ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecuzrdgfunlem GIF version

Theorem frecuzrdgfunlem 10375
Description: The recursive definition generator on upper integers produces a a function. (Contributed by Jim Kingdon, 24-Apr-2022.)
Hypotheses
Ref Expression
frecuzrdgrclt.c (𝜑𝐶 ∈ ℤ)
frecuzrdgrclt.a (𝜑𝐴𝑆)
frecuzrdgrclt.t (𝜑𝑆𝑇)
frecuzrdgrclt.f ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
frecuzrdgrclt.r 𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)
frecuzrdgfunlem.g 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
Assertion
Ref Expression
frecuzrdgfunlem (𝜑 → Fun ran 𝑅)
Distinct variable groups:   𝑥,𝐶,𝑦   𝑥,𝐹,𝑦   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦   𝜑,𝑥,𝑦   𝑥,𝐺,𝑦   𝑥,𝑅,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem frecuzrdgfunlem
Dummy variables 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frecuzrdgrclt.c . . . . . 6 (𝜑𝐶 ∈ ℤ)
2 frecuzrdgrclt.a . . . . . 6 (𝜑𝐴𝑆)
3 frecuzrdgrclt.t . . . . . 6 (𝜑𝑆𝑇)
4 frecuzrdgrclt.f . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
5 frecuzrdgrclt.r . . . . . 6 𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)
61, 2, 3, 4, 5frecuzrdgrclt 10371 . . . . 5 (𝜑𝑅:ω⟶((ℤ𝐶) × 𝑆))
7 frn 5356 . . . . 5 (𝑅:ω⟶((ℤ𝐶) × 𝑆) → ran 𝑅 ⊆ ((ℤ𝐶) × 𝑆))
86, 7syl 14 . . . 4 (𝜑 → ran 𝑅 ⊆ ((ℤ𝐶) × 𝑆))
9 xpss 4719 . . . 4 ((ℤ𝐶) × 𝑆) ⊆ (V × V)
108, 9sstrdi 3159 . . 3 (𝜑 → ran 𝑅 ⊆ (V × V))
11 df-rel 4618 . . 3 (Rel ran 𝑅 ↔ ran 𝑅 ⊆ (V × V))
1210, 11sylibr 133 . 2 (𝜑 → Rel ran 𝑅)
13 frecuzrdgfunlem.g . . . . . . . . . 10 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
141, 13frec2uzf1od 10362 . . . . . . . . 9 (𝜑𝐺:ω–1-1-onto→(ℤ𝐶))
15 f1ocnvdm 5760 . . . . . . . . 9 ((𝐺:ω–1-1-onto→(ℤ𝐶) ∧ 𝑣 ∈ (ℤ𝐶)) → (𝐺𝑣) ∈ ω)
1614, 15sylan 281 . . . . . . . 8 ((𝜑𝑣 ∈ (ℤ𝐶)) → (𝐺𝑣) ∈ ω)
