ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecuzrdgfunlem GIF version

Theorem frecuzrdgfunlem 10490
Description: The recursive definition generator on upper integers produces a a function. (Contributed by Jim Kingdon, 24-Apr-2022.)
Hypotheses
Ref Expression
frecuzrdgrclt.c (𝜑𝐶 ∈ ℤ)
frecuzrdgrclt.a (𝜑𝐴𝑆)
frecuzrdgrclt.t (𝜑𝑆𝑇)
frecuzrdgrclt.f ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
frecuzrdgrclt.r 𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)
frecuzrdgfunlem.g 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
Assertion
Ref Expression
frecuzrdgfunlem (𝜑 → Fun ran 𝑅)
Distinct variable groups:   𝑥,𝐶,𝑦   𝑥,𝐹,𝑦   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦   𝜑,𝑥,𝑦   𝑥,𝐺,𝑦   𝑥,𝑅,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem frecuzrdgfunlem
Dummy variables 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frecuzrdgrclt.c . . . . . 6 (𝜑𝐶 ∈ ℤ)
2 frecuzrdgrclt.a . . . . . 6 (𝜑𝐴𝑆)
3 frecuzrdgrclt.t . . . . . 6 (𝜑𝑆𝑇)
4 frecuzrdgrclt.f . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
5 frecuzrdgrclt.r . . . . . 6 𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)
61, 2, 3, 4, 5frecuzrdgrclt 10486 . . . . 5 (𝜑𝑅:ω⟶((ℤ𝐶) × 𝑆))
7 frn 5412 . . . . 5 (𝑅:ω⟶((ℤ𝐶) × 𝑆) → ran 𝑅 ⊆ ((ℤ𝐶) × 𝑆))
86, 7syl 14 . . . 4 (𝜑 → ran 𝑅 ⊆ ((ℤ𝐶) × 𝑆))
9 xpss 4767 . . . 4 ((ℤ𝐶) × 𝑆) ⊆ (V × V)
108, 9sstrdi 3191 . . 3 (𝜑 → ran 𝑅 ⊆ (V × V))
11 df-rel 4666 . . 3 (Rel ran 𝑅 ↔ ran 𝑅 ⊆ (V × V))
1210, 11sylibr 134 . 2 (𝜑 → Rel ran 𝑅)
13 frecuzrdgfunlem.g . . . . . . . . . 10 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
141, 13frec2uzf1od 10477 . . . . . . . . 9 (𝜑𝐺:ω–1-1-onto→(ℤ𝐶))
15 f1ocnvdm 5824 . . . . . . . . 9 ((𝐺:ω–1-1-onto→(ℤ𝐶) ∧ 𝑣 ∈ (ℤ𝐶)) → (𝐺𝑣) ∈ ω)
1614, 15sylan 283 . . . . . . . 8 ((𝜑𝑣 ∈ (ℤ𝐶)) → (𝐺𝑣) ∈ ω)
176ffvelcdmda 5693 . . . . . . . 8 ((𝜑 ∧ (𝐺𝑣) ∈ ω) → (𝑅‘(𝐺𝑣)) ∈ ((ℤ𝐶) × 𝑆))
1816, 17syldan 282 . . . . . . 7 ((𝜑𝑣 ∈ (ℤ𝐶)) → (𝑅‘(𝐺𝑣)) ∈ ((ℤ𝐶) × 𝑆))
19 xp2nd 6219 . . . . . . 7 ((𝑅‘(𝐺𝑣)) ∈ ((ℤ𝐶) × 𝑆) → (2nd ‘(𝑅‘(𝐺𝑣))) ∈ 𝑆)
2018, 19syl 14 . . . . . 6 ((𝜑𝑣 ∈ (ℤ𝐶)) → (2nd ‘(𝑅‘(𝐺𝑣))) ∈ 𝑆)
21 ffn 5403 . . . . . . . . . 10 (𝑅:ω⟶((ℤ𝐶) × 𝑆) → 𝑅 Fn ω)
22 fvelrnb 5604 . . . . . . . . . 10 (𝑅 Fn ω → (⟨𝑣, 𝑧⟩ ∈ ran 𝑅 ↔ ∃𝑤 ∈ ω (𝑅𝑤) = ⟨𝑣, 𝑧⟩))
236, 21, 223syl 17 . . . . . . . . 9 (𝜑 → (⟨𝑣, 𝑧⟩ ∈ ran 𝑅 ↔ ∃𝑤 ∈ ω (𝑅𝑤) = ⟨𝑣, 𝑧⟩))
246ffvelcdmda 5693 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ∈ ω) → (𝑅𝑤) ∈ ((ℤ𝐶) × 𝑆))
25 1st2nd2 6228 . . . . . . . . . . . . . . . . . . 19 ((𝑅𝑤) ∈ ((ℤ𝐶) × 𝑆) → (𝑅𝑤) = ⟨(1st ‘(𝑅𝑤)), (2nd ‘(𝑅𝑤))⟩)
2624, 25syl 14 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ ω) → (𝑅𝑤) = ⟨(1st ‘(𝑅𝑤)), (2nd ‘(𝑅𝑤))⟩)
271adantr 276 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ ω) → 𝐶 ∈ ℤ)
282adantr 276 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ ω) → 𝐴𝑆)
293adantr 276 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ ω) → 𝑆𝑇)
304adantlr 477 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑤 ∈ ω) ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
31 simpr 110 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ ω) → 𝑤 ∈ ω)
3227, 28, 29, 30, 5, 31, 13frecuzrdgg 10487 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ∈ ω) → (1st ‘(𝑅𝑤)) = (𝐺𝑤))
3332opeq1d 3810 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ ω) → ⟨(1st ‘(𝑅𝑤)), (2nd ‘(𝑅𝑤))⟩ = ⟨(𝐺𝑤), (2nd ‘(𝑅𝑤))⟩)
3426, 33eqtrd 2226 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ ω) → (𝑅𝑤) = ⟨(𝐺𝑤), (2nd ‘(𝑅𝑤))⟩)
3534eqeq1d 2202 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ ω) → ((𝑅𝑤) = ⟨𝑣, 𝑧⟩ ↔ ⟨(𝐺𝑤), (2nd ‘(𝑅𝑤))⟩ = ⟨𝑣, 𝑧⟩))
36 vex 2763 . . . . . . . . . . . . . . . . . 18 𝑣 ∈ V
37 vex 2763 . . . . . . . . . . . . . . . . . 18 𝑧 ∈ V
3836, 37opth2 4269 . . . . . . . . . . . . . . . . 17 (⟨(𝐺𝑤), (2nd ‘(𝑅𝑤))⟩ = ⟨𝑣, 𝑧⟩ ↔ ((𝐺𝑤) = 𝑣 ∧ (2nd ‘(𝑅𝑤)) = 𝑧))
3938simplbi 274 . . . . . . . . . . . . . . . 16 (⟨(𝐺𝑤), (2nd ‘(𝑅𝑤))⟩ = ⟨𝑣, 𝑧⟩ → (𝐺𝑤) = 𝑣)
4035, 39biimtrdi 163 . . . . . . . . . . . . . . 15 ((𝜑𝑤 ∈ ω) → ((𝑅𝑤) = ⟨𝑣, 𝑧⟩ → (𝐺𝑤) = 𝑣))
41 f1ocnvfv 5822 . . . . . . . . . . . . . . . 16 ((𝐺:ω–1-1-onto→(ℤ𝐶) ∧ 𝑤 ∈ ω) → ((𝐺𝑤) = 𝑣 → (𝐺𝑣) = 𝑤))
4214, 41sylan 283 . . . . . . . . . . . . . . 15 ((𝜑𝑤 ∈ ω) → ((𝐺𝑤) = 𝑣 → (𝐺𝑣) = 𝑤))
4340, 42syld 45 . . . . . . . . . . . . . 14 ((𝜑𝑤 ∈ ω) → ((𝑅𝑤) = ⟨𝑣, 𝑧⟩ → (𝐺𝑣) = 𝑤))
44 fveq2 5554 . . . . . . . . . . . . . . 15 ((𝐺𝑣) = 𝑤 → (𝑅‘(𝐺𝑣)) = (𝑅𝑤))
4544fveq2d 5558 . . . . . . . . . . . . . 14 ((𝐺𝑣) = 𝑤 → (2nd ‘(𝑅‘(𝐺𝑣))) = (2nd ‘(𝑅𝑤)))
4643, 45syl6 33 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ ω) → ((𝑅𝑤) = ⟨𝑣, 𝑧⟩ → (2nd ‘(𝑅‘(𝐺𝑣))) = (2nd ‘(𝑅𝑤))))
4746imp 124 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ ω) ∧ (𝑅𝑤) = ⟨𝑣, 𝑧⟩) → (2nd ‘(𝑅‘(𝐺𝑣))) = (2nd ‘(𝑅𝑤)))
4836, 37op2ndd 6202 . . . . . . . . . . . . 13 ((𝑅𝑤) = ⟨𝑣, 𝑧⟩ → (2nd ‘(𝑅𝑤)) = 𝑧)
4948adantl 277 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ ω) ∧ (𝑅𝑤) = ⟨𝑣, 𝑧⟩) → (2nd ‘(𝑅𝑤)) = 𝑧)
5047, 49eqtr2d 2227 . . . . . . . . . . 11 (((𝜑𝑤 ∈ ω) ∧ (𝑅𝑤) = ⟨𝑣, 𝑧⟩) → 𝑧 = (2nd ‘(𝑅‘(𝐺𝑣))))
5150ex 115 . . . . . . . . . 10 ((𝜑𝑤 ∈ ω) → ((𝑅𝑤) = ⟨𝑣, 𝑧⟩ → 𝑧 = (2nd ‘(𝑅‘(𝐺𝑣)))))
5251rexlimdva 2611 . . . . . . . . 9 (𝜑 → (∃𝑤 ∈ ω (𝑅𝑤) = ⟨𝑣, 𝑧⟩ → 𝑧 = (2nd ‘(𝑅‘(𝐺𝑣)))))
5323, 52sylbid 150 . . . . . . . 8 (𝜑 → (⟨𝑣, 𝑧⟩ ∈ ran 𝑅𝑧 = (2nd ‘(𝑅‘(𝐺𝑣)))))
5453alrimiv 1885 . . . . . . 7 (𝜑 → ∀𝑧(⟨𝑣, 𝑧⟩ ∈ ran 𝑅𝑧 = (2nd ‘(𝑅‘(𝐺𝑣)))))
5554adantr 276 . . . . . 6 ((𝜑𝑣 ∈ (ℤ𝐶)) → ∀𝑧(⟨𝑣, 𝑧⟩ ∈ ran 𝑅𝑧 = (2nd ‘(𝑅‘(𝐺𝑣)))))
56 eqeq2 2203 . . . . . . . . 9 (𝑤 = (2nd ‘(𝑅‘(𝐺𝑣))) → (𝑧 = 𝑤𝑧 = (2nd ‘(𝑅‘(𝐺𝑣)))))
