ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2zsupmax GIF version

Theorem 2zsupmax 10990
Description: Two ways to express the maximum of two integers. Because order of integers is decidable, we have more flexibility than for real numbers. (Contributed by Jim Kingdon, 22-Jan-2023.)
Assertion
Ref Expression
2zsupmax ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → sup({𝐴, 𝐵}, ℝ, < ) = if(𝐴𝐵, 𝐵, 𝐴))

Proof of Theorem 2zsupmax
StepHypRef Expression
1 simpr 109 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴𝐵) → 𝐴𝐵)
2 zre 9051 . . . . . 6 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
32adantr 274 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℝ)
4 zre 9051 . . . . . . 7 (𝐵 ∈ ℤ → 𝐵 ∈ ℝ)
54adantl 275 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℝ)
65adantr 274 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴𝐵) → 𝐵 ∈ ℝ)
7 maxleb 10981 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ sup({𝐴, 𝐵}, ℝ, < ) = 𝐵))
83, 6, 7syl2an2r 584 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴𝐵) → (𝐴𝐵 ↔ sup({𝐴, 𝐵}, ℝ, < ) = 𝐵))
91, 8mpbid 146 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴𝐵) → sup({𝐴, 𝐵}, ℝ, < ) = 𝐵)
101iftrued 3476 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴𝐵) → if(𝐴𝐵, 𝐵, 𝐴) = 𝐵)
119, 10eqtr4d 2173 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴𝐵) → sup({𝐴, 𝐵}, ℝ, < ) = if(𝐴𝐵, 𝐵, 𝐴))
12 maxcom 10968 . . . 4 sup({𝐵, 𝐴}, ℝ, < ) = sup({𝐴, 𝐵}, ℝ, < )
135adantr 274 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ 𝐴𝐵) → 𝐵 ∈ ℝ)
143adantr 274 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ 𝐴𝐵) → 𝐴 ∈ ℝ)
15 zltnle 9093 . . . . . . . 8 ((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐵 < 𝐴 ↔ ¬ 𝐴𝐵))
1615ancoms 266 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵 < 𝐴 ↔ ¬ 𝐴𝐵))
1716biimpar 295 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ 𝐴𝐵) → 𝐵 < 𝐴)
1813, 14, 17ltled 7874 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ 𝐴𝐵) → 𝐵𝐴)
19 maxleb 10981 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵𝐴 ↔ sup({𝐵, 𝐴}, ℝ, < ) = 𝐴))
205, 14, 19syl2an2r 584 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ 𝐴𝐵) → (𝐵𝐴 ↔ sup({𝐵, 𝐴}, ℝ, < ) = 𝐴))
2118, 20mpbid 146 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ 𝐴𝐵) → sup({𝐵, 𝐴}, ℝ, < ) = 𝐴)
2212, 21syl5eqr 2184 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ 𝐴𝐵) → sup({𝐴, 𝐵}, ℝ, < ) = 𝐴)
23 simpr 109 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ 𝐴𝐵) → ¬ 𝐴𝐵)
2423iffalsed 3479 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ 𝐴𝐵) → if(𝐴𝐵, 𝐵, 𝐴) = 𝐴)
2522, 24eqtr4d 2173 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ 𝐴𝐵) → sup({𝐴, 𝐵}, ℝ, < ) = if(𝐴𝐵, 𝐵, 𝐴))
26 zdcle 9120 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → DECID 𝐴𝐵)
27 exmiddc 821 . . 3 (DECID 𝐴𝐵 → (𝐴𝐵 ∨ ¬ 𝐴𝐵))
2826, 27syl 14 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵 ∨ ¬ 𝐴𝐵))
2911, 25, 28mpjaodan 787 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → sup({𝐴, 𝐵}, ℝ, < ) = if(𝐴𝐵, 𝐵, 𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 697  DECID wdc 819   = wceq 1331  wcel 1480  ifcif 3469  {cpr 3523   class class class wbr 3924  supcsup 6862  cr 7612   < clt 7793  cle 7794  cz 9047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731  ax-arch 7732  ax-caucvg 7733
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-frec 6281  df-sup 6864  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-3 8773  df-4 8774  df-n0 8971  df-z 9048  df-uz 9320  df-rp 9435  df-seqfrec 10212  df-exp 10286  df-cj 10607  df-re 10608  df-im 10609  df-rsqrt 10763  df-abs 10764
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator