Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > relxp | GIF version |
Description: A cross product is a relation. Theorem 3.13(i) of [Monk1] p. 37. (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
relxp | ⊢ Rel (𝐴 × 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpss 4719 | . 2 ⊢ (𝐴 × 𝐵) ⊆ (V × V) | |
2 | df-rel 4618 | . 2 ⊢ (Rel (𝐴 × 𝐵) ↔ (𝐴 × 𝐵) ⊆ (V × V)) | |
3 | 1, 2 | mpbir 145 | 1 ⊢ Rel (𝐴 × 𝐵) |
Colors of variables: wff set class |
Syntax hints: Vcvv 2730 ⊆ wss 3121 × cxp 4609 Rel wrel 4616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-in 3127 df-ss 3134 df-opab 4051 df-xp 4617 df-rel 4618 |
This theorem is referenced by: xpiindim 4748 eliunxp 4750 opeliunxp2 4751 relres 4919 codir 4999 qfto 5000 cnvcnv 5063 dfco2 5110 unixpm 5146 ressn 5151 fliftcnv 5774 fliftfun 5775 opeliunxp2f 6217 reltpos 6229 tpostpos 6243 tposfo 6250 tposf 6251 swoer 6541 xpider 6584 erinxp 6587 xpcomf1o 6803 ltrel 7981 lerel 7983 fisumcom2 11401 fprodcom2fi 11589 txuni2 13050 txdis1cn 13072 xmeter 13230 reldvg 13442 |
Copyright terms: Public domain | W3C validator |