| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-uniex | GIF version | ||
| Description: uniex 4502 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-uniex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| bj-uniex | ⊢ ∪ 𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-uniex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | unieq 3873 | . . 3 ⊢ (𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴) | |
| 3 | 2 | eleq1d 2276 | . 2 ⊢ (𝑥 = 𝐴 → (∪ 𝑥 ∈ V ↔ ∪ 𝐴 ∈ V)) |
| 4 | bj-uniex2 16051 | . . 3 ⊢ ∃𝑦 𝑦 = ∪ 𝑥 | |
| 5 | 4 | issetri 2786 | . 2 ⊢ ∪ 𝑥 ∈ V |
| 6 | 1, 3, 5 | vtocl 2832 | 1 ⊢ ∪ 𝐴 ∈ V |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2178 Vcvv 2776 ∪ cuni 3864 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-un 4498 ax-bd0 15948 ax-bdex 15954 ax-bdel 15956 ax-bdsb 15957 ax-bdsep 16019 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rex 2492 df-v 2778 df-uni 3865 df-bdc 15976 |
| This theorem is referenced by: bj-uniexg 16053 bj-unex 16054 |
| Copyright terms: Public domain | W3C validator |