ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eltg3i GIF version

Theorem eltg3i 12239
Description: The union of a set of basic open sets is in the generated topology. (Contributed by Mario Carneiro, 30-Aug-2015.)
Assertion
Ref Expression
eltg3i ((𝐵𝑉𝐴𝐵) → 𝐴 ∈ (topGen‘𝐵))

Proof of Theorem eltg3i
StepHypRef Expression
1 simpr 109 . . . . 5 ((𝐵𝑉𝐴𝐵) → 𝐴𝐵)
2 pwuni 4116 . . . . 5 𝐴 ⊆ 𝒫 𝐴
31, 2jctir 311 . . . 4 ((𝐵𝑉𝐴𝐵) → (𝐴𝐵𝐴 ⊆ 𝒫 𝐴))
4 ssin 3298 . . . 4 ((𝐴𝐵𝐴 ⊆ 𝒫 𝐴) ↔ 𝐴 ⊆ (𝐵 ∩ 𝒫 𝐴))
53, 4sylib 121 . . 3 ((𝐵𝑉𝐴𝐵) → 𝐴 ⊆ (𝐵 ∩ 𝒫 𝐴))
65unissd 3760 . 2 ((𝐵𝑉𝐴𝐵) → 𝐴 (𝐵 ∩ 𝒫 𝐴))
7 eltg 12235 . . 3 (𝐵𝑉 → ( 𝐴 ∈ (topGen‘𝐵) ↔ 𝐴 (𝐵 ∩ 𝒫 𝐴)))
87adantr 274 . 2 ((𝐵𝑉𝐴𝐵) → ( 𝐴 ∈ (topGen‘𝐵) ↔ 𝐴 (𝐵 ∩ 𝒫 𝐴)))
96, 8mpbird 166 1 ((𝐵𝑉𝐴𝐵) → 𝐴 ∈ (topGen‘𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wcel 1480  cin 3070  wss 3071  𝒫 cpw 3510   cuni 3736  cfv 5123  topGenctg 12149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-sbc 2910  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-topgen 12155
This theorem is referenced by:  eltg3  12240  tgiun  12256  tgidm  12257  tgrest  12352
  Copyright terms: Public domain W3C validator