ {𝑧 ∣ ∃𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)})
2714, 26sseldd 3105 . . . 4 ((𝜑 ∧ (𝑥𝐽𝑦𝐾)) → (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)) ∈ 𝐿)
2827ralrimivva 2519 . . 3 (𝜑 → ∀𝑥𝐽𝑦𝐾 (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)) ∈ 𝐿)
29 eqid 2141 . . . 4 (𝑥𝐽, 𝑦𝐾 ↦ (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))) = (𝑥𝐽, 𝑦𝐾 ↦ (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))
3029fmpo 6111 . . 3 (∀𝑥𝐽𝑦𝐾 (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)) ∈ 𝐿 ↔ (𝑥𝐽, 𝑦𝐾 ↦ (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))):(𝐽 × 𝐾)⟶𝐿)
3128, 30sylib 121 . 2 (𝜑 → (𝑥𝐽, 𝑦𝐾 ↦ (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))):(𝐽 × 𝐾)⟶𝐿)
32 eropr.12 . . . 4 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ∃𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)}
3315, 16, 1, 17, 18, 19, 20, 21, 22, 3, 23, 32erovlem 6533 . . 3 (𝜑 = (𝑥𝐽, 𝑦𝐾 ↦ (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))))
3433feq1d 5271 . 2 (𝜑 → ( :(𝐽 × 𝐾)⟶𝐿 ↔ (𝑥𝐽, 𝑦𝐾 ↦ (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))):(𝐽 × 𝐾)⟶𝐿))
3531, 34mpbird 166 1 (𝜑 :(𝐽 × 𝐾)⟶𝐿)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   = wceq 1332  ∃!weu 1990   ∈ wcel 2112  {cab 2127  ∀wral 2418  ∃wrex 2419   ⊆ wss 3078   class class class wbr 3939   × cxp 4549  ℩cio 5098  ⟶wf 5131  (class class class)co 5786  {coprab 5787   ∈ cmpo 5788   Er wer 6438  [cec 6439   / cqs 6440 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2114  ax-14 2115  ax-ext 2123  ax-sep 4056  ax-pow 4108  ax-pr 4142  ax-un 4366 This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1732  df-eu 1993  df-mo 1994  df-clab 2128  df-cleq 2134  df-clel 2137  df-nfc 2272  df-ral 2423  df-rex 2424  df-rab 2427  df-v 2693  df-sbc 2916  df-csb 3010  df-un 3082  df-in 3084  df-ss 3091  df-pw 3519  df-sn 3540  df-pr 3541  df-op 3543  df-uni 3747  df-iun 3825  df-br 3940  df-opab 4000  df-mpt 4001  df-id 4226  df-xp 4557  df-rel 4558  df-cnv 4559  df-co 4560  df-dm 4561  df-rn 4562  df-res 4563  df-ima 4564  df-iota 5100  df-fun 5137  df-fn 5138  df-f 5139  df-fv 5143  df-ov 5789  df-oprab 5790  df-mpo 5791  df-1st 6050  df-2nd 6051  df-er 6441  df-ec 6443  df-qs 6447 This theorem is referenced by:  eroprf2  6535
 Copyright terms: Public domain W3C validator