Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > relxp | GIF version |
Description: A cross product is a relation. Theorem 3.13(i) of [Monk1] p. 37. (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
relxp | ⊢ Rel (𝐴 × 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpss 4712 | . 2 ⊢ (𝐴 × 𝐵) ⊆ (V × V) | |
2 | df-rel 4611 | . 2 ⊢ (Rel (𝐴 × 𝐵) ↔ (𝐴 × 𝐵) ⊆ (V × V)) | |
3 | 1, 2 | mpbir 145 | 1 ⊢ Rel (𝐴 × 𝐵) |
Colors of variables: wff set class |
Syntax hints: Vcvv 2726 ⊆ wss 3116 × cxp 4602 Rel wrel 4609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-in 3122 df-ss 3129 df-opab 4044 df-xp 4610 df-rel 4611 |
This theorem is referenced by: xpiindim 4741 eliunxp 4743 opeliunxp2 4744 relres 4912 codir 4992 qfto 4993 cnvcnv 5056 dfco2 5103 unixpm 5139 ressn 5144 fliftcnv 5763 fliftfun 5764 opeliunxp2f 6206 reltpos 6218 tpostpos 6232 tposfo 6239 tposf 6240 swoer 6529 xpider 6572 erinxp 6575 xpcomf1o 6791 ltrel 7960 lerel 7962 fisumcom2 11379 fprodcom2fi 11567 txuni2 12896 txdis1cn 12918 xmeter 13076 reldvg 13288 |
Copyright terms: Public domain | W3C validator |