ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eltg3i GIF version

Theorem eltg3i 12007
Description: The union of a set of basic open sets is in the generated topology. (Contributed by Mario Carneiro, 30-Aug-2015.)
Assertion
Ref Expression
eltg3i ((𝐵𝑉𝐴𝐵) → 𝐴 ∈ (topGen‘𝐵))

Proof of Theorem eltg3i
StepHypRef Expression
1 simpr 109 . . . . 5 ((𝐵𝑉𝐴𝐵) → 𝐴𝐵)
2 pwuni 4056 . . . . 5 𝐴 ⊆ 𝒫 𝐴
31, 2jctir 309 . . . 4 ((𝐵𝑉𝐴𝐵) → (𝐴𝐵𝐴 ⊆ 𝒫 𝐴))
4 ssin 3245 . . . 4 ((𝐴𝐵𝐴 ⊆ 𝒫 𝐴) ↔ 𝐴 ⊆ (𝐵 ∩ 𝒫 𝐴))
53, 4sylib 121 . . 3 ((𝐵𝑉𝐴𝐵) → 𝐴 ⊆ (𝐵 ∩ 𝒫 𝐴))
65unissd 3707 . 2 ((𝐵𝑉𝐴𝐵) → 𝐴 (𝐵 ∩ 𝒫 𝐴))
7 eltg 12003 . . 3 (𝐵𝑉 → ( 𝐴 ∈ (topGen‘𝐵) ↔ 𝐴 (𝐵 ∩ 𝒫 𝐴)))
87adantr 272 . 2 ((𝐵𝑉𝐴𝐵) → ( 𝐴 ∈ (topGen‘𝐵) ↔ 𝐴 (𝐵 ∩ 𝒫 𝐴)))
96, 8mpbird 166 1 ((𝐵𝑉𝐴𝐵) → 𝐴 ∈ (topGen‘𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wcel 1448  cin 3020  wss 3021  𝒫 cpw 3457   cuni 3683  cfv 5059  topGenctg 11917
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ral 2380  df-rex 2381  df-v 2643  df-sbc 2863  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-br 3876  df-opab 3930  df-mpt 3931  df-id 4153  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-iota 5024  df-fun 5061  df-fv 5067  df-topgen 11923
This theorem is referenced by:  eltg3  12008  tgiun  12024  tgidm  12025  tgrest  12120
  Copyright terms: Public domain W3C validator