![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-uniex | GIF version |
Description: uniex 4431 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-uniex.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
bj-uniex | ⊢ ∪ 𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-uniex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | unieq 3814 | . . 3 ⊢ (𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴) | |
3 | 2 | eleq1d 2244 | . 2 ⊢ (𝑥 = 𝐴 → (∪ 𝑥 ∈ V ↔ ∪ 𝐴 ∈ V)) |
4 | bj-uniex2 14208 | . . 3 ⊢ ∃𝑦 𝑦 = ∪ 𝑥 | |
5 | 4 | issetri 2744 | . 2 ⊢ ∪ 𝑥 ∈ V |
6 | 1, 3, 5 | vtocl 2789 | 1 ⊢ ∪ 𝐴 ∈ V |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 ∈ wcel 2146 Vcvv 2735 ∪ cuni 3805 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-un 4427 ax-bd0 14105 ax-bdex 14111 ax-bdel 14113 ax-bdsb 14114 ax-bdsep 14176 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-rex 2459 df-v 2737 df-uni 3806 df-bdc 14133 |
This theorem is referenced by: bj-uniexg 14210 bj-unex 14211 |
Copyright terms: Public domain | W3C validator |