ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrlenlt GIF version

Theorem xrlenlt 7984
Description: 'Less than or equal to' expressed in terms of 'less than', for extended reals. (Contributed by NM, 14-Oct-2005.)
Assertion
Ref Expression
xrlenlt ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))

Proof of Theorem xrlenlt
StepHypRef Expression
1 df-br 3990 . . 3 (𝐴𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ ≤ )
2 opelxpi 4643 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ⟨𝐴, 𝐵⟩ ∈ (ℝ* × ℝ*))
3 df-le 7960 . . . . . . 7 ≤ = ((ℝ* × ℝ*) ∖ < )
43eleq2i 2237 . . . . . 6 (⟨𝐴, 𝐵⟩ ∈ ≤ ↔ ⟨𝐴, 𝐵⟩ ∈ ((ℝ* × ℝ*) ∖ < ))
5 eldif 3130 . . . . . 6 (⟨𝐴, 𝐵⟩ ∈ ((ℝ* × ℝ*) ∖ < ) ↔ (⟨𝐴, 𝐵⟩ ∈ (ℝ* × ℝ*) ∧ ¬ ⟨𝐴, 𝐵⟩ ∈ < ))
64, 5bitri 183 . . . . 5 (⟨𝐴, 𝐵⟩ ∈ ≤ ↔ (⟨𝐴, 𝐵⟩ ∈ (ℝ* × ℝ*) ∧ ¬ ⟨𝐴, 𝐵⟩ ∈ < ))
76baib 914 . . . 4 (⟨𝐴, 𝐵⟩ ∈ (ℝ* × ℝ*) → (⟨𝐴, 𝐵⟩ ∈ ≤ ↔ ¬ ⟨𝐴, 𝐵⟩ ∈ < ))
82, 7syl 14 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (⟨𝐴, 𝐵⟩ ∈ ≤ ↔ ¬ ⟨𝐴, 𝐵⟩ ∈ < ))
91, 8syl5bb 191 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ ¬ ⟨𝐴, 𝐵⟩ ∈ < ))
10 df-br 3990 . . . 4 (𝐵 < 𝐴 ↔ ⟨𝐵, 𝐴⟩ ∈ < )
11 opelcnvg 4791 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (⟨𝐴, 𝐵⟩ ∈ < ↔ ⟨𝐵, 𝐴⟩ ∈ < ))
1210, 11bitr4id 198 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐵 < 𝐴 ↔ ⟨𝐴, 𝐵⟩ ∈ < ))
1312notbid 662 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (¬ 𝐵 < 𝐴 ↔ ¬ ⟨𝐴, 𝐵⟩ ∈ < ))
149, 13bitr4d 190 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wcel 2141  cdif 3118  cop 3586   class class class wbr 3989   × cxp 4609  ccnv 4610  *cxr 7953   < clt 7954  cle 7955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-xp 4617  df-cnv 4619  df-le 7960
This theorem is referenced by:  lenlt  7995  pnfge  9746  mnfle  9749  xrltle  9755  xrleid  9757  xnn0dcle  9759  xrletri3  9761  xrlelttr  9763  xrltletr  9764  xrletr  9765  xgepnf  9773  xleneg  9794  xltadd1  9833  xsubge0  9838  xleaddadd  9844  iccid  9882  icc0r  9883  icodisj  9949  ioodisj  9950  ioo0  10216  ico0  10218  ioc0  10219  leisorel  10772  xrmaxleim  11207  xrmaxiflemval  11213  xrmaxlesup  11222  xrmaxaddlem  11223  xrminmax  11228  pcadd  12293  bldisj  13195  bdxmet  13295  bdbl  13297
  Copyright terms: Public domain W3C validator