5756imbi2d 230 . . . . . . . 8 (𝑤 = (2nd ‘(𝑅‘(𝐺𝑣))) → ((⟨𝑣, 𝑧⟩ ∈ ran 𝑅𝑧 = 𝑤) ↔ (⟨𝑣, 𝑧⟩ ∈ ran 𝑅𝑧 = (2nd ‘(𝑅‘(𝐺𝑣))))))
5857albidv 1835 . . . . . . 7 (𝑤 = (2nd ‘(𝑅‘(𝐺𝑣))) → (∀𝑧(⟨𝑣, 𝑧⟩ ∈ ran 𝑅𝑧 = 𝑤) ↔ ∀𝑧(⟨𝑣, 𝑧⟩ ∈ ran 𝑅𝑧 = (2nd ‘(𝑅‘(𝐺𝑣))))))
5958spcegv 2848 . . . . . 6 ((2nd ‘(𝑅‘(𝐺𝑣))) ∈ 𝑆 → (∀𝑧(⟨𝑣, 𝑧⟩ ∈ ran 𝑅𝑧 = (2nd ‘(𝑅‘(𝐺𝑣)))) → ∃𝑤𝑧(⟨𝑣, 𝑧⟩ ∈ ran 𝑅𝑧 = 𝑤)))
6020, 55, 59sylc 62 . . . . 5 ((𝜑𝑣 ∈ (ℤ𝐶)) → ∃𝑤𝑧(⟨𝑣, 𝑧⟩ ∈ ran 𝑅𝑧 = 𝑤))
61 nfv 1539 . . . . . 6 𝑤𝑣, 𝑧⟩ ∈ ran 𝑅
6261mo2r 2094 . . . . 5 (∃𝑤𝑧(⟨𝑣, 𝑧⟩ ∈ ran 𝑅𝑧 = 𝑤) → ∃*𝑧𝑣, 𝑧⟩ ∈ ran 𝑅)
6360, 62syl 14 . . . 4 ((𝜑𝑣 ∈ (ℤ𝐶)) → ∃*𝑧𝑣, 𝑧⟩ ∈ ran 𝑅)
641, 2, 3, 4, 5frecuzrdgdom 10489 . . . . . 6 (𝜑 → dom ran 𝑅 = (ℤ𝐶))
6564eleq2d 2263 . . . . 5 (𝜑 → (𝑣 ∈ dom ran 𝑅𝑣 ∈ (ℤ𝐶)))
6665pm5.32i 454 . . . 4 ((𝜑𝑣 ∈ dom ran 𝑅) ↔ (𝜑𝑣 ∈ (ℤ𝐶)))
67 df-br 4030 . . . . 5 (𝑣ran 𝑅 𝑧 ↔ ⟨𝑣, 𝑧⟩ ∈ ran 𝑅)
6867mobii 2079 . . . 4 (∃*𝑧 𝑣ran 𝑅 𝑧 ↔ ∃*𝑧𝑣, 𝑧⟩ ∈ ran 𝑅)
6963, 66, 683imtr4i 201 . . 3 ((𝜑𝑣 ∈ dom ran 𝑅) → ∃*𝑧 𝑣ran 𝑅 𝑧)
7069ralrimiva 2567 . 2 (𝜑 → ∀𝑣 ∈ dom ran 𝑅∃*𝑧 𝑣ran 𝑅 𝑧)
71 dffun7 5281 . 2 (Fun ran 𝑅 ↔ (Rel ran 𝑅 ∧ ∀𝑣 ∈ dom ran 𝑅∃*𝑧 𝑣ran 𝑅 𝑧))
7212, 70, 71sylanbrc 417 1 (𝜑 → Fun ran 𝑅)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1362   = wceq 1364  wex 1503  ∃*wmo 2043  wcel 2164  wral 2472  wrex 2473  Vcvv 2760  wss 3153  cop 3621   class class class wbr 4029  cmpt 4090  ωcom 4622   × cxp 4657  ccnv 4658  dom cdm 4659  ran crn 4660  Rel wrel 4664  Fun wfun 5248   Fn wfn 5249  wf 5250  1-1-ontowf1o 5253  cfv 5254  (class class class)co 5918  cmpo 5920  1st c1st 6191  2nd c2nd 6192  freccfrec 6443  1c1 7873   + caddc 7875  cz 9317  cuz 9592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318  df-uz 9593
This theorem is referenced by:  frecuzrdgfun  10491
  Copyright terms: Public domain W3C validator