![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > relxp | GIF version |
Description: A cross product is a relation. Theorem 3.13(i) of [Monk1] p. 37. (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
relxp | ⊢ Rel (𝐴 × 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpss 4768 | . 2 ⊢ (𝐴 × 𝐵) ⊆ (V × V) | |
2 | df-rel 4667 | . 2 ⊢ (Rel (𝐴 × 𝐵) ↔ (𝐴 × 𝐵) ⊆ (V × V)) | |
3 | 1, 2 | mpbir 146 | 1 ⊢ Rel (𝐴 × 𝐵) |
Colors of variables: wff set class |
Syntax hints: Vcvv 2760 ⊆ wss 3154 × cxp 4658 Rel wrel 4665 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-in 3160 df-ss 3167 df-opab 4092 df-xp 4666 df-rel 4667 |
This theorem is referenced by: xpiindim 4800 eliunxp 4802 opeliunxp2 4803 relres 4971 restidsing 4999 codir 5055 qfto 5056 cnvcnv 5119 dfco2 5166 unixpm 5202 ressn 5207 fliftcnv 5839 fliftfun 5840 opeliunxp2f 6293 reltpos 6305 tpostpos 6319 tposfo 6326 tposf 6327 swoer 6617 xpider 6662 erinxp 6665 xpcomf1o 6881 ltrel 8083 lerel 8085 fisumcom2 11584 fprodcom2fi 11772 txuni2 14435 txdis1cn 14457 xmeter 14615 reldvg 14858 lgsquadlem1 15234 lgsquadlem2 15235 |
Copyright terms: Public domain | W3C validator |