![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssdomg | GIF version |
Description: A set dominates its subsets. Theorem 16 of [Suppes] p. 94. (Contributed by NM, 19-Jun-1998.) (Revised by Mario Carneiro, 24-Jun-2015.) |
Ref | Expression |
---|---|
ssdomg | ⊢ (𝐵 ∈ 𝑉 → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssexg 4143 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ V) | |
2 | simpr 110 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐵 ∈ 𝑉) | |
3 | f1oi 5500 | . . . . . . . . . 10 ⊢ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴 | |
4 | dff1o3 5468 | . . . . . . . . . 10 ⊢ (( I ↾ 𝐴):𝐴–1-1-onto→𝐴 ↔ (( I ↾ 𝐴):𝐴–onto→𝐴 ∧ Fun ◡( I ↾ 𝐴))) | |
5 | 3, 4 | mpbi 145 | . . . . . . . . 9 ⊢ (( I ↾ 𝐴):𝐴–onto→𝐴 ∧ Fun ◡( I ↾ 𝐴)) |
6 | 5 | simpli 111 | . . . . . . . 8 ⊢ ( I ↾ 𝐴):𝐴–onto→𝐴 |
7 | fof 5439 | . . . . . . . 8 ⊢ (( I ↾ 𝐴):𝐴–onto→𝐴 → ( I ↾ 𝐴):𝐴⟶𝐴) | |
8 | 6, 7 | ax-mp 5 | . . . . . . 7 ⊢ ( I ↾ 𝐴):𝐴⟶𝐴 |
9 | fss 5378 | . . . . . . 7 ⊢ ((( I ↾ 𝐴):𝐴⟶𝐴 ∧ 𝐴 ⊆ 𝐵) → ( I ↾ 𝐴):𝐴⟶𝐵) | |
10 | 8, 9 | mpan 424 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 → ( I ↾ 𝐴):𝐴⟶𝐵) |
11 | funi 5249 | . . . . . . . 8 ⊢ Fun I | |
12 | cnvi 5034 | . . . . . . . . 9 ⊢ ◡ I = I | |
13 | 12 | funeqi 5238 | . . . . . . . 8 ⊢ (Fun ◡ I ↔ Fun I ) |
14 | 11, 13 | mpbir 146 | . . . . . . 7 ⊢ Fun ◡ I |
15 | funres11 5289 | . . . . . . 7 ⊢ (Fun ◡ I → Fun ◡( I ↾ 𝐴)) | |
16 | 14, 15 | ax-mp 5 | . . . . . 6 ⊢ Fun ◡( I ↾ 𝐴) |
17 | 10, 16 | jctir 313 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (( I ↾ 𝐴):𝐴⟶𝐵 ∧ Fun ◡( I ↾ 𝐴))) |
18 | df-f1 5222 | . . . . 5 ⊢ (( I ↾ 𝐴):𝐴–1-1→𝐵 ↔ (( I ↾ 𝐴):𝐴⟶𝐵 ∧ Fun ◡( I ↾ 𝐴))) | |
19 | 17, 18 | sylibr 134 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → ( I ↾ 𝐴):𝐴–1-1→𝐵) |
20 | 19 | adantr 276 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → ( I ↾ 𝐴):𝐴–1-1→𝐵) |
21 | f1dom2g 6756 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ 𝑉 ∧ ( I ↾ 𝐴):𝐴–1-1→𝐵) → 𝐴 ≼ 𝐵) | |
22 | 1, 2, 20, 21 | syl3anc 1238 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ≼ 𝐵) |
23 | 22 | expcom 116 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2148 Vcvv 2738 ⊆ wss 3130 class class class wbr 4004 I cid 4289 ◡ccnv 4626 ↾ cres 4629 Fun wfun 5211 ⟶wf 5213 –1-1→wf1 5214 –onto→wfo 5215 –1-1-onto→wf1o 5216 ≼ cdom 6739 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 ax-un 4434 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2740 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-br 4005 df-opab 4066 df-id 4294 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-rn 4638 df-res 4639 df-ima 4640 df-fun 5219 df-fn 5220 df-f 5221 df-f1 5222 df-fo 5223 df-f1o 5224 df-dom 6742 |
This theorem is referenced by: cnvct 6809 ssct 6818 xpdom3m 6834 0domg 6837 mapdom1g 6847 phplem4dom 6862 nndomo 6864 phpm 6865 fict 6868 domfiexmid 6878 infnfi 6895 exmidfodomrlemr 7201 exmidfodomrlemrALT 7202 pw1dom2 7226 fihashss 10796 phicl2 12214 phibnd 12217 qnnen 12432 sbthom 14777 |
Copyright terms: Public domain | W3C validator |