ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssdomg GIF version

Theorem ssdomg 6855
Description: A set dominates its subsets. Theorem 16 of [Suppes] p. 94. (Contributed by NM, 19-Jun-1998.) (Revised by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
ssdomg (𝐵𝑉 → (𝐴𝐵𝐴𝐵))

Proof of Theorem ssdomg
StepHypRef Expression
1 ssexg 4182 . . 3 ((𝐴𝐵𝐵𝑉) → 𝐴 ∈ V)
2 simpr 110 . . 3 ((𝐴𝐵𝐵𝑉) → 𝐵𝑉)
3 f1oi 5554 . . . . . . . . . 10 ( I ↾ 𝐴):𝐴1-1-onto𝐴
4 dff1o3 5522 . . . . . . . . . 10 (( I ↾ 𝐴):𝐴1-1-onto𝐴 ↔ (( I ↾ 𝐴):𝐴onto𝐴 ∧ Fun ( I ↾ 𝐴)))
53, 4mpbi 145 . . . . . . . . 9 (( I ↾ 𝐴):𝐴onto𝐴 ∧ Fun ( I ↾ 𝐴))
65simpli 111 . . . . . . . 8 ( I ↾ 𝐴):𝐴onto𝐴
7 fof 5492 . . . . . . . 8 (( I ↾ 𝐴):𝐴onto𝐴 → ( I ↾ 𝐴):𝐴𝐴)
86, 7ax-mp 5 . . . . . . 7 ( I ↾ 𝐴):𝐴𝐴
9 fss 5431 . . . . . . 7 ((( I ↾ 𝐴):𝐴𝐴𝐴𝐵) → ( I ↾ 𝐴):𝐴𝐵)
108, 9mpan 424 . . . . . 6 (𝐴𝐵 → ( I ↾ 𝐴):𝐴𝐵)
11 funi 5300 . . . . . . . 8 Fun I
12 cnvi 5084 . . . . . . . . 9 I = I
1312funeqi 5289 . . . . . . . 8 (Fun I ↔ Fun I )
1411, 13mpbir 146 . . . . . . 7 Fun I
15 funres11 5340 . . . . . . 7 (Fun I → Fun ( I ↾ 𝐴))
1614, 15ax-mp 5 . . . . . 6 Fun ( I ↾ 𝐴)
1710, 16jctir 313 . . . . 5 (𝐴𝐵 → (( I ↾ 𝐴):𝐴𝐵 ∧ Fun ( I ↾ 𝐴)))
18 df-f1 5273 . . . . 5 (( I ↾ 𝐴):𝐴1-1𝐵 ↔ (( I ↾ 𝐴):𝐴𝐵 ∧ Fun ( I ↾ 𝐴)))
1917, 18sylibr 134 . . . 4 (𝐴𝐵 → ( I ↾ 𝐴):𝐴1-1𝐵)
2019adantr 276 . . 3 ((𝐴𝐵𝐵𝑉) → ( I ↾ 𝐴):𝐴1-1𝐵)
21 f1dom2g 6833 . . 3 ((𝐴 ∈ V ∧ 𝐵𝑉 ∧ ( I ↾ 𝐴):𝐴1-1𝐵) → 𝐴𝐵)
221, 2, 20, 21syl3anc 1249 . 2 ((𝐴𝐵𝐵𝑉) → 𝐴𝐵)
2322expcom 116 1 (𝐵𝑉 → (𝐴𝐵𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2175  Vcvv 2771  wss 3165   class class class wbr 4043   I cid 4333  ccnv 4672  cres 4675  Fun wfun 5262  wf 5264  1-1wf1 5265  ontowfo 5266  1-1-ontowf1o 5267  cdom 6816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-dom 6819
This theorem is referenced by:  cnvct  6886  ssct  6895  xpdom3m  6911  0domg  6916  mapdom1g  6926  phplem4dom  6941  nndomo  6943  phpm  6944  fict  6947  domfiexmid  6957  infnfi  6974  exmidfodomrlemr  7292  exmidfodomrlemrALT  7293  pw1dom2  7321  fihashss  10942  phicl2  12455  phibnd  12458  4sqlem11  12643  qnnen  12721  isnzr2  13864  sbthom  15829
  Copyright terms: Public domain W3C validator