![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xrlenlt | GIF version |
Description: 'Less than or equal to' expressed in terms of 'less than', for extended reals. (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
xrlenlt | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 4006 | . . 3 ⊢ (𝐴 ≤ 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ ≤ ) | |
2 | opelxpi 4660 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ⟨𝐴, 𝐵⟩ ∈ (ℝ* × ℝ*)) | |
3 | df-le 8000 | . . . . . . 7 ⊢ ≤ = ((ℝ* × ℝ*) ∖ ◡ < ) | |
4 | 3 | eleq2i 2244 | . . . . . 6 ⊢ (⟨𝐴, 𝐵⟩ ∈ ≤ ↔ ⟨𝐴, 𝐵⟩ ∈ ((ℝ* × ℝ*) ∖ ◡ < )) |
5 | eldif 3140 | . . . . . 6 ⊢ (⟨𝐴, 𝐵⟩ ∈ ((ℝ* × ℝ*) ∖ ◡ < ) ↔ (⟨𝐴, 𝐵⟩ ∈ (ℝ* × ℝ*) ∧ ¬ ⟨𝐴, 𝐵⟩ ∈ ◡ < )) | |
6 | 4, 5 | bitri 184 | . . . . 5 ⊢ (⟨𝐴, 𝐵⟩ ∈ ≤ ↔ (⟨𝐴, 𝐵⟩ ∈ (ℝ* × ℝ*) ∧ ¬ ⟨𝐴, 𝐵⟩ ∈ ◡ < )) |
7 | 6 | baib 919 | . . . 4 ⊢ (⟨𝐴, 𝐵⟩ ∈ (ℝ* × ℝ*) → (⟨𝐴, 𝐵⟩ ∈ ≤ ↔ ¬ ⟨𝐴, 𝐵⟩ ∈ ◡ < )) |
8 | 2, 7 | syl 14 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (⟨𝐴, 𝐵⟩ ∈ ≤ ↔ ¬ ⟨𝐴, 𝐵⟩ ∈ ◡ < )) |
9 | 1, 8 | bitrid 192 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ ¬ ⟨𝐴, 𝐵⟩ ∈ ◡ < )) |
10 | df-br 4006 | . . . 4 ⊢ (𝐵 < 𝐴 ↔ ⟨𝐵, 𝐴⟩ ∈ < ) | |
11 | opelcnvg 4809 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (⟨𝐴, 𝐵⟩ ∈ ◡ < ↔ ⟨𝐵, 𝐴⟩ ∈ < )) | |
12 | 10, 11 | bitr4id 199 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐵 < 𝐴 ↔ ⟨𝐴, 𝐵⟩ ∈ ◡ < )) |
13 | 12 | notbid 667 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (¬ 𝐵 < 𝐴 ↔ ¬ ⟨𝐴, 𝐵⟩ ∈ ◡ < )) |
14 | 9, 13 | bitr4d 191 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2148 ∖ cdif 3128 ⟨cop 3597 class class class wbr 4005 × cxp 4626 ◡ccnv 4627 ℝ*cxr 7993 < clt 7994 ≤ cle 7995 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-br 4006 df-opab 4067 df-xp 4634 df-cnv 4636 df-le 8000 |
This theorem is referenced by: lenlt 8035 pnfge 9791 mnfle 9794 xrltle 9800 xrleid 9802 xnn0dcle 9804 xrletri3 9806 xrlelttr 9808 xrltletr 9809 xrletr 9810 xgepnf 9818 xleneg 9839 xltadd1 9878 xsubge0 9883 xleaddadd 9889 iccid 9927 icc0r 9928 icodisj 9994 ioodisj 9995 ioo0 10262 ico0 10264 ioc0 10265 leisorel 10819 xrmaxleim 11254 xrmaxiflemval 11260 xrmaxlesup 11269 xrmaxaddlem 11270 xrminmax 11275 pcadd 12341 bldisj 13986 bdxmet 14086 bdbl 14088 |
Copyright terms: Public domain | W3C validator |