Proof of Theorem eroprf
Step | Hyp | Ref
| Expression |
1 | | eropr.3 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑇 ∈ 𝑍) |
2 | 1 | ad2antrr 485 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾)) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐵)) → 𝑇 ∈ 𝑍) |
3 | | eropr.10 |
. . . . . . . . . . . . 13
⊢ (𝜑 → + :(𝐴 × 𝐵)⟶𝐶) |
4 | 3 | adantr 274 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾)) → + :(𝐴 × 𝐵)⟶𝐶) |
5 | 4 | fovrnda 5996 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾)) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐵)) → (𝑝 + 𝑞) ∈ 𝐶) |
6 | | ecelqsg 6566 |
. . . . . . . . . . 11
⊢ ((𝑇 ∈ 𝑍 ∧ (𝑝 + 𝑞) ∈ 𝐶) → [(𝑝 + 𝑞)]𝑇 ∈ (𝐶 / 𝑇)) |
7 | 2, 5, 6 | syl2anc 409 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾)) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐵)) → [(𝑝 + 𝑞)]𝑇 ∈ (𝐶 / 𝑇)) |
8 | | eropr.15 |
. . . . . . . . . 10
⊢ 𝐿 = (𝐶 / 𝑇) |
9 | 7, 8 | eleqtrrdi 2264 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾)) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐵)) → [(𝑝 + 𝑞)]𝑇 ∈ 𝐿) |
10 | | eleq1a 2242 |
. . . . . . . . 9
⊢ ([(𝑝 + 𝑞)]𝑇 ∈ 𝐿 → (𝑧 = [(𝑝 + 𝑞)]𝑇 → 𝑧 ∈ 𝐿)) |
11 | 9, 10 | syl 14 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾)) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐵)) → (𝑧 = [(𝑝 + 𝑞)]𝑇 → 𝑧 ∈ 𝐿)) |
12 | 11 | adantld 276 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾)) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐵)) → (((𝑥 = [𝑝]𝑅 ∧ 𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇) → 𝑧 ∈ 𝐿)) |
13 | 12 | rexlimdvva 2595 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾)) → (∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐵 ((𝑥 = [𝑝]𝑅 ∧ 𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇) → 𝑧 ∈ 𝐿)) |
14 | 13 | abssdv 3221 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾)) → {𝑧 ∣ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐵 ((𝑥 = [𝑝]𝑅 ∧ 𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)} ⊆ 𝐿) |
15 | | eropr.1 |
. . . . . . 7
⊢ 𝐽 = (𝐴 / 𝑅) |
16 | | eropr.2 |
. . . . . . 7
⊢ 𝐾 = (𝐵 / 𝑆) |
17 | | eropr.4 |
. . . . . . 7
⊢ (𝜑 → 𝑅 Er 𝑈) |
18 | | eropr.5 |
. . . . . . 7
⊢ (𝜑 → 𝑆 Er 𝑉) |
19 | | eropr.6 |
. . . . . . 7
⊢ (𝜑 → 𝑇 Er 𝑊) |
20 | | eropr.7 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ⊆ 𝑈) |
21 | | eropr.8 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ⊆ 𝑉) |
22 | | eropr.9 |
. . . . . . 7
⊢ (𝜑 → 𝐶 ⊆ 𝑊) |
23 | | eropr.11 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵))) → ((𝑟𝑅𝑠 ∧ 𝑡𝑆𝑢) → (𝑟 + 𝑡)𝑇(𝑠 + 𝑢))) |
24 | 15, 16, 1, 17, 18, 19, 20, 21, 22, 3, 23 | eroveu 6604 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾)) → ∃!𝑧∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐵 ((𝑥 = [𝑝]𝑅 ∧ 𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)) |
25 | | iotacl 5183 |
. . . . . 6
⊢
(∃!𝑧∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐵 ((𝑥 = [𝑝]𝑅 ∧ 𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇) → (℩𝑧∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐵 ((𝑥 = [𝑝]𝑅 ∧ 𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)) ∈ {𝑧 ∣ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐵 ((𝑥 = [𝑝]𝑅 ∧ 𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)}) |
26 | 24, 25 | syl 14 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾)) → (℩𝑧∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐵 ((𝑥 = [𝑝]𝑅 ∧ 𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)) ∈ {𝑧 ∣ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐵 ((𝑥 = [𝑝]𝑅 ∧ 𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)}) |
27 | 14, 26 | sseldd 3148 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾)) → (℩𝑧∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐵 ((𝑥 = [𝑝]𝑅 ∧ 𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)) ∈ 𝐿) |
28 | 27 | ralrimivva 2552 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐾 (℩𝑧∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐵 ((𝑥 = [𝑝]𝑅 ∧ 𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)) ∈ 𝐿) |
29 | | eqid 2170 |
. . . 4
⊢ (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (℩𝑧∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐵 ((𝑥 = [𝑝]𝑅 ∧ 𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))) = (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (℩𝑧∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐵 ((𝑥 = [𝑝]𝑅 ∧ 𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))) |
30 | 29 | fmpo 6180 |
. . 3
⊢
(∀𝑥 ∈
𝐽 ∀𝑦 ∈ 𝐾 (℩𝑧∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐵 ((𝑥 = [𝑝]𝑅 ∧ 𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)) ∈ 𝐿 ↔ (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (℩𝑧∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐵 ((𝑥 = [𝑝]𝑅 ∧ 𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))):(𝐽 × 𝐾)⟶𝐿) |
31 | 28, 30 | sylib 121 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (℩𝑧∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐵 ((𝑥 = [𝑝]𝑅 ∧ 𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))):(𝐽 × 𝐾)⟶𝐿) |
32 | | eropr.12 |
. . . 4
⊢ ⨣ =
{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐵 ((𝑥 = [𝑝]𝑅 ∧ 𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)} |
33 | 15, 16, 1, 17, 18, 19, 20, 21, 22, 3, 23, 32 | erovlem 6605 |
. . 3
⊢ (𝜑 → ⨣ = (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (℩𝑧∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐵 ((𝑥 = [𝑝]𝑅 ∧ 𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))) |
34 | 33 | feq1d 5334 |
. 2
⊢ (𝜑 → ( ⨣ :(𝐽 × 𝐾)⟶𝐿 ↔ (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (℩𝑧∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐵 ((𝑥 = [𝑝]𝑅 ∧ 𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))):(𝐽 × 𝐾)⟶𝐿)) |
35 | 31, 34 | mpbird 166 |
1
⊢ (𝜑 → ⨣ :(𝐽 × 𝐾)⟶𝐿) |