ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffun5r GIF version

Theorem dffun5r 5289
Description: A way of proving a relation is a function, analogous to mo2r 2107. (Contributed by Jim Kingdon, 27-May-2020.)
Assertion
Ref Expression
dffun5r ((Rel 𝐴 ∧ ∀𝑥𝑧𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴𝑦 = 𝑧)) → Fun 𝐴)
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem dffun5r
StepHypRef Expression
1 nfv 1552 . . . . . 6 𝑧𝑥, 𝑦⟩ ∈ 𝐴
21mo2r 2107 . . . . 5 (∃𝑧𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴𝑦 = 𝑧) → ∃*𝑦𝑥, 𝑦⟩ ∈ 𝐴)
3 opeq2 3823 . . . . . . 7 (𝑦 = 𝑧 → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝑧⟩)
43eleq1d 2275 . . . . . 6 (𝑦 = 𝑧 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑧⟩ ∈ 𝐴))
54mo4 2116 . . . . 5 (∃*𝑦𝑥, 𝑦⟩ ∈ 𝐴 ↔ ∀𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) → 𝑦 = 𝑧))
62, 5sylib 122 . . . 4 (∃𝑧𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴𝑦 = 𝑧) → ∀𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) → 𝑦 = 𝑧))
76alimi 1479 . . 3 (∀𝑥𝑧𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴𝑦 = 𝑧) → ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) → 𝑦 = 𝑧))
87anim2i 342 . 2 ((Rel 𝐴 ∧ ∀𝑥𝑧𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴𝑦 = 𝑧)) → (Rel 𝐴 ∧ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) → 𝑦 = 𝑧)))
9 dffun4 5288 . 2 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) → 𝑦 = 𝑧)))
108, 9sylibr 134 1 ((Rel 𝐴 ∧ ∀𝑥𝑧𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴𝑦 = 𝑧)) → Fun 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1371  wex 1516  ∃*wmo 2056  wcel 2177  cop 3638  Rel wrel 4685  Fun wfun 5271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pow 4223  ax-pr 4258
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-v 2775  df-un 3172  df-in 3174  df-ss 3181  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-br 4049  df-opab 4111  df-id 4345  df-cnv 4688  df-co 4689  df-fun 5279
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator