![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > relxp | GIF version |
Description: A cross product is a relation. Theorem 3.13(i) of [Monk1] p. 37. (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
relxp | ⊢ Rel (𝐴 × 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpss 4767 | . 2 ⊢ (𝐴 × 𝐵) ⊆ (V × V) | |
2 | df-rel 4666 | . 2 ⊢ (Rel (𝐴 × 𝐵) ↔ (𝐴 × 𝐵) ⊆ (V × V)) | |
3 | 1, 2 | mpbir 146 | 1 ⊢ Rel (𝐴 × 𝐵) |
Colors of variables: wff set class |
Syntax hints: Vcvv 2760 ⊆ wss 3153 × cxp 4657 Rel wrel 4664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-in 3159 df-ss 3166 df-opab 4091 df-xp 4665 df-rel 4666 |
This theorem is referenced by: xpiindim 4799 eliunxp 4801 opeliunxp2 4802 relres 4970 restidsing 4998 codir 5054 qfto 5055 cnvcnv 5118 dfco2 5165 unixpm 5201 ressn 5206 fliftcnv 5838 fliftfun 5839 opeliunxp2f 6291 reltpos 6303 tpostpos 6317 tposfo 6324 tposf 6325 swoer 6615 xpider 6660 erinxp 6663 xpcomf1o 6879 ltrel 8081 lerel 8083 fisumcom2 11581 fprodcom2fi 11769 txuni2 14424 txdis1cn 14446 xmeter 14604 reldvg 14833 lgsquadlem1 15191 |
Copyright terms: Public domain | W3C validator |