ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fpr GIF version

Theorem fpr 5678
Description: A function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Hypotheses
Ref Expression
fpr.1 𝐴 ∈ V
fpr.2 𝐵 ∈ V
fpr.3 𝐶 ∈ V
fpr.4 𝐷 ∈ V
Assertion
Ref Expression
fpr (𝐴𝐵 → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}⟶{𝐶, 𝐷})

Proof of Theorem fpr
StepHypRef Expression
1 fpr.1 . . . . . 6 𝐴 ∈ V
2 fpr.2 . . . . . 6 𝐵 ∈ V
3 fpr.3 . . . . . 6 𝐶 ∈ V
4 fpr.4 . . . . . 6 𝐷 ∈ V
51, 2, 3, 4funpr 5250 . . . . 5 (𝐴𝐵 → Fun {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩})
63, 4dmprop 5085 . . . . 5 dom {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = {𝐴, 𝐵}
75, 6jctir 311 . . . 4 (𝐴𝐵 → (Fun {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ∧ dom {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = {𝐴, 𝐵}))
8 df-fn 5201 . . . 4 ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} Fn {𝐴, 𝐵} ↔ (Fun {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ∧ dom {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = {𝐴, 𝐵}))
97, 8sylibr 133 . . 3 (𝐴𝐵 → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} Fn {𝐴, 𝐵})
10 df-pr 3590 . . . . . 6 {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩})
1110rneqi 4839 . . . . 5 ran {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = ran ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩})
12 rnun 5019 . . . . 5 ran ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩}) = (ran {⟨𝐴, 𝐶⟩} ∪ ran {⟨𝐵, 𝐷⟩})
131rnsnop 5091 . . . . . . 7 ran {⟨𝐴, 𝐶⟩} = {𝐶}
142rnsnop 5091 . . . . . . 7 ran {⟨𝐵, 𝐷⟩} = {𝐷}
1513, 14uneq12i 3279 . . . . . 6 (ran {⟨𝐴, 𝐶⟩} ∪ ran {⟨𝐵, 𝐷⟩}) = ({𝐶} ∪ {𝐷})
16 df-pr 3590 . . . . . 6 {𝐶, 𝐷} = ({𝐶} ∪ {𝐷})
1715, 16eqtr4i 2194 . . . . 5 (ran {⟨𝐴, 𝐶⟩} ∪ ran {⟨𝐵, 𝐷⟩}) = {𝐶, 𝐷}
1811, 12, 173eqtri 2195 . . . 4 ran {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = {𝐶, 𝐷}
1918eqimssi 3203 . . 3 ran {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ⊆ {𝐶, 𝐷}
209, 19jctir 311 . 2 (𝐴𝐵 → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} Fn {𝐴, 𝐵} ∧ ran {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ⊆ {𝐶, 𝐷}))
21 df-f 5202 . 2 ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}⟶{𝐶, 𝐷} ↔ ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} Fn {𝐴, 𝐵} ∧ ran {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ⊆ {𝐶, 𝐷}))
2220, 21sylibr 133 1 (𝐴𝐵 → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}⟶{𝐶, 𝐷})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  wne 2340  Vcvv 2730  cun 3119  wss 3121  {csn 3583  {cpr 3584  cop 3586  dom cdm 4611  ran crn 4612  Fun wfun 5192   Fn wfn 5193  wf 5194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-fun 5200  df-fn 5201  df-f 5202
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator