![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssdomg | GIF version |
Description: A set dominates its subsets. Theorem 16 of [Suppes] p. 94. (Contributed by NM, 19-Jun-1998.) (Revised by Mario Carneiro, 24-Jun-2015.) |
Ref | Expression |
---|---|
ssdomg | ⊢ (𝐵 ∈ 𝑉 → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssexg 4168 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ V) | |
2 | simpr 110 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐵 ∈ 𝑉) | |
3 | f1oi 5538 | . . . . . . . . . 10 ⊢ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴 | |
4 | dff1o3 5506 | . . . . . . . . . 10 ⊢ (( I ↾ 𝐴):𝐴–1-1-onto→𝐴 ↔ (( I ↾ 𝐴):𝐴–onto→𝐴 ∧ Fun ◡( I ↾ 𝐴))) | |
5 | 3, 4 | mpbi 145 | . . . . . . . . 9 ⊢ (( I ↾ 𝐴):𝐴–onto→𝐴 ∧ Fun ◡( I ↾ 𝐴)) |
6 | 5 | simpli 111 | . . . . . . . 8 ⊢ ( I ↾ 𝐴):𝐴–onto→𝐴 |
7 | fof 5476 | . . . . . . . 8 ⊢ (( I ↾ 𝐴):𝐴–onto→𝐴 → ( I ↾ 𝐴):𝐴⟶𝐴) | |
8 | 6, 7 | ax-mp 5 | . . . . . . 7 ⊢ ( I ↾ 𝐴):𝐴⟶𝐴 |
9 | fss 5415 | . . . . . . 7 ⊢ ((( I ↾ 𝐴):𝐴⟶𝐴 ∧ 𝐴 ⊆ 𝐵) → ( I ↾ 𝐴):𝐴⟶𝐵) | |
10 | 8, 9 | mpan 424 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 → ( I ↾ 𝐴):𝐴⟶𝐵) |
11 | funi 5286 | . . . . . . . 8 ⊢ Fun I | |
12 | cnvi 5070 | . . . . . . . . 9 ⊢ ◡ I = I | |
13 | 12 | funeqi 5275 | . . . . . . . 8 ⊢ (Fun ◡ I ↔ Fun I ) |
14 | 11, 13 | mpbir 146 | . . . . . . 7 ⊢ Fun ◡ I |
15 | funres11 5326 | . . . . . . 7 ⊢ (Fun ◡ I → Fun ◡( I ↾ 𝐴)) | |
16 | 14, 15 | ax-mp 5 | . . . . . 6 ⊢ Fun ◡( I ↾ 𝐴) |
17 | 10, 16 | jctir 313 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (( I ↾ 𝐴):𝐴⟶𝐵 ∧ Fun ◡( I ↾ 𝐴))) |
18 | df-f1 5259 | . . . . 5 ⊢ (( I ↾ 𝐴):𝐴–1-1→𝐵 ↔ (( I ↾ 𝐴):𝐴⟶𝐵 ∧ Fun ◡( I ↾ 𝐴))) | |
19 | 17, 18 | sylibr 134 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → ( I ↾ 𝐴):𝐴–1-1→𝐵) |
20 | 19 | adantr 276 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → ( I ↾ 𝐴):𝐴–1-1→𝐵) |
21 | f1dom2g 6810 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ 𝑉 ∧ ( I ↾ 𝐴):𝐴–1-1→𝐵) → 𝐴 ≼ 𝐵) | |
22 | 1, 2, 20, 21 | syl3anc 1249 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ≼ 𝐵) |
23 | 22 | expcom 116 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2164 Vcvv 2760 ⊆ wss 3153 class class class wbr 4029 I cid 4319 ◡ccnv 4658 ↾ cres 4661 Fun wfun 5248 ⟶wf 5250 –1-1→wf1 5251 –onto→wfo 5252 –1-1-onto→wf1o 5253 ≼ cdom 6793 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-dom 6796 |
This theorem is referenced by: cnvct 6863 ssct 6872 xpdom3m 6888 0domg 6893 mapdom1g 6903 phplem4dom 6918 nndomo 6920 phpm 6921 fict 6924 domfiexmid 6934 infnfi 6951 exmidfodomrlemr 7262 exmidfodomrlemrALT 7263 pw1dom2 7287 fihashss 10887 phicl2 12352 phibnd 12355 4sqlem11 12539 qnnen 12588 isnzr2 13680 sbthom 15516 |
Copyright terms: Public domain | W3C validator |