| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dffun5r | GIF version | ||
| Description: A way of proving a relation is a function, analogous to mo2r 2107. (Contributed by Jim Kingdon, 27-May-2020.) |
| Ref | Expression |
|---|---|
| dffun5r | ⊢ ((Rel 𝐴 ∧ ∀𝑥∃𝑧∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑦 = 𝑧)) → Fun 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1552 | . . . . . 6 ⊢ Ⅎ𝑧〈𝑥, 𝑦〉 ∈ 𝐴 | |
| 2 | 1 | mo2r 2107 | . . . . 5 ⊢ (∃𝑧∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑦 = 𝑧) → ∃*𝑦〈𝑥, 𝑦〉 ∈ 𝐴) |
| 3 | opeq2 3823 | . . . . . . 7 ⊢ (𝑦 = 𝑧 → 〈𝑥, 𝑦〉 = 〈𝑥, 𝑧〉) | |
| 4 | 3 | eleq1d 2275 | . . . . . 6 ⊢ (𝑦 = 𝑧 → (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑧〉 ∈ 𝐴)) |
| 5 | 4 | mo4 2116 | . . . . 5 ⊢ (∃*𝑦〈𝑥, 𝑦〉 ∈ 𝐴 ↔ ∀𝑦∀𝑧((〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 〈𝑥, 𝑧〉 ∈ 𝐴) → 𝑦 = 𝑧)) |
| 6 | 2, 5 | sylib 122 | . . . 4 ⊢ (∃𝑧∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑦 = 𝑧) → ∀𝑦∀𝑧((〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 〈𝑥, 𝑧〉 ∈ 𝐴) → 𝑦 = 𝑧)) |
| 7 | 6 | alimi 1479 | . . 3 ⊢ (∀𝑥∃𝑧∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑦 = 𝑧) → ∀𝑥∀𝑦∀𝑧((〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 〈𝑥, 𝑧〉 ∈ 𝐴) → 𝑦 = 𝑧)) |
| 8 | 7 | anim2i 342 | . 2 ⊢ ((Rel 𝐴 ∧ ∀𝑥∃𝑧∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑦 = 𝑧)) → (Rel 𝐴 ∧ ∀𝑥∀𝑦∀𝑧((〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 〈𝑥, 𝑧〉 ∈ 𝐴) → 𝑦 = 𝑧))) |
| 9 | dffun4 5288 | . 2 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∀𝑦∀𝑧((〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 〈𝑥, 𝑧〉 ∈ 𝐴) → 𝑦 = 𝑧))) | |
| 10 | 8, 9 | sylibr 134 | 1 ⊢ ((Rel 𝐴 ∧ ∀𝑥∃𝑧∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑦 = 𝑧)) → Fun 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1371 ∃wex 1516 ∃*wmo 2056 ∈ wcel 2177 〈cop 3638 Rel wrel 4685 Fun wfun 5271 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-v 2775 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-br 4049 df-opab 4111 df-id 4345 df-cnv 4688 df-co 4689 df-fun 5279 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |