![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dmtpos | GIF version |
Description: The domain of tpos 𝐹 when dom 𝐹 is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.) |
Ref | Expression |
---|---|
dmtpos | ⊢ (Rel dom 𝐹 → dom tpos 𝐹 = ◡dom 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nelxp 4656 | . . . . 5 ⊢ ¬ ∅ ∈ (V × V) | |
2 | ssel 3151 | . . . . 5 ⊢ (dom 𝐹 ⊆ (V × V) → (∅ ∈ dom 𝐹 → ∅ ∈ (V × V))) | |
3 | 1, 2 | mtoi 664 | . . . 4 ⊢ (dom 𝐹 ⊆ (V × V) → ¬ ∅ ∈ dom 𝐹) |
4 | df-rel 4635 | . . . 4 ⊢ (Rel dom 𝐹 ↔ dom 𝐹 ⊆ (V × V)) | |
5 | reldmtpos 6256 | . . . 4 ⊢ (Rel dom tpos 𝐹 ↔ ¬ ∅ ∈ dom 𝐹) | |
6 | 3, 4, 5 | 3imtr4i 201 | . . 3 ⊢ (Rel dom 𝐹 → Rel dom tpos 𝐹) |
7 | relcnv 5008 | . . 3 ⊢ Rel ◡dom 𝐹 | |
8 | 6, 7 | jctir 313 | . 2 ⊢ (Rel dom 𝐹 → (Rel dom tpos 𝐹 ∧ Rel ◡dom 𝐹)) |
9 | vex 2742 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
10 | vex 2742 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
11 | vex 2742 | . . . . . . 7 ⊢ 𝑧 ∈ V | |
12 | brtposg 6257 | . . . . . . 7 ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (⟨𝑥, 𝑦⟩tpos 𝐹𝑧 ↔ ⟨𝑦, 𝑥⟩𝐹𝑧)) | |
13 | 9, 10, 11, 12 | mp3an 1337 | . . . . . 6 ⊢ (⟨𝑥, 𝑦⟩tpos 𝐹𝑧 ↔ ⟨𝑦, 𝑥⟩𝐹𝑧) |
14 | 13 | a1i 9 | . . . . 5 ⊢ (Rel dom 𝐹 → (⟨𝑥, 𝑦⟩tpos 𝐹𝑧 ↔ ⟨𝑦, 𝑥⟩𝐹𝑧)) |
15 | 14 | exbidv 1825 | . . . 4 ⊢ (Rel dom 𝐹 → (∃𝑧⟨𝑥, 𝑦⟩tpos 𝐹𝑧 ↔ ∃𝑧⟨𝑦, 𝑥⟩𝐹𝑧)) |
16 | 9, 10 | opex 4231 | . . . . 5 ⊢ ⟨𝑥, 𝑦⟩ ∈ V |
17 | 16 | eldm 4826 | . . . 4 ⊢ (⟨𝑥, 𝑦⟩ ∈ dom tpos 𝐹 ↔ ∃𝑧⟨𝑥, 𝑦⟩tpos 𝐹𝑧) |
18 | 9, 10 | opelcnv 4811 | . . . . 5 ⊢ (⟨𝑥, 𝑦⟩ ∈ ◡dom 𝐹 ↔ ⟨𝑦, 𝑥⟩ ∈ dom 𝐹) |
19 | 10, 9 | opex 4231 | . . . . . 6 ⊢ ⟨𝑦, 𝑥⟩ ∈ V |
20 | 19 | eldm 4826 | . . . . 5 ⊢ (⟨𝑦, 𝑥⟩ ∈ dom 𝐹 ↔ ∃𝑧⟨𝑦, 𝑥⟩𝐹𝑧) |
21 | 18, 20 | bitri 184 | . . . 4 ⊢ (⟨𝑥, 𝑦⟩ ∈ ◡dom 𝐹 ↔ ∃𝑧⟨𝑦, 𝑥⟩𝐹𝑧) |
22 | 15, 17, 21 | 3bitr4g 223 | . . 3 ⊢ (Rel dom 𝐹 → (⟨𝑥, 𝑦⟩ ∈ dom tpos 𝐹 ↔ ⟨𝑥, 𝑦⟩ ∈ ◡dom 𝐹)) |
23 | 22 | eqrelrdv2 4727 | . 2 ⊢ (((Rel dom tpos 𝐹 ∧ Rel ◡dom 𝐹) ∧ Rel dom 𝐹) → dom tpos 𝐹 = ◡dom 𝐹) |
24 | 8, 23 | mpancom 422 | 1 ⊢ (Rel dom 𝐹 → dom tpos 𝐹 = ◡dom 𝐹) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∃wex 1492 ∈ wcel 2148 Vcvv 2739 ⊆ wss 3131 ∅c0 3424 ⟨cop 3597 class class class wbr 4005 × cxp 4626 ◡ccnv 4627 dom cdm 4628 Rel wrel 4633 tpos ctpos 6247 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-fv 5226 df-tpos 6248 |
This theorem is referenced by: rntpos 6260 dftpos2 6264 dftpos3 6265 tposfn2 6269 |
Copyright terms: Public domain | W3C validator |