Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-uniex GIF version

Theorem bj-uniex 14209
Description: uniex 4431 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bj-uniex.1 𝐴 ∈ V
Assertion
Ref Expression
bj-uniex 𝐴 ∈ V

Proof of Theorem bj-uniex
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bj-uniex.1 . 2 𝐴 ∈ V
2 unieq 3814 . . 3 (𝑥 = 𝐴 𝑥 = 𝐴)
32eleq1d 2244 . 2 (𝑥 = 𝐴 → ( 𝑥 ∈ V ↔ 𝐴 ∈ V))
4 bj-uniex2 14208 . . 3 𝑦 𝑦 = 𝑥
54issetri 2744 . 2 𝑥 ∈ V
61, 3, 5vtocl 2789 1 𝐴 ∈ V
Colors of variables: wff set class
Syntax hints:   = wceq 1353  wcel 2146  Vcvv 2735   cuni 3805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-un 4427  ax-bd0 14105  ax-bdex 14111  ax-bdel 14113  ax-bdsb 14114  ax-bdsep 14176
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-rex 2459  df-v 2737  df-uni 3806  df-bdc 14133
This theorem is referenced by:  bj-uniexg  14210  bj-unex  14211
  Copyright terms: Public domain W3C validator