ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relxp GIF version

Theorem relxp 4825
Description: A cross product is a relation. Theorem 3.13(i) of [Monk1] p. 37. (Contributed by NM, 2-Aug-1994.)
Assertion
Ref Expression
relxp Rel (𝐴 × 𝐵)

Proof of Theorem relxp
StepHypRef Expression
1 xpss 4824 . 2 (𝐴 × 𝐵) ⊆ (V × V)
2 df-rel 4723 . 2 (Rel (𝐴 × 𝐵) ↔ (𝐴 × 𝐵) ⊆ (V × V))
31, 2mpbir 146 1 Rel (𝐴 × 𝐵)
Colors of variables: wff set class
Syntax hints:  Vcvv 2799  wss 3197   × cxp 4714  Rel wrel 4721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-in 3203  df-ss 3210  df-opab 4145  df-xp 4722  df-rel 4723
This theorem is referenced by:  xpiindim  4856  eliunxp  4858  opeliunxp2  4859  relres  5029  restidsing  5057  codir  5113  qfto  5114  cnvcnv  5177  dfco2  5224  unixpm  5260  ressn  5265  fliftcnv  5912  fliftfun  5913  opeliunxp2f  6374  reltpos  6386  tpostpos  6400  tposfo  6407  tposf  6408  swoer  6698  xpider  6743  erinxp  6746  xpcomf1o  6972  ltrel  8196  lerel  8198  fisumcom2  11935  fprodcom2fi  12123  txuni2  14915  txdis1cn  14937  xmeter  15095  reldvg  15338  lgsquadlem1  15741  lgsquadlem2  15742
  Copyright terms: Public domain W3C validator