![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eltg3i | GIF version |
Description: The union of a set of basic open sets is in the generated topology. (Contributed by Mario Carneiro, 30-Aug-2015.) |
Ref | Expression |
---|---|
eltg3i | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → ∪ 𝐴 ∈ (topGen‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 110 | . . . . 5 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → 𝐴 ⊆ 𝐵) | |
2 | pwuni 4222 | . . . . 5 ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 | |
3 | 1, 2 | jctir 313 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝒫 ∪ 𝐴)) |
4 | ssin 3382 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝒫 ∪ 𝐴) ↔ 𝐴 ⊆ (𝐵 ∩ 𝒫 ∪ 𝐴)) | |
5 | 3, 4 | sylib 122 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → 𝐴 ⊆ (𝐵 ∩ 𝒫 ∪ 𝐴)) |
6 | 5 | unissd 3860 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → ∪ 𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 ∪ 𝐴)) |
7 | eltg 14231 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (∪ 𝐴 ∈ (topGen‘𝐵) ↔ ∪ 𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 ∪ 𝐴))) | |
8 | 7 | adantr 276 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (∪ 𝐴 ∈ (topGen‘𝐵) ↔ ∪ 𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 ∪ 𝐴))) |
9 | 6, 8 | mpbird 167 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → ∪ 𝐴 ∈ (topGen‘𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2164 ∩ cin 3153 ⊆ wss 3154 𝒫 cpw 3602 ∪ cuni 3836 ‘cfv 5255 topGenctg 12868 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2987 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fv 5263 df-topgen 12874 |
This theorem is referenced by: eltg3 14236 tgiun 14252 tgidm 14253 tgrest 14348 |
Copyright terms: Public domain | W3C validator |