176ffvelrnda 5631 . . . . . . . 8 ((𝜑 ∧ (𝐺𝑣) ∈ ω) → (𝑅‘(𝐺𝑣)) ∈ ((ℤ𝐶) × 𝑆))
1816, 17syldan 280 . . . . . . 7 ((𝜑𝑣 ∈ (ℤ𝐶)) → (𝑅‘(𝐺𝑣)) ∈ ((ℤ𝐶) × 𝑆))
19 xp2nd 6145 . . . . . . 7 ((𝑅‘(𝐺𝑣)) ∈ ((ℤ𝐶) × 𝑆) → (2nd ‘(𝑅‘(𝐺𝑣))) ∈ 𝑆)
2018, 19syl 14 . . . . . 6 ((𝜑𝑣 ∈ (ℤ𝐶)) → (2nd ‘(𝑅‘(𝐺𝑣))) ∈ 𝑆)
21 ffn 5347 . . . . . . . . . 10 (𝑅:ω⟶((ℤ𝐶) × 𝑆) → 𝑅 Fn ω)
22 fvelrnb 5544 . . . . . . . . . 10 (𝑅 Fn ω → (⟨𝑣, 𝑧⟩ ∈ ran 𝑅 ↔ ∃𝑤 ∈ ω (𝑅𝑤) = ⟨𝑣, 𝑧⟩))
236, 21, 223syl 17 . . . . . . . . 9 (𝜑 → (⟨𝑣, 𝑧⟩ ∈ ran 𝑅 ↔ ∃𝑤 ∈ ω (𝑅𝑤) = ⟨𝑣, 𝑧⟩))
246ffvelrnda 5631 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ∈ ω) → (𝑅𝑤) ∈ ((ℤ𝐶) × 𝑆))
25 1st2nd2 6154 . . . . . . . . . . . . . . . . . . 19 ((𝑅𝑤) ∈ ((ℤ𝐶) × 𝑆) → (𝑅𝑤) = ⟨(1st ‘(𝑅𝑤)), (2nd ‘(𝑅𝑤))⟩)
2624, 25syl 14 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ ω) → (𝑅𝑤) = ⟨(1st ‘(𝑅𝑤)), (2nd ‘(𝑅𝑤))⟩)
271adantr 274 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ ω) → 𝐶 ∈ ℤ)
282adantr 274 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ ω) → 𝐴𝑆)
293adantr 274 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ ω) → 𝑆𝑇)
304adantlr 474 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑤 ∈ ω) ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
31 simpr 109 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ ω) → 𝑤 ∈ ω)
3227, 28, 29, 30, 5, 31, 13frecuzrdgg 10372 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ∈ ω) → (1st ‘(𝑅𝑤)) = (𝐺𝑤))
3332opeq1d 3771 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ ω) → ⟨(1st ‘(𝑅𝑤)), (2nd ‘(𝑅𝑤))⟩ = ⟨(𝐺𝑤), (2nd ‘(𝑅𝑤))⟩)
3426, 33eqtrd 2203 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ ω) → (𝑅𝑤) = ⟨(𝐺𝑤), (2nd ‘(𝑅𝑤))⟩)
3534eqeq1d 2179 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ ω) → ((𝑅𝑤) = ⟨𝑣, 𝑧⟩ ↔ ⟨(𝐺𝑤), (2nd ‘(𝑅𝑤))⟩ = ⟨𝑣, 𝑧⟩))
36 vex 2733 . . . . . . . . . . . . . . . . . 18 𝑣 ∈ V
