ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixpssmap GIF version

Theorem ixpssmap 6831
Description: An infinite Cartesian product is a subset of set exponentiation. Remark in [Enderton] p. 54. (Contributed by NM, 28-Sep-2006.)
Hypothesis
Ref Expression
ixpssmap.2 𝐵 ∈ V
Assertion
Ref Expression
ixpssmap X𝑥𝐴 𝐵 ⊆ ( 𝑥𝐴 𝐵𝑚 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem ixpssmap
StepHypRef Expression
1 ixpssmap.2 . . 3 𝐵 ∈ V
21rgenw 2562 . 2 𝑥𝐴 𝐵 ∈ V
3 ixpssmapg 6827 . 2 (∀𝑥𝐴 𝐵 ∈ V → X𝑥𝐴 𝐵 ⊆ ( 𝑥𝐴 𝐵𝑚 𝐴))
42, 3ax-mp 5 1 X𝑥𝐴 𝐵 ⊆ ( 𝑥𝐴 𝐵𝑚 𝐴)
Colors of variables: wff set class
Syntax hints:  wcel 2177  wral 2485  Vcvv 2773  wss 3170   ciun 3932  (class class class)co 5956  𝑚 cmap 6747  Xcixp 6797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4166  ax-sep 4169  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-setind 4592
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-iun 3934  df-br 4051  df-opab 4113  df-mpt 4114  df-id 4347  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-ima 4695  df-iota 5240  df-fun 5281  df-fn 5282  df-f 5283  df-f1 5284  df-fo 5285  df-f1o 5286  df-fv 5287  df-ov 5959  df-oprab 5960  df-mpo 5961  df-map 6749  df-ixp 6798
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator