![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eltg3i | GIF version |
Description: The union of a set of basic open sets is in the generated topology. (Contributed by Mario Carneiro, 30-Aug-2015.) |
Ref | Expression |
---|---|
eltg3i | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → ∪ 𝐴 ∈ (topGen‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 109 | . . . . 5 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → 𝐴 ⊆ 𝐵) | |
2 | pwuni 4056 | . . . . 5 ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 | |
3 | 1, 2 | jctir 309 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝒫 ∪ 𝐴)) |
4 | ssin 3245 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝒫 ∪ 𝐴) ↔ 𝐴 ⊆ (𝐵 ∩ 𝒫 ∪ 𝐴)) | |
5 | 3, 4 | sylib 121 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → 𝐴 ⊆ (𝐵 ∩ 𝒫 ∪ 𝐴)) |
6 | 5 | unissd 3707 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → ∪ 𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 ∪ 𝐴)) |
7 | eltg 12003 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (∪ 𝐴 ∈ (topGen‘𝐵) ↔ ∪ 𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 ∪ 𝐴))) | |
8 | 7 | adantr 272 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (∪ 𝐴 ∈ (topGen‘𝐵) ↔ ∪ 𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 ∪ 𝐴))) |
9 | 6, 8 | mpbird 166 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → ∪ 𝐴 ∈ (topGen‘𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∈ wcel 1448 ∩ cin 3020 ⊆ wss 3021 𝒫 cpw 3457 ∪ cuni 3683 ‘cfv 5059 topGenctg 11917 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-13 1459 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-sep 3986 ax-pow 4038 ax-pr 4069 ax-un 4293 |
This theorem depends on definitions: df-bi 116 df-3an 932 df-tru 1302 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ral 2380 df-rex 2381 df-v 2643 df-sbc 2863 df-un 3025 df-in 3027 df-ss 3034 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-uni 3684 df-br 3876 df-opab 3930 df-mpt 3931 df-id 4153 df-xp 4483 df-rel 4484 df-cnv 4485 df-co 4486 df-dm 4487 df-iota 5024 df-fun 5061 df-fv 5067 df-topgen 11923 |
This theorem is referenced by: eltg3 12008 tgiun 12024 tgidm 12025 tgrest 12120 |
Copyright terms: Public domain | W3C validator |