37 vex 2733 . . . . . . . . . . . . . . . . . 18 𝑧 ∈ V
3836, 37opth2 4225 . . . . . . . . . . . . . . . . 17 (⟨(𝐺𝑤), (2nd ‘(𝑅𝑤))⟩ = ⟨𝑣, 𝑧⟩ ↔ ((𝐺𝑤) = 𝑣 ∧ (2nd ‘(𝑅𝑤)) = 𝑧))
3938simplbi 272 . . . . . . . . . . . . . . . 16 (⟨(𝐺𝑤), (2nd ‘(𝑅𝑤))⟩ = ⟨𝑣, 𝑧⟩ → (𝐺𝑤) = 𝑣)
4035, 39syl6bi 162 . . . . . . . . . . . . . . 15 ((𝜑𝑤 ∈ ω) → ((𝑅𝑤) = ⟨𝑣, 𝑧⟩ → (𝐺𝑤) = 𝑣))
41 f1ocnvfv 5758 . . . . . . . . . . . . . . . 16 ((𝐺:ω–1-1-onto→(ℤ𝐶) ∧ 𝑤 ∈ ω) → ((𝐺𝑤) = 𝑣 → (𝐺𝑣) = 𝑤))
4214, 41sylan 281 . . . . . . . . . . . . . . 15 ((𝜑𝑤 ∈ ω) → ((𝐺𝑤) = 𝑣 → (𝐺𝑣) = 𝑤))
4340, 42syld 45 . . . . . . . . . . . . . 14 ((𝜑𝑤 ∈ ω) → ((𝑅𝑤) = ⟨𝑣, 𝑧⟩ → (𝐺𝑣) = 𝑤))
44 fveq2 5496 . . . . . . . . . . . . . . 15 ((𝐺𝑣) = 𝑤 → (𝑅‘(𝐺𝑣)) = (𝑅𝑤))
4544fveq2d 5500 . . . . . . . . . . . . . 14 ((𝐺𝑣) = 𝑤 → (2nd ‘(𝑅‘(𝐺𝑣))) = (2nd ‘(𝑅𝑤)))
4643, 45syl6 33 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ ω) → ((𝑅𝑤) = ⟨𝑣, 𝑧⟩ → (2nd ‘(𝑅‘(𝐺𝑣))) = (2nd ‘(𝑅𝑤))))
4746imp 123 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ ω) ∧ (𝑅𝑤) = ⟨𝑣, 𝑧⟩) → (2nd ‘(𝑅‘(𝐺𝑣))) = (2nd ‘(𝑅𝑤)))
4836, 37op2ndd 6128 . . . . . . . . . . . . 13 ((𝑅𝑤) = ⟨𝑣, 𝑧⟩ → (2nd ‘(𝑅𝑤)) = 𝑧)
4948adantl 275 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ ω) ∧ (𝑅𝑤) = ⟨𝑣, 𝑧⟩) → (2nd ‘(𝑅𝑤)) = 𝑧)
5047, 49eqtr2d 2204 . . . . . . . . . . 11 (((𝜑𝑤 ∈ ω) ∧ (𝑅𝑤) = ⟨𝑣, 𝑧⟩) → 𝑧 = (2nd ‘(𝑅‘(𝐺𝑣))))
5150ex 114 . . . . . . . . . 10 ((𝜑𝑤 ∈ ω) → ((𝑅𝑤) = ⟨𝑣, 𝑧⟩ → 𝑧 = (2nd ‘(𝑅‘(𝐺𝑣)))))
5251rexlimdva 2587 . . . . . . . . 9 (𝜑 → (∃𝑤 ∈ ω (𝑅𝑤) = ⟨𝑣, 𝑧⟩ → 𝑧 = (2nd ‘(𝑅‘(𝐺𝑣)))))
5323, 52sylbid 149 . . . . . . . 8 (𝜑 → (⟨𝑣, 𝑧⟩ ∈ ran 𝑅𝑧 = (2nd ‘(𝑅‘(𝐺𝑣)))))
5453alrimiv 1867 . . . . . . 7 (𝜑 → ∀𝑧(⟨𝑣, 𝑧⟩ ∈ ran 𝑅𝑧 = (2nd ‘(𝑅‘(𝐺𝑣)))))
5554adantr 274 . . . . . 6 ((𝜑𝑣 ∈ (ℤ𝐶)) → ∀𝑧(⟨𝑣, 𝑧⟩ ∈ ran 𝑅𝑧 = (2nd ‘(𝑅‘(𝐺𝑣)))))
56 eqeq2 2180 . . . . . . . . 9 (𝑤 = (2nd ‘(𝑅‘(𝐺𝑣))) → (𝑧 = 𝑤𝑧 = (2nd ‘(𝑅‘(𝐺𝑣)))))
