![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eltg3i | GIF version |
Description: The union of a set of basic open sets is in the generated topology. (Contributed by Mario Carneiro, 30-Aug-2015.) |
Ref | Expression |
---|---|
eltg3i | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → ∪ 𝐴 ∈ (topGen‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 110 | . . . . 5 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → 𝐴 ⊆ 𝐵) | |
2 | pwuni 4210 | . . . . 5 ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 | |
3 | 1, 2 | jctir 313 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝒫 ∪ 𝐴)) |
4 | ssin 3372 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝒫 ∪ 𝐴) ↔ 𝐴 ⊆ (𝐵 ∩ 𝒫 ∪ 𝐴)) | |
5 | 3, 4 | sylib 122 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → 𝐴 ⊆ (𝐵 ∩ 𝒫 ∪ 𝐴)) |
6 | 5 | unissd 3848 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → ∪ 𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 ∪ 𝐴)) |
7 | eltg 14012 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (∪ 𝐴 ∈ (topGen‘𝐵) ↔ ∪ 𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 ∪ 𝐴))) | |
8 | 7 | adantr 276 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (∪ 𝐴 ∈ (topGen‘𝐵) ↔ ∪ 𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 ∪ 𝐴))) |
9 | 6, 8 | mpbird 167 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → ∪ 𝐴 ∈ (topGen‘𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2160 ∩ cin 3143 ⊆ wss 3144 𝒫 cpw 3590 ∪ cuni 3824 ‘cfv 5235 topGenctg 12759 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-v 2754 df-sbc 2978 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-iota 5196 df-fun 5237 df-fv 5243 df-topgen 12765 |
This theorem is referenced by: eltg3 14017 tgiun 14033 tgidm 14034 tgrest 14129 |
Copyright terms: Public domain | W3C validator |