| Step | Hyp | Ref
| Expression |
| 1 | | frecuzrdgrclt.c |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ ℤ) |
| 2 | | frecuzrdgrclt.a |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ 𝑆) |
| 3 | | frecuzrdgrclt.t |
. . . . . 6
⊢ (𝜑 → 𝑆 ⊆ 𝑇) |
| 4 | | frecuzrdgrclt.f |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) |
| 5 | | frecuzrdgrclt.r |
. . . . . 6
⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) |
| 6 | 1, 2, 3, 4, 5 | frecuzrdgrclt 10507 |
. . . . 5
⊢ (𝜑 → 𝑅:ω⟶((ℤ≥‘𝐶) × 𝑆)) |
| 7 | | frn 5416 |
. . . . 5
⊢ (𝑅:ω⟶((ℤ≥‘𝐶) × 𝑆) → ran 𝑅 ⊆ ((ℤ≥‘𝐶) × 𝑆)) |
| 8 | 6, 7 | syl 14 |
. . . 4
⊢ (𝜑 → ran 𝑅 ⊆
((ℤ≥‘𝐶) × 𝑆)) |
| 9 | | xpss 4771 |
. . . 4
⊢
((ℤ≥‘𝐶) × 𝑆) ⊆ (V × V) |
| 10 | 8, 9 | sstrdi 3195 |
. . 3
⊢ (𝜑 → ran 𝑅 ⊆ (V × V)) |
| 11 | | df-rel 4670 |
. . 3
⊢ (Rel ran
𝑅 ↔ ran 𝑅 ⊆ (V ×
V)) |
| 12 | 10, 11 | sylibr 134 |
. 2
⊢ (𝜑 → Rel ran 𝑅) |
| 13 | | frecuzrdgfunlem.g |
. . . . . . . . . 10
⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) |
| 14 | 1, 13 | frec2uzf1od 10498 |
. . . . . . . . 9
⊢ (𝜑 → 𝐺:ω–1-1-onto→(ℤ≥‘𝐶)) |
| 15 | | f1ocnvdm 5828 |
. . . . . . . . 9
⊢ ((𝐺:ω–1-1-onto→(ℤ≥‘𝐶) ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → (◡𝐺‘𝑣) ∈ ω) |
| 16 | 14, 15 | sylan 283 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → (◡𝐺‘𝑣) ∈ ω) |
| 17 | 6 | ffvelcdmda 5697 |
. . . . . . . 8
⊢ ((𝜑 ∧ (◡𝐺‘𝑣) ∈ ω) → (𝑅‘(◡𝐺‘𝑣)) ∈
((ℤ≥‘𝐶) × 𝑆)) |
| 18 | 16, 17 | syldan 282 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → (𝑅‘(◡𝐺‘𝑣)) ∈
((ℤ≥‘𝐶) × 𝑆)) |
| 19 | | xp2nd 6224 |
. . . . . . 7
⊢ ((𝑅‘(◡𝐺‘𝑣)) ∈
((ℤ≥‘𝐶) × 𝑆) → (2nd ‘(𝑅‘(◡𝐺‘𝑣))) ∈ 𝑆) |
| 20 | 18, 19 | syl 14 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → (2nd
‘(𝑅‘(◡𝐺‘𝑣))) ∈ 𝑆) |
| 21 | | ffn 5407 |
. . . . . . . . . 10
⊢ (𝑅:ω⟶((ℤ≥‘𝐶) × 𝑆) → 𝑅 Fn ω) |
| 22 | | fvelrnb 5608 |
. . . . . . . . . 10
⊢ (𝑅 Fn ω → (〈𝑣, 𝑧〉 ∈ ran 𝑅 ↔ ∃𝑤 ∈ ω (𝑅‘𝑤) = 〈𝑣, 𝑧〉)) |
| 23 | 6, 21, 22 | 3syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (〈𝑣, 𝑧〉 ∈ ran 𝑅 ↔ ∃𝑤 ∈ ω (𝑅‘𝑤) = 〈𝑣, 𝑧〉)) |
| 24 | 6 | ffvelcdmda 5697 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑤 ∈ ω) → (𝑅‘𝑤) ∈ ((ℤ≥‘𝐶) × 𝑆)) |
| 25 | | 1st2nd2 6233 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅‘𝑤) ∈ ((ℤ≥‘𝐶) × 𝑆) → (𝑅‘𝑤) = 〈(1st ‘(𝑅‘𝑤)), (2nd ‘(𝑅‘𝑤))〉) |
| 26 | 24, 25 | syl 14 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑤 ∈ ω) → (𝑅‘𝑤) = 〈(1st ‘(𝑅‘𝑤)), (2nd ‘(𝑅‘𝑤))〉) |
| 27 | 1 | adantr 276 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑤 ∈ ω) → 𝐶 ∈ ℤ) |
| 28 | 2 | adantr 276 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑤 ∈ ω) → 𝐴 ∈ 𝑆) |
| 29 | 3 | adantr 276 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑤 ∈ ω) → 𝑆 ⊆ 𝑇) |
| 30 | 4 | adantlr 477 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑤 ∈ ω) ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) |
| 31 | | simpr 110 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑤 ∈ ω) → 𝑤 ∈ ω) |
| 32 | 27, 28, 29, 30, 5, 31, 13 | frecuzrdgg 10508 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑤 ∈ ω) → (1st
‘(𝑅‘𝑤)) = (𝐺‘𝑤)) |
| 33 | 32 | opeq1d 3814 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑤 ∈ ω) → 〈(1st
‘(𝑅‘𝑤)), (2nd
‘(𝑅‘𝑤))〉 = 〈(𝐺‘𝑤), (2nd ‘(𝑅‘𝑤))〉) |
| 34 | 26, 33 | eqtrd 2229 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑤 ∈ ω) → (𝑅‘𝑤) = 〈(𝐺‘𝑤), (2nd ‘(𝑅‘𝑤))〉) |
| 35 | 34 | eqeq1d 2205 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑤 ∈ ω) → ((𝑅‘𝑤) = 〈𝑣, 𝑧〉 ↔ 〈(𝐺‘𝑤), (2nd ‘(𝑅‘𝑤))〉 = 〈𝑣, 𝑧〉)) |
| 36 | | vex 2766 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑣 ∈ V |
| 37 | | vex 2766 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑧 ∈ V |
| 38 | 36, 37 | opth2 4273 |
. . . . . . . . . . . . . . . . 17
⊢
(〈(𝐺‘𝑤), (2nd ‘(𝑅‘𝑤))〉 = 〈𝑣, 𝑧〉 ↔ ((𝐺‘𝑤) = 𝑣 ∧ (2nd ‘(𝑅‘𝑤)) = 𝑧)) |
| 39 | 38 | simplbi 274 |
. . . . . . . . . . . . . . . 16
⊢
(〈(𝐺‘𝑤), (2nd ‘(𝑅‘𝑤))〉 = 〈𝑣, 𝑧〉 → (𝐺‘𝑤) = 𝑣) |
| 40 | 35, 39 | biimtrdi 163 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑤 ∈ ω) → ((𝑅‘𝑤) = 〈𝑣, 𝑧〉 → (𝐺‘𝑤) = 𝑣)) |
| 41 | | f1ocnvfv 5826 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺:ω–1-1-onto→(ℤ≥‘𝐶) ∧ 𝑤 ∈ ω) → ((𝐺‘𝑤) = 𝑣 → (◡𝐺‘𝑣) = 𝑤)) |
| 42 | 14, 41 | sylan 283 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑤 ∈ ω) → ((𝐺‘𝑤) = 𝑣 → (◡𝐺‘𝑣) = 𝑤)) |
| 43 | 40, 42 | syld 45 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑤 ∈ ω) → ((𝑅‘𝑤) = 〈𝑣, 𝑧〉 → (◡𝐺‘𝑣) = 𝑤)) |
| 44 | | fveq2 5558 |
. . . . . . . . . . . . . . 15
⊢ ((◡𝐺‘𝑣) = 𝑤 → (𝑅‘(◡𝐺‘𝑣)) = (𝑅‘𝑤)) |
| 45 | 44 | fveq2d 5562 |
. . . . . . . . . . . . . 14
⊢ ((◡𝐺‘𝑣) = 𝑤 → (2nd ‘(𝑅‘(◡𝐺‘𝑣))) = (2nd ‘(𝑅‘𝑤))) |
| 46 | 43, 45 | syl6 33 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑤 ∈ ω) → ((𝑅‘𝑤) = 〈𝑣, 𝑧〉 → (2nd ‘(𝑅‘(◡𝐺‘𝑣))) = (2nd ‘(𝑅‘𝑤)))) |
| 47 | 46 | imp 124 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑤 ∈ ω) ∧ (𝑅‘𝑤) = 〈𝑣, 𝑧〉) → (2nd ‘(𝑅‘(◡𝐺‘𝑣))) = (2nd ‘(𝑅‘𝑤))) |
| 48 | 36, 37 | op2ndd 6207 |
. . . . . . . . . . . . 13
⊢ ((𝑅‘𝑤) = 〈𝑣, 𝑧〉 → (2nd ‘(𝑅‘𝑤)) = 𝑧) |
| 49 | 48 | adantl 277 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑤 ∈ ω) ∧ (𝑅‘𝑤) = 〈𝑣, 𝑧〉) → (2nd ‘(𝑅‘𝑤)) = 𝑧) |
| 50 | 47, 49 | eqtr2d 2230 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑤 ∈ ω) ∧ (𝑅‘𝑤) = 〈𝑣, 𝑧〉) → 𝑧 = (2nd ‘(𝑅‘(◡𝐺‘𝑣)))) |
| 51 | 50 | ex 115 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑤 ∈ ω) → ((𝑅‘𝑤) = 〈𝑣, 𝑧〉 → 𝑧 = (2nd ‘(𝑅‘(◡𝐺‘𝑣))))) |
| 52 | 51 | rexlimdva 2614 |
. . . . . . . . 9
⊢ (𝜑 → (∃𝑤 ∈ ω (𝑅‘𝑤) = 〈𝑣, 𝑧〉 → 𝑧 = (2nd ‘(𝑅‘(◡𝐺‘𝑣))))) |
| 53 | 23, 52 | sylbid 150 |
. . . . . . . 8
⊢ (𝜑 → (〈𝑣, 𝑧〉 ∈ ran 𝑅 → 𝑧 = (2nd ‘(𝑅‘(◡𝐺‘𝑣))))) |
| 54 | 53 | alrimiv 1888 |
. . . . . . 7
⊢ (𝜑 → ∀𝑧(〈𝑣, 𝑧〉 ∈ ran 𝑅 → 𝑧 = (2nd ‘(𝑅‘(◡𝐺‘𝑣))))) |
| 55 | 54 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → ∀𝑧(〈𝑣, 𝑧〉 ∈ ran 𝑅 → 𝑧 = (2nd ‘(𝑅‘(◡𝐺‘𝑣))))) |
| 56 | | eqeq2 2206 |
. . . . . . . . 9
⊢ (𝑤 = (2nd ‘(𝑅‘(◡𝐺‘𝑣))) → (𝑧 = 𝑤 ↔ 𝑧 = (2nd ‘(𝑅‘(◡𝐺‘𝑣))))) |
| 57 | 56 | imbi2d 230 |
. . . . . . . 8
⊢ (𝑤 = (2nd ‘(𝑅‘(◡𝐺‘𝑣))) → ((〈𝑣, 𝑧〉 ∈ ran 𝑅 → 𝑧 = 𝑤) ↔ (〈𝑣, 𝑧〉 ∈ ran 𝑅 → 𝑧 = (2nd ‘(𝑅‘(◡𝐺‘𝑣)))))) |
| 58 | 57 | albidv 1838 |
. . . . . . 7
⊢ (𝑤 = (2nd ‘(𝑅‘(◡𝐺‘𝑣))) → (∀𝑧(〈𝑣, 𝑧〉 ∈ ran 𝑅 → 𝑧 = 𝑤) ↔ ∀𝑧(〈𝑣, 𝑧〉 ∈ ran 𝑅 → 𝑧 = (2nd ‘(𝑅‘(◡𝐺‘𝑣)))))) |
| 59 | 58 | spcegv 2852 |
. . . . . 6
⊢
((2nd ‘(𝑅‘(◡𝐺‘𝑣))) ∈ 𝑆 → (∀𝑧(〈𝑣, 𝑧〉 ∈ ran 𝑅 → 𝑧 = (2nd ‘(𝑅‘(◡𝐺‘𝑣)))) → ∃𝑤∀𝑧(〈𝑣, 𝑧〉 ∈ ran 𝑅 → 𝑧 = 𝑤))) |
| 60 | 20, 55, 59 | sylc 62 |
. . . . 5
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → ∃𝑤∀𝑧(〈𝑣, 𝑧〉 ∈ ran 𝑅 → 𝑧 = 𝑤)) |
| 61 | | nfv 1542 |
. . . . . 6
⊢
Ⅎ𝑤〈𝑣, 𝑧〉 ∈ ran 𝑅 |
| 62 | 61 | mo2r 2097 |
. . . . 5
⊢
(∃𝑤∀𝑧(〈𝑣, 𝑧〉 ∈ ran 𝑅 → 𝑧 = 𝑤) → ∃*𝑧〈𝑣, 𝑧〉 ∈ ran 𝑅) |
| 63 | 60, 62 | syl 14 |
. . . 4
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → ∃*𝑧〈𝑣, 𝑧〉 ∈ ran 𝑅) |
| 64 | 1, 2, 3, 4, 5 | frecuzrdgdom 10510 |
. . . . . 6
⊢ (𝜑 → dom ran 𝑅 = (ℤ≥‘𝐶)) |
| 65 | 64 | eleq2d 2266 |
. . . . 5
⊢ (𝜑 → (𝑣 ∈ dom ran 𝑅 ↔ 𝑣 ∈ (ℤ≥‘𝐶))) |
| 66 | 65 | pm5.32i 454 |
. . . 4
⊢ ((𝜑 ∧ 𝑣 ∈ dom ran 𝑅) ↔ (𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶))) |
| 67 | | df-br 4034 |
. . . . 5
⊢ (𝑣ran 𝑅 𝑧 ↔ 〈𝑣, 𝑧〉 ∈ ran 𝑅) |
| 68 | 67 | mobii 2082 |
. . . 4
⊢
(∃*𝑧 𝑣ran 𝑅 𝑧 ↔ ∃*𝑧〈𝑣, 𝑧〉 ∈ ran 𝑅) |
| 69 | 63, 66, 68 | 3imtr4i 201 |
. . 3
⊢ ((𝜑 ∧ 𝑣 ∈ dom ran 𝑅) → ∃*𝑧 𝑣ran 𝑅 𝑧) |
| 70 | 69 | ralrimiva 2570 |
. 2
⊢ (𝜑 → ∀𝑣 ∈ dom ran 𝑅∃*𝑧 𝑣ran 𝑅 𝑧) |
| 71 | | dffun7 5285 |
. 2
⊢ (Fun ran
𝑅 ↔ (Rel ran 𝑅 ∧ ∀𝑣 ∈ dom ran 𝑅∃*𝑧 𝑣ran 𝑅 𝑧)) |
| 72 | 12, 70, 71 | sylanbrc 417 |
1
⊢ (𝜑 → Fun ran 𝑅) |