5756imbi2d 229 . . . . . . . 8 (𝑤 = (2nd ‘(𝑅‘(𝐺𝑣))) → ((⟨𝑣, 𝑧⟩ ∈ ran 𝑅𝑧 = 𝑤) ↔ (⟨𝑣, 𝑧⟩ ∈ ran 𝑅𝑧 = (2nd ‘(𝑅‘(𝐺𝑣))))))
5857albidv 1817 . . . . . . 7 (𝑤 = (2nd ‘(𝑅‘(𝐺𝑣))) → (∀𝑧(⟨𝑣, 𝑧⟩ ∈ ran 𝑅𝑧 = 𝑤) ↔ ∀𝑧(⟨𝑣, 𝑧⟩ ∈ ran 𝑅𝑧 = (2nd ‘(𝑅‘(𝐺𝑣))))))
5958spcegv 2818 . . . . . 6 ((2nd ‘(𝑅‘(𝐺𝑣))) ∈ 𝑆 → (∀𝑧(⟨𝑣, 𝑧⟩ ∈ ran 𝑅𝑧 = (2nd ‘(𝑅‘(𝐺𝑣)))) → ∃𝑤𝑧(⟨𝑣, 𝑧⟩ ∈ ran 𝑅𝑧 = 𝑤)))
6020, 55, 59sylc 62 . . . . 5 ((𝜑𝑣 ∈ (ℤ𝐶)) → ∃𝑤𝑧(⟨𝑣, 𝑧⟩ ∈ ran 𝑅𝑧 = 𝑤))
61 nfv 1521 . . . . . 6 𝑤𝑣, 𝑧⟩ ∈ ran 𝑅
6261mo2r 2071 . . . . 5 (∃𝑤𝑧(⟨𝑣, 𝑧⟩ ∈ ran 𝑅𝑧 = 𝑤) → ∃*𝑧𝑣, 𝑧⟩ ∈ ran 𝑅)
6360, 62syl 14 . . . 4 ((𝜑𝑣 ∈ (ℤ𝐶)) → ∃*𝑧𝑣, 𝑧⟩ ∈ ran 𝑅)
641, 2, 3, 4, 5frecuzrdgdom 10374 . . . . . 6 (𝜑 → dom ran 𝑅 = (ℤ𝐶))
6564eleq2d 2240 . . . . 5 (𝜑 → (𝑣 ∈ dom ran 𝑅𝑣 ∈ (ℤ𝐶)))
6665pm5.32i 451 . . . 4 ((𝜑𝑣 ∈ dom ran 𝑅) ↔ (𝜑𝑣 ∈ (ℤ𝐶)))
67 df-br 3990 . . . . 5 (𝑣ran 𝑅 𝑧 ↔ ⟨𝑣, 𝑧⟩ ∈ ran 𝑅)
6867mobii 2056 . . . 4 (∃*𝑧 𝑣ran 𝑅 𝑧 ↔ ∃*𝑧𝑣, 𝑧⟩ ∈ ran 𝑅)
6963, 66, 683imtr4i 200 . . 3 ((𝜑𝑣 ∈ dom ran 𝑅) → ∃*𝑧 𝑣ran 𝑅 𝑧)
7069ralrimiva 2543 . 2 (𝜑 → ∀𝑣 ∈ dom ran 𝑅∃*𝑧 𝑣ran 𝑅 𝑧)
71 dffun7 5225 . 2 (Fun ran 𝑅 ↔ (Rel ran 𝑅 ∧ ∀𝑣 ∈ dom ran 𝑅∃*𝑧 𝑣ran 𝑅 𝑧))
7212, 70, 71sylanbrc 415 1 (𝜑 → Fun ran 𝑅)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1346   = wceq 1348  wex 1485  ∃*wmo 2020  wcel 2141  wral 2448  wrex 2449  Vcvv 2730  wss 3121  cop 3586   class class class wbr 3989  cmpt 4050  ωcom 4574   × cxp 4609  ccnv 4610  dom cdm 4611  ran crn 4612  Rel wrel 4616  Fun wfun 5192   Fn wfn 5193  wf 5194  1-1-ontowf1o 5197  cfv 5198  (class class class)co 5853  cmpo 5855  1st c1st 6117  2nd c2nd 6118  freccfrec 6369  1c1 7775   + caddc 7777  cz 9212  cuz 9487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488
This theorem is referenced by:  frecuzrdgfun  10376
  Copyright terms: Public domain W3C validator