![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dffun5r | GIF version |
Description: A way of proving a relation is a function, analogous to mo2r 2001. (Contributed by Jim Kingdon, 27-May-2020.) |
Ref | Expression |
---|---|
dffun5r | ⊢ ((Rel 𝐴 ∧ ∀𝑥∃𝑧∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑦 = 𝑧)) → Fun 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1467 | . . . . . 6 ⊢ Ⅎ𝑧〈𝑥, 𝑦〉 ∈ 𝐴 | |
2 | 1 | mo2r 2001 | . . . . 5 ⊢ (∃𝑧∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑦 = 𝑧) → ∃*𝑦〈𝑥, 𝑦〉 ∈ 𝐴) |
3 | opeq2 3629 | . . . . . . 7 ⊢ (𝑦 = 𝑧 → 〈𝑥, 𝑦〉 = 〈𝑥, 𝑧〉) | |
4 | 3 | eleq1d 2157 | . . . . . 6 ⊢ (𝑦 = 𝑧 → (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑧〉 ∈ 𝐴)) |
5 | 4 | mo4 2010 | . . . . 5 ⊢ (∃*𝑦〈𝑥, 𝑦〉 ∈ 𝐴 ↔ ∀𝑦∀𝑧((〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 〈𝑥, 𝑧〉 ∈ 𝐴) → 𝑦 = 𝑧)) |
6 | 2, 5 | sylib 121 | . . . 4 ⊢ (∃𝑧∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑦 = 𝑧) → ∀𝑦∀𝑧((〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 〈𝑥, 𝑧〉 ∈ 𝐴) → 𝑦 = 𝑧)) |
7 | 6 | alimi 1390 | . . 3 ⊢ (∀𝑥∃𝑧∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑦 = 𝑧) → ∀𝑥∀𝑦∀𝑧((〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 〈𝑥, 𝑧〉 ∈ 𝐴) → 𝑦 = 𝑧)) |
8 | 7 | anim2i 335 | . 2 ⊢ ((Rel 𝐴 ∧ ∀𝑥∃𝑧∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑦 = 𝑧)) → (Rel 𝐴 ∧ ∀𝑥∀𝑦∀𝑧((〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 〈𝑥, 𝑧〉 ∈ 𝐴) → 𝑦 = 𝑧))) |
9 | dffun4 5039 | . 2 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∀𝑦∀𝑧((〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 〈𝑥, 𝑧〉 ∈ 𝐴) → 𝑦 = 𝑧))) | |
10 | 8, 9 | sylibr 133 | 1 ⊢ ((Rel 𝐴 ∧ ∀𝑥∃𝑧∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑦 = 𝑧)) → Fun 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∀wal 1288 ∃wex 1427 ∈ wcel 1439 ∃*wmo 1950 〈cop 3453 Rel wrel 4457 Fun wfun 5022 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-sep 3963 ax-pow 4015 ax-pr 4045 |
This theorem depends on definitions: df-bi 116 df-3an 927 df-tru 1293 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ral 2365 df-v 2622 df-un 3004 df-in 3006 df-ss 3013 df-pw 3435 df-sn 3456 df-pr 3457 df-op 3459 df-br 3852 df-opab 3906 df-id 4129 df-cnv 4460 df-co 4461 df-fun 5030 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |