| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > relxp | GIF version | ||
| Description: A cross product is a relation. Theorem 3.13(i) of [Monk1] p. 37. (Contributed by NM, 2-Aug-1994.) | 
| Ref | Expression | 
|---|---|
| relxp | ⊢ Rel (𝐴 × 𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | xpss 4771 | . 2 ⊢ (𝐴 × 𝐵) ⊆ (V × V) | |
| 2 | df-rel 4670 | . 2 ⊢ (Rel (𝐴 × 𝐵) ↔ (𝐴 × 𝐵) ⊆ (V × V)) | |
| 3 | 1, 2 | mpbir 146 | 1 ⊢ Rel (𝐴 × 𝐵) | 
| Colors of variables: wff set class | 
| Syntax hints: Vcvv 2763 ⊆ wss 3157 × cxp 4661 Rel wrel 4668 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 df-opab 4095 df-xp 4669 df-rel 4670 | 
| This theorem is referenced by: xpiindim 4803 eliunxp 4805 opeliunxp2 4806 relres 4974 restidsing 5002 codir 5058 qfto 5059 cnvcnv 5122 dfco2 5169 unixpm 5205 ressn 5210 fliftcnv 5842 fliftfun 5843 opeliunxp2f 6296 reltpos 6308 tpostpos 6322 tposfo 6329 tposf 6330 swoer 6620 xpider 6665 erinxp 6668 xpcomf1o 6884 ltrel 8088 lerel 8090 fisumcom2 11603 fprodcom2fi 11791 txuni2 14492 txdis1cn 14514 xmeter 14672 reldvg 14915 lgsquadlem1 15318 lgsquadlem2 15319 | 
| Copyright terms: Public domain | W3C validator |