| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmtpos | GIF version | ||
| Description: The domain of tpos 𝐹 when dom 𝐹 is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| Ref | Expression |
|---|---|
| dmtpos | ⊢ (Rel dom 𝐹 → dom tpos 𝐹 = ◡dom 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nelxp 4744 | . . . . 5 ⊢ ¬ ∅ ∈ (V × V) | |
| 2 | ssel 3218 | . . . . 5 ⊢ (dom 𝐹 ⊆ (V × V) → (∅ ∈ dom 𝐹 → ∅ ∈ (V × V))) | |
| 3 | 1, 2 | mtoi 668 | . . . 4 ⊢ (dom 𝐹 ⊆ (V × V) → ¬ ∅ ∈ dom 𝐹) |
| 4 | df-rel 4723 | . . . 4 ⊢ (Rel dom 𝐹 ↔ dom 𝐹 ⊆ (V × V)) | |
| 5 | reldmtpos 6389 | . . . 4 ⊢ (Rel dom tpos 𝐹 ↔ ¬ ∅ ∈ dom 𝐹) | |
| 6 | 3, 4, 5 | 3imtr4i 201 | . . 3 ⊢ (Rel dom 𝐹 → Rel dom tpos 𝐹) |
| 7 | relcnv 5102 | . . 3 ⊢ Rel ◡dom 𝐹 | |
| 8 | 6, 7 | jctir 313 | . 2 ⊢ (Rel dom 𝐹 → (Rel dom tpos 𝐹 ∧ Rel ◡dom 𝐹)) |
| 9 | vex 2802 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 10 | vex 2802 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 11 | vex 2802 | . . . . . . 7 ⊢ 𝑧 ∈ V | |
| 12 | brtposg 6390 | . . . . . . 7 ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (〈𝑥, 𝑦〉tpos 𝐹𝑧 ↔ 〈𝑦, 𝑥〉𝐹𝑧)) | |
| 13 | 9, 10, 11, 12 | mp3an 1371 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉tpos 𝐹𝑧 ↔ 〈𝑦, 𝑥〉𝐹𝑧) |
| 14 | 13 | a1i 9 | . . . . 5 ⊢ (Rel dom 𝐹 → (〈𝑥, 𝑦〉tpos 𝐹𝑧 ↔ 〈𝑦, 𝑥〉𝐹𝑧)) |
| 15 | 14 | exbidv 1871 | . . . 4 ⊢ (Rel dom 𝐹 → (∃𝑧〈𝑥, 𝑦〉tpos 𝐹𝑧 ↔ ∃𝑧〈𝑦, 𝑥〉𝐹𝑧)) |
| 16 | 9, 10 | opex 4314 | . . . . 5 ⊢ 〈𝑥, 𝑦〉 ∈ V |
| 17 | 16 | eldm 4917 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ dom tpos 𝐹 ↔ ∃𝑧〈𝑥, 𝑦〉tpos 𝐹𝑧) |
| 18 | 9, 10 | opelcnv 4901 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ ◡dom 𝐹 ↔ 〈𝑦, 𝑥〉 ∈ dom 𝐹) |
| 19 | 10, 9 | opex 4314 | . . . . . 6 ⊢ 〈𝑦, 𝑥〉 ∈ V |
| 20 | 19 | eldm 4917 | . . . . 5 ⊢ (〈𝑦, 𝑥〉 ∈ dom 𝐹 ↔ ∃𝑧〈𝑦, 𝑥〉𝐹𝑧) |
| 21 | 18, 20 | bitri 184 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ ◡dom 𝐹 ↔ ∃𝑧〈𝑦, 𝑥〉𝐹𝑧) |
| 22 | 15, 17, 21 | 3bitr4g 223 | . . 3 ⊢ (Rel dom 𝐹 → (〈𝑥, 𝑦〉 ∈ dom tpos 𝐹 ↔ 〈𝑥, 𝑦〉 ∈ ◡dom 𝐹)) |
| 23 | 22 | eqrelrdv2 4815 | . 2 ⊢ (((Rel dom tpos 𝐹 ∧ Rel ◡dom 𝐹) ∧ Rel dom 𝐹) → dom tpos 𝐹 = ◡dom 𝐹) |
| 24 | 8, 23 | mpancom 422 | 1 ⊢ (Rel dom 𝐹 → dom tpos 𝐹 = ◡dom 𝐹) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∃wex 1538 ∈ wcel 2200 Vcvv 2799 ⊆ wss 3197 ∅c0 3491 〈cop 3669 class class class wbr 4082 × cxp 4714 ◡ccnv 4715 dom cdm 4716 Rel wrel 4721 tpos ctpos 6380 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-fv 5322 df-tpos 6381 |
| This theorem is referenced by: rntpos 6393 dftpos2 6397 dftpos3 6398 tposfn2 6402 |
| Copyright terms: Public domain | W3C validator |