| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xrlenlt | GIF version | ||
| Description: 'Less than or equal to' expressed in terms of 'less than', for extended reals. (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| xrlenlt | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 4044 | . . 3 ⊢ (𝐴 ≤ 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ≤ ) | |
| 2 | opelxpi 4705 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → 〈𝐴, 𝐵〉 ∈ (ℝ* × ℝ*)) | |
| 3 | df-le 8095 | . . . . . . 7 ⊢ ≤ = ((ℝ* × ℝ*) ∖ ◡ < ) | |
| 4 | 3 | eleq2i 2271 | . . . . . 6 ⊢ (〈𝐴, 𝐵〉 ∈ ≤ ↔ 〈𝐴, 𝐵〉 ∈ ((ℝ* × ℝ*) ∖ ◡ < )) |
| 5 | eldif 3174 | . . . . . 6 ⊢ (〈𝐴, 𝐵〉 ∈ ((ℝ* × ℝ*) ∖ ◡ < ) ↔ (〈𝐴, 𝐵〉 ∈ (ℝ* × ℝ*) ∧ ¬ 〈𝐴, 𝐵〉 ∈ ◡ < )) | |
| 6 | 4, 5 | bitri 184 | . . . . 5 ⊢ (〈𝐴, 𝐵〉 ∈ ≤ ↔ (〈𝐴, 𝐵〉 ∈ (ℝ* × ℝ*) ∧ ¬ 〈𝐴, 𝐵〉 ∈ ◡ < )) |
| 7 | 6 | baib 920 | . . . 4 ⊢ (〈𝐴, 𝐵〉 ∈ (ℝ* × ℝ*) → (〈𝐴, 𝐵〉 ∈ ≤ ↔ ¬ 〈𝐴, 𝐵〉 ∈ ◡ < )) |
| 8 | 2, 7 | syl 14 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (〈𝐴, 𝐵〉 ∈ ≤ ↔ ¬ 〈𝐴, 𝐵〉 ∈ ◡ < )) |
| 9 | 1, 8 | bitrid 192 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ ¬ 〈𝐴, 𝐵〉 ∈ ◡ < )) |
| 10 | df-br 4044 | . . . 4 ⊢ (𝐵 < 𝐴 ↔ 〈𝐵, 𝐴〉 ∈ < ) | |
| 11 | opelcnvg 4856 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (〈𝐴, 𝐵〉 ∈ ◡ < ↔ 〈𝐵, 𝐴〉 ∈ < )) | |
| 12 | 10, 11 | bitr4id 199 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐵 < 𝐴 ↔ 〈𝐴, 𝐵〉 ∈ ◡ < )) |
| 13 | 12 | notbid 668 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (¬ 𝐵 < 𝐴 ↔ ¬ 〈𝐴, 𝐵〉 ∈ ◡ < )) |
| 14 | 9, 13 | bitr4d 191 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2175 ∖ cdif 3162 〈cop 3635 class class class wbr 4043 × cxp 4671 ◡ccnv 4672 ℝ*cxr 8088 < clt 8089 ≤ cle 8090 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 df-opab 4105 df-xp 4679 df-cnv 4681 df-le 8095 |
| This theorem is referenced by: lenlt 8130 pnfge 9893 mnfle 9896 xrltle 9902 xrleid 9904 xnn0dcle 9906 xrletri3 9908 xrlelttr 9910 xrltletr 9911 xrletr 9912 xgepnf 9920 xleneg 9941 xltadd1 9980 xsubge0 9985 xleaddadd 9991 iccid 10029 icc0r 10030 icodisj 10096 ioodisj 10097 ioo0 10383 ico0 10385 ioc0 10386 leisorel 10963 xrmaxleim 11474 xrmaxiflemval 11480 xrmaxlesup 11489 xrmaxaddlem 11490 xrminmax 11495 pcadd 12582 bldisj 14791 bdxmet 14891 bdbl 14893 |
| Copyright terms: Public domain | W3C validator |