| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > relxp | GIF version | ||
| Description: A cross product is a relation. Theorem 3.13(i) of [Monk1] p. 37. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| relxp | ⊢ Rel (𝐴 × 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpss 4790 | . 2 ⊢ (𝐴 × 𝐵) ⊆ (V × V) | |
| 2 | df-rel 4689 | . 2 ⊢ (Rel (𝐴 × 𝐵) ↔ (𝐴 × 𝐵) ⊆ (V × V)) | |
| 3 | 1, 2 | mpbir 146 | 1 ⊢ Rel (𝐴 × 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: Vcvv 2773 ⊆ wss 3170 × cxp 4680 Rel wrel 4687 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-in 3176 df-ss 3183 df-opab 4113 df-xp 4688 df-rel 4689 |
| This theorem is referenced by: xpiindim 4822 eliunxp 4824 opeliunxp2 4825 relres 4995 restidsing 5023 codir 5079 qfto 5080 cnvcnv 5143 dfco2 5190 unixpm 5226 ressn 5231 fliftcnv 5876 fliftfun 5877 opeliunxp2f 6336 reltpos 6348 tpostpos 6362 tposfo 6369 tposf 6370 swoer 6660 xpider 6705 erinxp 6708 xpcomf1o 6934 ltrel 8149 lerel 8151 fisumcom2 11819 fprodcom2fi 12007 txuni2 14798 txdis1cn 14820 xmeter 14978 reldvg 15221 lgsquadlem1 15624 lgsquadlem2 15625 |
| Copyright terms: Public domain | W3C validator |