| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-uniex | GIF version | ||
| Description: uniex 4473 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-uniex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| bj-uniex | ⊢ ∪ 𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-uniex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | unieq 3849 | . . 3 ⊢ (𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴) | |
| 3 | 2 | eleq1d 2265 | . 2 ⊢ (𝑥 = 𝐴 → (∪ 𝑥 ∈ V ↔ ∪ 𝐴 ∈ V)) |
| 4 | bj-uniex2 15646 | . . 3 ⊢ ∃𝑦 𝑦 = ∪ 𝑥 | |
| 5 | 4 | issetri 2772 | . 2 ⊢ ∪ 𝑥 ∈ V |
| 6 | 1, 3, 5 | vtocl 2818 | 1 ⊢ ∪ 𝐴 ∈ V |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ∈ wcel 2167 Vcvv 2763 ∪ cuni 3840 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-un 4469 ax-bd0 15543 ax-bdex 15549 ax-bdel 15551 ax-bdsb 15552 ax-bdsep 15614 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-uni 3841 df-bdc 15571 |
| This theorem is referenced by: bj-uniexg 15648 bj-unex 15649 |
| Copyright terms: Public domain | W3C validator |