ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmtpos GIF version

Theorem dmtpos 6003
Description: The domain of tpos 𝐹 when dom 𝐹 is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
dmtpos (Rel dom 𝐹 → dom tpos 𝐹 = dom 𝐹)

Proof of Theorem dmtpos
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0nelxp 4455 . . . . 5 ¬ ∅ ∈ (V × V)
2 ssel 3017 . . . . 5 (dom 𝐹 ⊆ (V × V) → (∅ ∈ dom 𝐹 → ∅ ∈ (V × V)))
31, 2mtoi 625 . . . 4 (dom 𝐹 ⊆ (V × V) → ¬ ∅ ∈ dom 𝐹)
4 df-rel 4435 . . . 4 (Rel dom 𝐹 ↔ dom 𝐹 ⊆ (V × V))
5 reldmtpos 6000 . . . 4 (Rel dom tpos 𝐹 ↔ ¬ ∅ ∈ dom 𝐹)
63, 4, 53imtr4i 199 . . 3 (Rel dom 𝐹 → Rel dom tpos 𝐹)
7 relcnv 4797 . . 3 Rel dom 𝐹
86, 7jctir 306 . 2 (Rel dom 𝐹 → (Rel dom tpos 𝐹 ∧ Rel dom 𝐹))
9 vex 2622 . . . . . . 7 𝑥 ∈ V
10 vex 2622 . . . . . . 7 𝑦 ∈ V
11 vex 2622 . . . . . . 7 𝑧 ∈ V
12 brtposg 6001 . . . . . . 7 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (⟨𝑥, 𝑦⟩tpos 𝐹𝑧 ↔ ⟨𝑦, 𝑥𝐹𝑧))
139, 10, 11, 12mp3an 1273 . . . . . 6 (⟨𝑥, 𝑦⟩tpos 𝐹𝑧 ↔ ⟨𝑦, 𝑥𝐹𝑧)
1413a1i 9 . . . . 5 (Rel dom 𝐹 → (⟨𝑥, 𝑦⟩tpos 𝐹𝑧 ↔ ⟨𝑦, 𝑥𝐹𝑧))
1514exbidv 1753 . . . 4 (Rel dom 𝐹 → (∃𝑧𝑥, 𝑦⟩tpos 𝐹𝑧 ↔ ∃𝑧𝑦, 𝑥𝐹𝑧))
169, 10opex 4047 . . . . 5 𝑥, 𝑦⟩ ∈ V
1716eldm 4621 . . . 4 (⟨𝑥, 𝑦⟩ ∈ dom tpos 𝐹 ↔ ∃𝑧𝑥, 𝑦⟩tpos 𝐹𝑧)
189, 10opelcnv 4606 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ dom 𝐹 ↔ ⟨𝑦, 𝑥⟩ ∈ dom 𝐹)
1910, 9opex 4047 . . . . . 6 𝑦, 𝑥⟩ ∈ V
2019eldm 4621 . . . . 5 (⟨𝑦, 𝑥⟩ ∈ dom 𝐹 ↔ ∃𝑧𝑦, 𝑥𝐹𝑧)
2118, 20bitri 182 . . . 4 (⟨𝑥, 𝑦⟩ ∈ dom 𝐹 ↔ ∃𝑧𝑦, 𝑥𝐹𝑧)
2215, 17, 213bitr4g 221 . . 3 (Rel dom 𝐹 → (⟨𝑥, 𝑦⟩ ∈ dom tpos 𝐹 ↔ ⟨𝑥, 𝑦⟩ ∈ dom 𝐹))
2322eqrelrdv2 4525 . 2 (((Rel dom tpos 𝐹 ∧ Rel dom 𝐹) ∧ Rel dom 𝐹) → dom tpos 𝐹 = dom 𝐹)
248, 23mpancom 413 1 (Rel dom 𝐹 → dom tpos 𝐹 = dom 𝐹)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103   = wceq 1289  wex 1426  wcel 1438  Vcvv 2619  wss 2997  c0 3284  cop 3444   class class class wbr 3837   × cxp 4426  ccnv 4427  dom cdm 4428  Rel wrel 4433  tpos ctpos 5991
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-nul 3957  ax-pow 4001  ax-pr 4027  ax-un 4251
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-rab 2368  df-v 2621  df-sbc 2839  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-br 3838  df-opab 3892  df-mpt 3893  df-id 4111  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-fv 5010  df-tpos 5992
This theorem is referenced by:  rntpos  6004  dftpos2  6008  dftpos3  6009  tposfn2  6013
  Copyright terms: Public domain W3C validator