ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relxp GIF version

Theorem relxp 4791
Description: A cross product is a relation. Theorem 3.13(i) of [Monk1] p. 37. (Contributed by NM, 2-Aug-1994.)
Assertion
Ref Expression
relxp Rel (𝐴 × 𝐵)

Proof of Theorem relxp
StepHypRef Expression
1 xpss 4790 . 2 (𝐴 × 𝐵) ⊆ (V × V)
2 df-rel 4689 . 2 (Rel (𝐴 × 𝐵) ↔ (𝐴 × 𝐵) ⊆ (V × V))
31, 2mpbir 146 1 Rel (𝐴 × 𝐵)
Colors of variables: wff set class
Syntax hints:  Vcvv 2773  wss 3170   × cxp 4680  Rel wrel 4687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-in 3176  df-ss 3183  df-opab 4113  df-xp 4688  df-rel 4689
This theorem is referenced by:  xpiindim  4822  eliunxp  4824  opeliunxp2  4825  relres  4995  restidsing  5023  codir  5079  qfto  5080  cnvcnv  5143  dfco2  5190  unixpm  5226  ressn  5231  fliftcnv  5876  fliftfun  5877  opeliunxp2f  6336  reltpos  6348  tpostpos  6362  tposfo  6369  tposf  6370  swoer  6660  xpider  6705  erinxp  6708  xpcomf1o  6934  ltrel  8149  lerel  8151  fisumcom2  11819  fprodcom2fi  12007  txuni2  14798  txdis1cn  14820  xmeter  14978  reldvg  15221  lgsquadlem1  15624  lgsquadlem2  15625
  Copyright terms: Public domain W3C validator