ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relxp GIF version

Theorem relxp 4713
Description: A cross product is a relation. Theorem 3.13(i) of [Monk1] p. 37. (Contributed by NM, 2-Aug-1994.)
Assertion
Ref Expression
relxp Rel (𝐴 × 𝐵)

Proof of Theorem relxp
StepHypRef Expression
1 xpss 4712 . 2 (𝐴 × 𝐵) ⊆ (V × V)
2 df-rel 4611 . 2 (Rel (𝐴 × 𝐵) ↔ (𝐴 × 𝐵) ⊆ (V × V))
31, 2mpbir 145 1 Rel (𝐴 × 𝐵)
Colors of variables: wff set class
Syntax hints:  Vcvv 2726  wss 3116   × cxp 4602  Rel wrel 4609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-in 3122  df-ss 3129  df-opab 4044  df-xp 4610  df-rel 4611
This theorem is referenced by:  xpiindim  4741  eliunxp  4743  opeliunxp2  4744  relres  4912  codir  4992  qfto  4993  cnvcnv  5056  dfco2  5103  unixpm  5139  ressn  5144  fliftcnv  5763  fliftfun  5764  opeliunxp2f  6206  reltpos  6218  tpostpos  6232  tposfo  6239  tposf  6240  swoer  6529  xpider  6572  erinxp  6575  xpcomf1o  6791  ltrel  7960  lerel  7962  fisumcom2  11379  fprodcom2fi  11567  txuni2  12896  txdis1cn  12918  xmeter  13076  reldvg  13288
  Copyright terms: Public domain W3C validator