ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssdomg GIF version

Theorem ssdomg 6778
Description: A set dominates its subsets. Theorem 16 of [Suppes] p. 94. (Contributed by NM, 19-Jun-1998.) (Revised by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
ssdomg (𝐵𝑉 → (𝐴𝐵𝐴𝐵))

Proof of Theorem ssdomg
StepHypRef Expression
1 ssexg 4143 . . 3 ((𝐴𝐵𝐵𝑉) → 𝐴 ∈ V)
2 simpr 110 . . 3 ((𝐴𝐵𝐵𝑉) → 𝐵𝑉)
3 f1oi 5500 . . . . . . . . . 10 ( I ↾ 𝐴):𝐴1-1-onto𝐴
4 dff1o3 5468 . . . . . . . . . 10 (( I ↾ 𝐴):𝐴1-1-onto𝐴 ↔ (( I ↾ 𝐴):𝐴onto𝐴 ∧ Fun ( I ↾ 𝐴)))
53, 4mpbi 145 . . . . . . . . 9 (( I ↾ 𝐴):𝐴onto𝐴 ∧ Fun ( I ↾ 𝐴))
65simpli 111 . . . . . . . 8 ( I ↾ 𝐴):𝐴onto𝐴
7 fof 5439 . . . . . . . 8 (( I ↾ 𝐴):𝐴onto𝐴 → ( I ↾ 𝐴):𝐴𝐴)
86, 7ax-mp 5 . . . . . . 7 ( I ↾ 𝐴):𝐴𝐴
9 fss 5378 . . . . . . 7 ((( I ↾ 𝐴):𝐴𝐴𝐴𝐵) → ( I ↾ 𝐴):𝐴𝐵)
108, 9mpan 424 . . . . . 6 (𝐴𝐵 → ( I ↾ 𝐴):𝐴𝐵)
11 funi 5249 . . . . . . . 8 Fun I
12 cnvi 5034 . . . . . . . . 9 I = I
1312funeqi 5238 . . . . . . . 8 (Fun I ↔ Fun I )
1411, 13mpbir 146 . . . . . . 7 Fun I
15 funres11 5289 . . . . . . 7 (Fun I → Fun ( I ↾ 𝐴))
1614, 15ax-mp 5 . . . . . 6 Fun ( I ↾ 𝐴)
1710, 16jctir 313 . . . . 5 (𝐴𝐵 → (( I ↾ 𝐴):𝐴𝐵 ∧ Fun ( I ↾ 𝐴)))
18 df-f1 5222 . . . . 5 (( I ↾ 𝐴):𝐴1-1𝐵 ↔ (( I ↾ 𝐴):𝐴𝐵 ∧ Fun ( I ↾ 𝐴)))
1917, 18sylibr 134 . . . 4 (𝐴𝐵 → ( I ↾ 𝐴):𝐴1-1𝐵)
2019adantr 276 . . 3 ((𝐴𝐵𝐵𝑉) → ( I ↾ 𝐴):𝐴1-1𝐵)
21 f1dom2g 6756 . . 3 ((𝐴 ∈ V ∧ 𝐵𝑉 ∧ ( I ↾ 𝐴):𝐴1-1𝐵) → 𝐴𝐵)
221, 2, 20, 21syl3anc 1238 . 2 ((𝐴𝐵𝐵𝑉) → 𝐴𝐵)
2322expcom 116 1 (𝐵𝑉 → (𝐴𝐵𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2148  Vcvv 2738  wss 3130   class class class wbr 4004   I cid 4289  ccnv 4626  cres 4629  Fun wfun 5211  wf 5213  1-1wf1 5214  ontowfo 5215  1-1-ontowf1o 5216  cdom 6739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-opab 4066  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-dom 6742
This theorem is referenced by:  cnvct  6809  ssct  6818  xpdom3m  6834  0domg  6837  mapdom1g  6847  phplem4dom  6862  nndomo  6864  phpm  6865  fict  6868  domfiexmid  6878  infnfi  6895  exmidfodomrlemr  7201  exmidfodomrlemrALT  7202  pw1dom2  7226  fihashss  10796  phicl2  12214  phibnd  12217  qnnen  12432  sbthom  14777
  Copyright terms: Public domain W3C validator