ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eroprf GIF version

Theorem eroprf 6515
Description: Functionality of an operation defined on equivalence classes. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
eropr.1 𝐽 = (𝐴 / 𝑅)
eropr.2 𝐾 = (𝐵 / 𝑆)
eropr.3 (𝜑𝑇𝑍)
eropr.4 (𝜑𝑅 Er 𝑈)
eropr.5 (𝜑𝑆 Er 𝑉)
eropr.6 (𝜑𝑇 Er 𝑊)
eropr.7 (𝜑𝐴𝑈)
eropr.8 (𝜑𝐵𝑉)
eropr.9 (𝜑𝐶𝑊)
eropr.10 (𝜑+ :(𝐴 × 𝐵)⟶𝐶)
eropr.11 ((𝜑 ∧ ((𝑟𝐴𝑠𝐴) ∧ (𝑡𝐵𝑢𝐵))) → ((𝑟𝑅𝑠𝑡𝑆𝑢) → (𝑟 + 𝑡)𝑇(𝑠 + 𝑢)))
eropr.12 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ∃𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)}
eropr.13 (𝜑𝑅𝑋)
eropr.14 (𝜑𝑆𝑌)
eropr.15 𝐿 = (𝐶 / 𝑇)
Assertion
Ref Expression
eroprf (𝜑 :(𝐽 × 𝐾)⟶𝐿)
Distinct variable groups:   𝑞,𝑝,𝑟,𝑠,𝑡,𝑢,𝑥,𝑦,𝑧,𝐴   𝐵,𝑝,𝑞,𝑟,𝑠,𝑡,𝑢,𝑥,𝑦,𝑧   𝐿,𝑝,𝑞,𝑥,𝑦,𝑧   𝐽,𝑝,𝑞,𝑥,𝑦,𝑧   𝑅,𝑝,𝑞,𝑟,𝑠,𝑡,𝑢,𝑥,𝑦,𝑧   𝐾,𝑝,𝑞,𝑥,𝑦,𝑧   𝑆,𝑝,𝑞,𝑟,𝑠,𝑡,𝑢,𝑥,𝑦,𝑧   + ,𝑝,𝑞,𝑟,𝑠,𝑡,𝑢,𝑥,𝑦,𝑧   𝜑,𝑝,𝑞,𝑟,𝑠,𝑡,𝑢,𝑥,𝑦,𝑧   𝑇,𝑝,𝑞,𝑟,𝑠,𝑡,𝑢,𝑥,𝑦,𝑧   𝑋,𝑝,𝑞,𝑟,𝑠,𝑡,𝑢,𝑧   𝑌,𝑝,𝑞,𝑟,𝑠,𝑡,𝑢,𝑧
Allowed substitution hints:   𝐶(𝑥,𝑦,𝑧,𝑢,𝑡,𝑠,𝑟,𝑞,𝑝)   (𝑥,𝑦,𝑧,𝑢,𝑡,𝑠,𝑟,𝑞,𝑝)   𝑈(𝑥,𝑦,𝑧,𝑢,𝑡,𝑠,𝑟,𝑞,𝑝)   𝐽(𝑢,𝑡,𝑠,𝑟)   𝐾(𝑢,𝑡,𝑠,𝑟)   𝐿(𝑢,𝑡,𝑠,𝑟)   𝑉(𝑥,𝑦,𝑧,𝑢,𝑡,𝑠,𝑟,𝑞,𝑝)   𝑊(𝑥,𝑦,𝑧,𝑢,𝑡,𝑠,𝑟,𝑞,𝑝)   𝑋(𝑥,𝑦)   𝑌(𝑥,𝑦)   𝑍(𝑥,𝑦,𝑧,𝑢,𝑡,𝑠,𝑟,𝑞,𝑝)

Proof of Theorem eroprf
StepHypRef Expression
1 eropr.3 . . . . . . . . . . . 12 (𝜑𝑇𝑍)
21ad2antrr 479 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ (𝑝𝐴𝑞𝐵)) → 𝑇𝑍)
3 eropr.10 . . . . . . . . . . . . 13 (𝜑+ :(𝐴 × 𝐵)⟶𝐶)
43adantr 274 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝐽𝑦𝐾)) → + :(𝐴 × 𝐵)⟶𝐶)
54fovrnda 5907 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ (𝑝𝐴𝑞𝐵)) → (𝑝 + 𝑞) ∈ 𝐶)
6 ecelqsg 6475 . . . . . . . . . . 11 ((𝑇𝑍 ∧ (𝑝 + 𝑞) ∈ 𝐶) → [(𝑝 + 𝑞)]𝑇 ∈ (𝐶 / 𝑇))
72, 5, 6syl2anc 408 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ (𝑝𝐴𝑞𝐵)) → [(𝑝 + 𝑞)]𝑇 ∈ (𝐶 / 𝑇))
8 eropr.15 . . . . . . . . . 10 𝐿 = (𝐶 / 𝑇)
97, 8eleqtrrdi 2231 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ (𝑝𝐴𝑞𝐵)) → [(𝑝 + 𝑞)]𝑇𝐿)
10 eleq1a 2209 . . . . . . . . 9 ([(𝑝 + 𝑞)]𝑇𝐿 → (𝑧 = [(𝑝 + 𝑞)]𝑇𝑧𝐿))
119, 10syl 14 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ (𝑝𝐴𝑞𝐵)) → (𝑧 = [(𝑝 + 𝑞)]𝑇𝑧𝐿))
1211adantld 276 . . . . . . 7 (((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ (𝑝𝐴𝑞𝐵)) → (((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇) → 𝑧𝐿))
1312rexlimdvva 2555 . . . . . 6 ((𝜑 ∧ (𝑥𝐽𝑦𝐾)) → (∃𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇) → 𝑧𝐿))
1413abssdv 3166 . . . . 5 ((𝜑 ∧ (𝑥𝐽𝑦𝐾)) → {𝑧 ∣ ∃𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)} ⊆ 𝐿)
15 eropr.1 . . . . . . 7 𝐽 = (𝐴 / 𝑅)
16 eropr.2 . . . . . . 7 𝐾 = (𝐵 / 𝑆)
17 eropr.4 . . . . . . 7 (𝜑𝑅 Er 𝑈)
18 eropr.5 . . . . . . 7 (𝜑𝑆 Er 𝑉)
19 eropr.6 . . . . . . 7 (𝜑𝑇 Er 𝑊)
20 eropr.7 . . . . . . 7 (𝜑𝐴𝑈)
21 eropr.8 . . . . . . 7 (𝜑𝐵𝑉)
22 eropr.9 . . . . . . 7 (𝜑𝐶𝑊)
23 eropr.11 . . . . . . 7 ((𝜑 ∧ ((𝑟𝐴𝑠𝐴) ∧ (𝑡𝐵𝑢𝐵))) → ((𝑟𝑅𝑠𝑡𝑆𝑢) → (𝑟 + 𝑡)𝑇(𝑠 + 𝑢)))
2415, 16, 1, 17, 18, 19, 20, 21, 22, 3, 23eroveu 6513 . . . . . 6 ((𝜑 ∧ (𝑥𝐽𝑦𝐾)) → ∃!𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))
25 iotacl 5106 . . . . . 6 (∃!𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇) → (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)) ∈ {𝑧 ∣ ∃𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)})
2624, 25syl 14 . . . . 5 ((𝜑 ∧ (𝑥𝐽𝑦𝐾)) → (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)) ∈ {𝑧 ∣ ∃𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)})
2714, 26sseldd 3093 . . . 4 ((𝜑 ∧ (𝑥𝐽𝑦𝐾)) → (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)) ∈ 𝐿)
2827ralrimivva 2512 . . 3 (𝜑 → ∀𝑥𝐽𝑦𝐾 (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)) ∈ 𝐿)
29 eqid 2137 . . . 4 (𝑥𝐽, 𝑦𝐾 ↦ (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))) = (𝑥𝐽, 𝑦𝐾 ↦ (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))
3029fmpo 6092 . . 3 (∀𝑥𝐽𝑦𝐾 (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)) ∈ 𝐿 ↔ (𝑥𝐽, 𝑦𝐾 ↦ (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))):(𝐽 × 𝐾)⟶𝐿)
3128, 30sylib 121 . 2 (𝜑 → (𝑥𝐽, 𝑦𝐾 ↦ (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))):(𝐽 × 𝐾)⟶𝐿)
32 eropr.12 . . . 4 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ∃𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)}
3315, 16, 1, 17, 18, 19, 20, 21, 22, 3, 23, 32erovlem 6514 . . 3 (𝜑 = (𝑥𝐽, 𝑦𝐾 ↦ (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))))
3433feq1d 5254 . 2 (𝜑 → ( :(𝐽 × 𝐾)⟶𝐿 ↔ (𝑥𝐽, 𝑦𝐾 ↦ (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))):(𝐽 × 𝐾)⟶𝐿))
3531, 34mpbird 166 1 (𝜑 :(𝐽 × 𝐾)⟶𝐿)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  ∃!weu 1997  {cab 2123  wral 2414  wrex 2415  wss 3066   class class class wbr 3924   × cxp 4532  cio 5081  wf 5114  (class class class)co 5767  {coprab 5768  cmpo 5769   Er wer 6419  [cec 6420   / cqs 6421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-er 6422  df-ec 6424  df-qs 6428
This theorem is referenced by:  eroprf2  6516
  Copyright terms: Public domain W3C validator