Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fpr | GIF version |
Description: A function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
fpr.1 | ⊢ 𝐴 ∈ V |
fpr.2 | ⊢ 𝐵 ∈ V |
fpr.3 | ⊢ 𝐶 ∈ V |
fpr.4 | ⊢ 𝐷 ∈ V |
Ref | Expression |
---|---|
fpr | ⊢ (𝐴 ≠ 𝐵 → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}:{𝐴, 𝐵}⟶{𝐶, 𝐷}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fpr.1 | . . . . . 6 ⊢ 𝐴 ∈ V | |
2 | fpr.2 | . . . . . 6 ⊢ 𝐵 ∈ V | |
3 | fpr.3 | . . . . . 6 ⊢ 𝐶 ∈ V | |
4 | fpr.4 | . . . . . 6 ⊢ 𝐷 ∈ V | |
5 | 1, 2, 3, 4 | funpr 5240 | . . . . 5 ⊢ (𝐴 ≠ 𝐵 → Fun {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}) |
6 | 3, 4 | dmprop 5078 | . . . . 5 ⊢ dom {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = {𝐴, 𝐵} |
7 | 5, 6 | jctir 311 | . . . 4 ⊢ (𝐴 ≠ 𝐵 → (Fun {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ∧ dom {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = {𝐴, 𝐵})) |
8 | df-fn 5191 | . . . 4 ⊢ ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} Fn {𝐴, 𝐵} ↔ (Fun {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ∧ dom {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = {𝐴, 𝐵})) | |
9 | 7, 8 | sylibr 133 | . . 3 ⊢ (𝐴 ≠ 𝐵 → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} Fn {𝐴, 𝐵}) |
10 | df-pr 3583 | . . . . . 6 ⊢ {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = ({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉}) | |
11 | 10 | rneqi 4832 | . . . . 5 ⊢ ran {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = ran ({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉}) |
12 | rnun 5012 | . . . . 5 ⊢ ran ({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉}) = (ran {〈𝐴, 𝐶〉} ∪ ran {〈𝐵, 𝐷〉}) | |
13 | 1 | rnsnop 5084 | . . . . . . 7 ⊢ ran {〈𝐴, 𝐶〉} = {𝐶} |
14 | 2 | rnsnop 5084 | . . . . . . 7 ⊢ ran {〈𝐵, 𝐷〉} = {𝐷} |
15 | 13, 14 | uneq12i 3274 | . . . . . 6 ⊢ (ran {〈𝐴, 𝐶〉} ∪ ran {〈𝐵, 𝐷〉}) = ({𝐶} ∪ {𝐷}) |
16 | df-pr 3583 | . . . . . 6 ⊢ {𝐶, 𝐷} = ({𝐶} ∪ {𝐷}) | |
17 | 15, 16 | eqtr4i 2189 | . . . . 5 ⊢ (ran {〈𝐴, 𝐶〉} ∪ ran {〈𝐵, 𝐷〉}) = {𝐶, 𝐷} |
18 | 11, 12, 17 | 3eqtri 2190 | . . . 4 ⊢ ran {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = {𝐶, 𝐷} |
19 | 18 | eqimssi 3198 | . . 3 ⊢ ran {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ⊆ {𝐶, 𝐷} |
20 | 9, 19 | jctir 311 | . 2 ⊢ (𝐴 ≠ 𝐵 → ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} Fn {𝐴, 𝐵} ∧ ran {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ⊆ {𝐶, 𝐷})) |
21 | df-f 5192 | . 2 ⊢ ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}:{𝐴, 𝐵}⟶{𝐶, 𝐷} ↔ ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} Fn {𝐴, 𝐵} ∧ ran {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ⊆ {𝐶, 𝐷})) | |
22 | 20, 21 | sylibr 133 | 1 ⊢ (𝐴 ≠ 𝐵 → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}:{𝐴, 𝐵}⟶{𝐶, 𝐷}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∈ wcel 2136 ≠ wne 2336 Vcvv 2726 ∪ cun 3114 ⊆ wss 3116 {csn 3576 {cpr 3577 〈cop 3579 dom cdm 4604 ran crn 4605 Fun wfun 5182 Fn wfn 5183 ⟶wf 5184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-fun 5190 df-fn 5191 df-f 5192 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |