ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relxp GIF version

Theorem relxp 4720
Description: A cross product is a relation. Theorem 3.13(i) of [Monk1] p. 37. (Contributed by NM, 2-Aug-1994.)
Assertion
Ref Expression
relxp Rel (𝐴 × 𝐵)

Proof of Theorem relxp
StepHypRef Expression
1 xpss 4719 . 2 (𝐴 × 𝐵) ⊆ (V × V)
2 df-rel 4618 . 2 (Rel (𝐴 × 𝐵) ↔ (𝐴 × 𝐵) ⊆ (V × V))
31, 2mpbir 145 1 Rel (𝐴 × 𝐵)
Colors of variables: wff set class
Syntax hints:  Vcvv 2730  wss 3121   × cxp 4609  Rel wrel 4616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-in 3127  df-ss 3134  df-opab 4051  df-xp 4617  df-rel 4618
This theorem is referenced by:  xpiindim  4748  eliunxp  4750  opeliunxp2  4751  relres  4919  codir  4999  qfto  5000  cnvcnv  5063  dfco2  5110  unixpm  5146  ressn  5151  fliftcnv  5774  fliftfun  5775  opeliunxp2f  6217  reltpos  6229  tpostpos  6243  tposfo  6250  tposf  6251  swoer  6541  xpider  6584  erinxp  6587  xpcomf1o  6803  ltrel  7981  lerel  7983  fisumcom2  11401  fprodcom2fi  11589  txuni2  13050  txdis1cn  13072  xmeter  13230  reldvg  13442
  Copyright terms: Public domain W3C validator