ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffun5r GIF version

Theorem dffun5r 4980
Description: A way of proving a relation is a function, analogous to mo2r 1995. (Contributed by Jim Kingdon, 27-May-2020.)
Assertion
Ref Expression
dffun5r ((Rel 𝐴 ∧ ∀𝑥𝑧𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴𝑦 = 𝑧)) → Fun 𝐴)
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem dffun5r
StepHypRef Expression
1 nfv 1462 . . . . . 6 𝑧𝑥, 𝑦⟩ ∈ 𝐴
21mo2r 1995 . . . . 5 (∃𝑧𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴𝑦 = 𝑧) → ∃*𝑦𝑥, 𝑦⟩ ∈ 𝐴)
3 opeq2 3597 . . . . . . 7 (𝑦 = 𝑧 → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝑧⟩)
43eleq1d 2151 . . . . . 6 (𝑦 = 𝑧 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑧⟩ ∈ 𝐴))
54mo4 2004 . . . . 5 (∃*𝑦𝑥, 𝑦⟩ ∈ 𝐴 ↔ ∀𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) → 𝑦 = 𝑧))
62, 5sylib 120 . . . 4 (∃𝑧𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴𝑦 = 𝑧) → ∀𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) → 𝑦 = 𝑧))
76alimi 1385 . . 3 (∀𝑥𝑧𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴𝑦 = 𝑧) → ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) → 𝑦 = 𝑧))
87anim2i 334 . 2 ((Rel 𝐴 ∧ ∀𝑥𝑧𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴𝑦 = 𝑧)) → (Rel 𝐴 ∧ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) → 𝑦 = 𝑧)))
9 dffun4 4979 . 2 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) → 𝑦 = 𝑧)))
108, 9sylibr 132 1 ((Rel 𝐴 ∧ ∀𝑥𝑧𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴𝑦 = 𝑧)) → Fun 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wal 1283  wex 1422  wcel 1434  ∃*wmo 1944  cop 3425  Rel wrel 4405  Fun wfun 4962
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3922  ax-pow 3974  ax-pr 3999
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-v 2614  df-un 2988  df-in 2990  df-ss 2997  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-br 3812  df-opab 3866  df-id 4083  df-cnv 4408  df-co 4409  df-fun 4970
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator