| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > relxp | GIF version | ||
| Description: A cross product is a relation. Theorem 3.13(i) of [Monk1] p. 37. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| relxp | ⊢ Rel (𝐴 × 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpss 4827 | . 2 ⊢ (𝐴 × 𝐵) ⊆ (V × V) | |
| 2 | df-rel 4726 | . 2 ⊢ (Rel (𝐴 × 𝐵) ↔ (𝐴 × 𝐵) ⊆ (V × V)) | |
| 3 | 1, 2 | mpbir 146 | 1 ⊢ Rel (𝐴 × 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: Vcvv 2799 ⊆ wss 3197 × cxp 4717 Rel wrel 4724 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-in 3203 df-ss 3210 df-opab 4146 df-xp 4725 df-rel 4726 |
| This theorem is referenced by: xpiindim 4859 eliunxp 4861 opeliunxp2 4862 relres 5033 restidsing 5061 codir 5117 qfto 5118 cnvcnv 5181 dfco2 5228 unixpm 5264 ressn 5269 fliftcnv 5925 fliftfun 5926 opeliunxp2f 6390 reltpos 6402 tpostpos 6416 tposfo 6423 tposf 6424 swoer 6716 xpider 6761 erinxp 6764 xpcomf1o 6992 ltrel 8216 lerel 8218 fisumcom2 11957 fprodcom2fi 12145 txuni2 14938 txdis1cn 14960 xmeter 15118 reldvg 15361 lgsquadlem1 15764 lgsquadlem2 15765 |
| Copyright terms: Public domain | W3C validator |