Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-uniex | GIF version |
Description: uniex 4422 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-uniex.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
bj-uniex | ⊢ ∪ 𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-uniex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | unieq 3805 | . . 3 ⊢ (𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴) | |
3 | 2 | eleq1d 2239 | . 2 ⊢ (𝑥 = 𝐴 → (∪ 𝑥 ∈ V ↔ ∪ 𝐴 ∈ V)) |
4 | bj-uniex2 13951 | . . 3 ⊢ ∃𝑦 𝑦 = ∪ 𝑥 | |
5 | 4 | issetri 2739 | . 2 ⊢ ∪ 𝑥 ∈ V |
6 | 1, 3, 5 | vtocl 2784 | 1 ⊢ ∪ 𝐴 ∈ V |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 ∈ wcel 2141 Vcvv 2730 ∪ cuni 3796 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-un 4418 ax-bd0 13848 ax-bdex 13854 ax-bdel 13856 ax-bdsb 13857 ax-bdsep 13919 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-v 2732 df-uni 3797 df-bdc 13876 |
This theorem is referenced by: bj-uniexg 13953 bj-unex 13954 |
Copyright terms: Public domain | W3C validator |