| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > relxp | GIF version | ||
| Description: A cross product is a relation. Theorem 3.13(i) of [Monk1] p. 37. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| relxp | ⊢ Rel (𝐴 × 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpss 4824 | . 2 ⊢ (𝐴 × 𝐵) ⊆ (V × V) | |
| 2 | df-rel 4723 | . 2 ⊢ (Rel (𝐴 × 𝐵) ↔ (𝐴 × 𝐵) ⊆ (V × V)) | |
| 3 | 1, 2 | mpbir 146 | 1 ⊢ Rel (𝐴 × 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: Vcvv 2799 ⊆ wss 3197 × cxp 4714 Rel wrel 4721 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-in 3203 df-ss 3210 df-opab 4145 df-xp 4722 df-rel 4723 |
| This theorem is referenced by: xpiindim 4856 eliunxp 4858 opeliunxp2 4859 relres 5029 restidsing 5057 codir 5113 qfto 5114 cnvcnv 5177 dfco2 5224 unixpm 5260 ressn 5265 fliftcnv 5912 fliftfun 5913 opeliunxp2f 6374 reltpos 6386 tpostpos 6400 tposfo 6407 tposf 6408 swoer 6698 xpider 6743 erinxp 6746 xpcomf1o 6972 ltrel 8196 lerel 8198 fisumcom2 11935 fprodcom2fi 12123 txuni2 14915 txdis1cn 14937 xmeter 15095 reldvg 15338 lgsquadlem1 15741 lgsquadlem2 15742 |
| Copyright terms: Public domain | W3C validator |