ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssdomg GIF version

Theorem ssdomg 6837
Description: A set dominates its subsets. Theorem 16 of [Suppes] p. 94. (Contributed by NM, 19-Jun-1998.) (Revised by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
ssdomg (𝐵𝑉 → (𝐴𝐵𝐴𝐵))

Proof of Theorem ssdomg
StepHypRef Expression
1 ssexg 4172 . . 3 ((𝐴𝐵𝐵𝑉) → 𝐴 ∈ V)
2 simpr 110 . . 3 ((𝐴𝐵𝐵𝑉) → 𝐵𝑉)
3 f1oi 5542 . . . . . . . . . 10 ( I ↾ 𝐴):𝐴1-1-onto𝐴
4 dff1o3 5510 . . . . . . . . . 10 (( I ↾ 𝐴):𝐴1-1-onto𝐴 ↔ (( I ↾ 𝐴):𝐴onto𝐴 ∧ Fun ( I ↾ 𝐴)))
53, 4mpbi 145 . . . . . . . . 9 (( I ↾ 𝐴):𝐴onto𝐴 ∧ Fun ( I ↾ 𝐴))
65simpli 111 . . . . . . . 8 ( I ↾ 𝐴):𝐴onto𝐴
7 fof 5480 . . . . . . . 8 (( I ↾ 𝐴):𝐴onto𝐴 → ( I ↾ 𝐴):𝐴𝐴)
86, 7ax-mp 5 . . . . . . 7 ( I ↾ 𝐴):𝐴𝐴
9 fss 5419 . . . . . . 7 ((( I ↾ 𝐴):𝐴𝐴𝐴𝐵) → ( I ↾ 𝐴):𝐴𝐵)
108, 9mpan 424 . . . . . 6 (𝐴𝐵 → ( I ↾ 𝐴):𝐴𝐵)
11 funi 5290 . . . . . . . 8 Fun I
12 cnvi 5074 . . . . . . . . 9 I = I
1312funeqi 5279 . . . . . . . 8 (Fun I ↔ Fun I )
1411, 13mpbir 146 . . . . . . 7 Fun I
15 funres11 5330 . . . . . . 7 (Fun I → Fun ( I ↾ 𝐴))
1614, 15ax-mp 5 . . . . . 6 Fun ( I ↾ 𝐴)
1710, 16jctir 313 . . . . 5 (𝐴𝐵 → (( I ↾ 𝐴):𝐴𝐵 ∧ Fun ( I ↾ 𝐴)))
18 df-f1 5263 . . . . 5 (( I ↾ 𝐴):𝐴1-1𝐵 ↔ (( I ↾ 𝐴):𝐴𝐵 ∧ Fun ( I ↾ 𝐴)))
1917, 18sylibr 134 . . . 4 (𝐴𝐵 → ( I ↾ 𝐴):𝐴1-1𝐵)
2019adantr 276 . . 3 ((𝐴𝐵𝐵𝑉) → ( I ↾ 𝐴):𝐴1-1𝐵)
21 f1dom2g 6815 . . 3 ((𝐴 ∈ V ∧ 𝐵𝑉 ∧ ( I ↾ 𝐴):𝐴1-1𝐵) → 𝐴𝐵)
221, 2, 20, 21syl3anc 1249 . 2 ((𝐴𝐵𝐵𝑉) → 𝐴𝐵)
2322expcom 116 1 (𝐵𝑉 → (𝐴𝐵𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2167  Vcvv 2763  wss 3157   class class class wbr 4033   I cid 4323  ccnv 4662  cres 4665  Fun wfun 5252  wf 5254  1-1wf1 5255  ontowfo 5256  1-1-ontowf1o 5257  cdom 6798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-dom 6801
This theorem is referenced by:  cnvct  6868  ssct  6877  xpdom3m  6893  0domg  6898  mapdom1g  6908  phplem4dom  6923  nndomo  6925  phpm  6926  fict  6929  domfiexmid  6939  infnfi  6956  exmidfodomrlemr  7269  exmidfodomrlemrALT  7270  pw1dom2  7294  fihashss  10908  phicl2  12382  phibnd  12385  4sqlem11  12570  qnnen  12648  isnzr2  13740  sbthom  15670
  Copyright terms: Public domain W3C validator