Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xrlenlt | GIF version |
Description: 'Less than or equal to' expressed in terms of 'less than', for extended reals. (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
xrlenlt | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 3978 | . . 3 ⊢ (𝐴 ≤ 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ≤ ) | |
2 | opelxpi 4631 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → 〈𝐴, 𝐵〉 ∈ (ℝ* × ℝ*)) | |
3 | df-le 7931 | . . . . . . 7 ⊢ ≤ = ((ℝ* × ℝ*) ∖ ◡ < ) | |
4 | 3 | eleq2i 2231 | . . . . . 6 ⊢ (〈𝐴, 𝐵〉 ∈ ≤ ↔ 〈𝐴, 𝐵〉 ∈ ((ℝ* × ℝ*) ∖ ◡ < )) |
5 | eldif 3121 | . . . . . 6 ⊢ (〈𝐴, 𝐵〉 ∈ ((ℝ* × ℝ*) ∖ ◡ < ) ↔ (〈𝐴, 𝐵〉 ∈ (ℝ* × ℝ*) ∧ ¬ 〈𝐴, 𝐵〉 ∈ ◡ < )) | |
6 | 4, 5 | bitri 183 | . . . . 5 ⊢ (〈𝐴, 𝐵〉 ∈ ≤ ↔ (〈𝐴, 𝐵〉 ∈ (ℝ* × ℝ*) ∧ ¬ 〈𝐴, 𝐵〉 ∈ ◡ < )) |
7 | 6 | baib 909 | . . . 4 ⊢ (〈𝐴, 𝐵〉 ∈ (ℝ* × ℝ*) → (〈𝐴, 𝐵〉 ∈ ≤ ↔ ¬ 〈𝐴, 𝐵〉 ∈ ◡ < )) |
8 | 2, 7 | syl 14 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (〈𝐴, 𝐵〉 ∈ ≤ ↔ ¬ 〈𝐴, 𝐵〉 ∈ ◡ < )) |
9 | 1, 8 | syl5bb 191 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ ¬ 〈𝐴, 𝐵〉 ∈ ◡ < )) |
10 | df-br 3978 | . . . 4 ⊢ (𝐵 < 𝐴 ↔ 〈𝐵, 𝐴〉 ∈ < ) | |
11 | opelcnvg 4779 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (〈𝐴, 𝐵〉 ∈ ◡ < ↔ 〈𝐵, 𝐴〉 ∈ < )) | |
12 | 10, 11 | bitr4id 198 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐵 < 𝐴 ↔ 〈𝐴, 𝐵〉 ∈ ◡ < )) |
13 | 12 | notbid 657 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (¬ 𝐵 < 𝐴 ↔ ¬ 〈𝐴, 𝐵〉 ∈ ◡ < )) |
14 | 9, 13 | bitr4d 190 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∈ wcel 2135 ∖ cdif 3109 〈cop 3574 class class class wbr 3977 × cxp 4597 ◡ccnv 4598 ℝ*cxr 7924 < clt 7925 ≤ cle 7926 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-14 2138 ax-ext 2146 ax-sep 4095 ax-pow 4148 ax-pr 4182 |
This theorem depends on definitions: df-bi 116 df-3an 969 df-tru 1345 df-nf 1448 df-sb 1750 df-eu 2016 df-mo 2017 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ral 2447 df-rex 2448 df-v 2724 df-dif 3114 df-un 3116 df-in 3118 df-ss 3125 df-pw 3556 df-sn 3577 df-pr 3578 df-op 3580 df-br 3978 df-opab 4039 df-xp 4605 df-cnv 4607 df-le 7931 |
This theorem is referenced by: lenlt 7966 pnfge 9717 mnfle 9720 xrltle 9726 xrleid 9728 xnn0dcle 9730 xrletri3 9732 xrlelttr 9734 xrltletr 9735 xrletr 9736 xgepnf 9744 xleneg 9765 xltadd1 9804 xsubge0 9809 xleaddadd 9815 iccid 9853 icc0r 9854 icodisj 9920 ioodisj 9921 ioo0 10186 ico0 10188 ioc0 10189 leisorel 10740 xrmaxleim 11175 xrmaxiflemval 11181 xrmaxlesup 11190 xrmaxaddlem 11191 xrminmax 11196 pcadd 12260 bldisj 12968 bdxmet 13068 bdbl 13070 |
Copyright terms: Public domain | W3C validator |