ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmtpos GIF version

Theorem dmtpos 6159
Description: The domain of tpos 𝐹 when dom 𝐹 is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
dmtpos (Rel dom 𝐹 → dom tpos 𝐹 = dom 𝐹)

Proof of Theorem dmtpos
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0nelxp 4573 . . . . 5 ¬ ∅ ∈ (V × V)
2 ssel 3094 . . . . 5 (dom 𝐹 ⊆ (V × V) → (∅ ∈ dom 𝐹 → ∅ ∈ (V × V)))
31, 2mtoi 654 . . . 4 (dom 𝐹 ⊆ (V × V) → ¬ ∅ ∈ dom 𝐹)
4 df-rel 4552 . . . 4 (Rel dom 𝐹 ↔ dom 𝐹 ⊆ (V × V))
5 reldmtpos 6156 . . . 4 (Rel dom tpos 𝐹 ↔ ¬ ∅ ∈ dom 𝐹)
63, 4, 53imtr4i 200 . . 3 (Rel dom 𝐹 → Rel dom tpos 𝐹)
7 relcnv 4923 . . 3 Rel dom 𝐹
86, 7jctir 311 . 2 (Rel dom 𝐹 → (Rel dom tpos 𝐹 ∧ Rel dom 𝐹))
9 vex 2692 . . . . . . 7 𝑥 ∈ V
10 vex 2692 . . . . . . 7 𝑦 ∈ V
11 vex 2692 . . . . . . 7 𝑧 ∈ V
12 brtposg 6157 . . . . . . 7 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (⟨𝑥, 𝑦⟩tpos 𝐹𝑧 ↔ ⟨𝑦, 𝑥𝐹𝑧))
139, 10, 11, 12mp3an 1316 . . . . . 6 (⟨𝑥, 𝑦⟩tpos 𝐹𝑧 ↔ ⟨𝑦, 𝑥𝐹𝑧)
1413a1i 9 . . . . 5 (Rel dom 𝐹 → (⟨𝑥, 𝑦⟩tpos 𝐹𝑧 ↔ ⟨𝑦, 𝑥𝐹𝑧))
1514exbidv 1798 . . . 4 (Rel dom 𝐹 → (∃𝑧𝑥, 𝑦⟩tpos 𝐹𝑧 ↔ ∃𝑧𝑦, 𝑥𝐹𝑧))
169, 10opex 4157 . . . . 5 𝑥, 𝑦⟩ ∈ V
1716eldm 4742 . . . 4 (⟨𝑥, 𝑦⟩ ∈ dom tpos 𝐹 ↔ ∃𝑧𝑥, 𝑦⟩tpos 𝐹𝑧)
189, 10opelcnv 4727 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ dom 𝐹 ↔ ⟨𝑦, 𝑥⟩ ∈ dom 𝐹)
1910, 9opex 4157 . . . . . 6 𝑦, 𝑥⟩ ∈ V
2019eldm 4742 . . . . 5 (⟨𝑦, 𝑥⟩ ∈ dom 𝐹 ↔ ∃𝑧𝑦, 𝑥𝐹𝑧)
2118, 20bitri 183 . . . 4 (⟨𝑥, 𝑦⟩ ∈ dom 𝐹 ↔ ∃𝑧𝑦, 𝑥𝐹𝑧)
2215, 17, 213bitr4g 222 . . 3 (Rel dom 𝐹 → (⟨𝑥, 𝑦⟩ ∈ dom tpos 𝐹 ↔ ⟨𝑥, 𝑦⟩ ∈ dom 𝐹))
2322eqrelrdv2 4644 . 2 (((Rel dom tpos 𝐹 ∧ Rel dom 𝐹) ∧ Rel dom 𝐹) → dom tpos 𝐹 = dom 𝐹)
248, 23mpancom 419 1 (Rel dom 𝐹 → dom tpos 𝐹 = dom 𝐹)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104   = wceq 1332  wex 1469  wcel 1481  Vcvv 2689  wss 3074  c0 3366  cop 3533   class class class wbr 3935   × cxp 4543  ccnv 4544  dom cdm 4545  Rel wrel 4550  tpos ctpos 6147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4052  ax-nul 4060  ax-pow 4104  ax-pr 4137  ax-un 4361
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-sbc 2913  df-dif 3076  df-un 3078  df-in 3080  df-ss 3087  df-nul 3367  df-pw 3515  df-sn 3536  df-pr 3537  df-op 3539  df-uni 3743  df-br 3936  df-opab 3996  df-mpt 3997  df-id 4221  df-xp 4551  df-rel 4552  df-cnv 4553  df-co 4554  df-dm 4555  df-rn 4556  df-res 4557  df-ima 4558  df-iota 5094  df-fun 5131  df-fn 5132  df-fv 5137  df-tpos 6148
This theorem is referenced by:  rntpos  6160  dftpos2  6164  dftpos3  6165  tposfn2  6169
  Copyright terms: Public domain W3C validator