ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecuzrdgfunlem GIF version

Theorem frecuzrdgfunlem 10636
Description: The recursive definition generator on upper integers produces a a function. (Contributed by Jim Kingdon, 24-Apr-2022.)
Hypotheses
Ref Expression
frecuzrdgrclt.c (𝜑𝐶 ∈ ℤ)
frecuzrdgrclt.a (𝜑𝐴𝑆)
frecuzrdgrclt.t (𝜑𝑆𝑇)
frecuzrdgrclt.f ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
frecuzrdgrclt.r 𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)
frecuzrdgfunlem.g 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
Assertion
Ref Expression
frecuzrdgfunlem (𝜑 → Fun ran 𝑅)
Distinct variable groups:   𝑥,𝐶,𝑦   𝑥,𝐹,𝑦   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦   𝜑,𝑥,𝑦   𝑥,𝐺,𝑦   𝑥,𝑅,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem frecuzrdgfunlem
Dummy variables 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frecuzrdgrclt.c . . . . . 6 (𝜑𝐶 ∈ ℤ)
2 frecuzrdgrclt.a . . . . . 6 (𝜑𝐴𝑆)
3 frecuzrdgrclt.t . . . . . 6 (𝜑𝑆𝑇)
4 frecuzrdgrclt.f . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
5 frecuzrdgrclt.r . . . . . 6 𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)
61, 2, 3, 4, 5frecuzrdgrclt 10632 . . . . 5 (𝜑𝑅:ω⟶((ℤ𝐶) × 𝑆))
7 frn 5481 . . . . 5 (𝑅:ω⟶((ℤ𝐶) × 𝑆) → ran 𝑅 ⊆ ((ℤ𝐶) × 𝑆))
86, 7syl 14 . . . 4 (𝜑 → ran 𝑅 ⊆ ((ℤ𝐶) × 𝑆))
9 xpss 4826 . . . 4 ((ℤ𝐶) × 𝑆) ⊆ (V × V)
108, 9sstrdi 3236 . . 3 (𝜑 → ran 𝑅 ⊆ (V × V))
11 df-rel 4725 . . 3 (Rel ran 𝑅 ↔ ran 𝑅 ⊆ (V × V))
1210, 11sylibr 134 . 2 (𝜑 → Rel ran 𝑅)
13 frecuzrdgfunlem.g . . . . . . . . . 10 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
141, 13frec2uzf1od 10623 . . . . . . . . 9 (𝜑𝐺:ω–1-1-onto→(ℤ𝐶))
15 f1ocnvdm 5904 . . . . . . . . 9 ((𝐺:ω–1-1-onto→(ℤ𝐶) ∧ 𝑣 ∈ (ℤ𝐶)) → (𝐺𝑣) ∈ ω)
1614, 15sylan 283 . . . . . . . 8 ((𝜑𝑣 ∈ (ℤ𝐶)) → (𝐺𝑣) ∈ ω)
176ffvelcdmda 5769 . . . . . . . 8 ((𝜑 ∧ (𝐺𝑣) ∈ ω) → (𝑅‘(𝐺𝑣)) ∈ ((ℤ𝐶) × 𝑆))
1816, 17syldan 282 . . . . . . 7 ((𝜑𝑣 ∈ (ℤ𝐶)) → (𝑅‘(𝐺𝑣)) ∈ ((ℤ𝐶) × 𝑆))
19 xp2nd 6310 . . . . . . 7 ((𝑅‘(𝐺𝑣)) ∈ ((ℤ𝐶) × 𝑆) → (2nd ‘(𝑅‘(𝐺𝑣))) ∈ 𝑆)
2018, 19syl 14 . . . . . 6 ((𝜑𝑣 ∈ (ℤ𝐶)) → (2nd ‘(𝑅‘(𝐺𝑣))) ∈ 𝑆)
21 ffn 5472 . . . . . . . . . 10 (𝑅:ω⟶((ℤ𝐶) × 𝑆) → 𝑅 Fn ω)
22 fvelrnb 5680 . . . . . . . . . 10 (𝑅 Fn ω → (⟨𝑣, 𝑧⟩ ∈ ran 𝑅 ↔ ∃𝑤 ∈ ω (𝑅𝑤) = ⟨𝑣, 𝑧⟩))
236, 21, 223syl 17 . . . . . . . . 9 (𝜑 → (⟨𝑣, 𝑧⟩ ∈ ran 𝑅 ↔ ∃𝑤 ∈ ω (𝑅𝑤) = ⟨𝑣, 𝑧⟩))
246ffvelcdmda 5769 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ∈ ω) → (𝑅𝑤) ∈ ((ℤ𝐶) × 𝑆))
25 1st2nd2 6319 . . . . . . . . . . . . . . . . . . 19 ((𝑅𝑤) ∈ ((ℤ𝐶) × 𝑆) → (𝑅𝑤) = ⟨(1st ‘(𝑅𝑤)), (2nd ‘(𝑅𝑤))⟩)
2624, 25syl 14 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ ω) → (𝑅𝑤) = ⟨(1st ‘(𝑅𝑤)), (2nd ‘(𝑅𝑤))⟩)
271adantr 276 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ ω) → 𝐶 ∈ ℤ)
282adantr 276 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ ω) → 𝐴𝑆)
293adantr 276 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ ω) → 𝑆𝑇)
304adantlr 477 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑤 ∈ ω) ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
31 simpr 110 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ ω) → 𝑤 ∈ ω)
3227, 28, 29, 30, 5, 31, 13frecuzrdgg 10633 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ∈ ω) → (1st ‘(𝑅𝑤)) = (𝐺𝑤))
3332opeq1d 3862 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ ω) → ⟨(1st ‘(𝑅𝑤)), (2nd ‘(𝑅𝑤))⟩ = ⟨(𝐺𝑤), (2nd ‘(𝑅𝑤))⟩)
3426, 33eqtrd 2262 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ ω) → (𝑅𝑤) = ⟨(𝐺𝑤), (2nd ‘(𝑅𝑤))⟩)
3534eqeq1d 2238 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ ω) → ((𝑅𝑤) = ⟨𝑣, 𝑧⟩ ↔ ⟨(𝐺𝑤), (2nd ‘(𝑅𝑤))⟩ = ⟨𝑣, 𝑧⟩))
36 vex 2802 . . . . . . . . . . . . . . . . . 18 𝑣 ∈ V
37 vex 2802 . . . . . . . . . . . . . . . . . 18 𝑧 ∈ V
3836, 37opth2 4325 . . . . . . . . . . . . . . . . 17 (⟨(𝐺𝑤), (2nd ‘(𝑅𝑤))⟩ = ⟨𝑣, 𝑧⟩ ↔ ((𝐺𝑤) = 𝑣 ∧ (2nd ‘(𝑅𝑤)) = 𝑧))
3938simplbi 274 . . . . . . . . . . . . . . . 16 (⟨(𝐺𝑤), (2nd ‘(𝑅𝑤))⟩ = ⟨𝑣, 𝑧⟩ → (𝐺𝑤) = 𝑣)
4035, 39biimtrdi 163 . . . . . . . . . . . . . . 15 ((𝜑𝑤 ∈ ω) → ((𝑅𝑤) = ⟨𝑣, 𝑧⟩ → (𝐺𝑤) = 𝑣))
41 f1ocnvfv 5902 . . . . . . . . . . . . . . . 16 ((𝐺:ω–1-1-onto→(ℤ𝐶) ∧ 𝑤 ∈ ω) → ((𝐺𝑤) = 𝑣 → (𝐺𝑣) = 𝑤))
4214, 41sylan 283 . . . . . . . . . . . . . . 15 ((𝜑𝑤 ∈ ω) → ((𝐺𝑤) = 𝑣 → (𝐺𝑣) = 𝑤))
4340, 42syld 45 . . . . . . . . . . . . . 14 ((𝜑𝑤 ∈ ω) → ((𝑅𝑤) = ⟨𝑣, 𝑧⟩ → (𝐺𝑣) = 𝑤))
44 fveq2 5626 . . . . . . . . . . . . . . 15 ((𝐺𝑣) = 𝑤 → (𝑅‘(𝐺𝑣)) = (𝑅𝑤))
4544fveq2d 5630 . . . . . . . . . . . . . 14 ((𝐺𝑣) = 𝑤 → (2nd ‘(𝑅‘(𝐺𝑣))) = (2nd ‘(𝑅𝑤)))
4643, 45syl6 33 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ ω) → ((𝑅𝑤) = ⟨𝑣, 𝑧⟩ → (2nd ‘(𝑅‘(𝐺𝑣))) = (2nd ‘(𝑅𝑤))))
4746imp 124 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ ω) ∧ (𝑅𝑤) = ⟨𝑣, 𝑧⟩) → (2nd ‘(𝑅‘(𝐺𝑣))) = (2nd ‘(𝑅𝑤)))
4836, 37op2ndd 6293 . . . . . . . . . . . . 13 ((𝑅𝑤) = ⟨𝑣, 𝑧⟩ → (2nd ‘(𝑅𝑤)) = 𝑧)
4948adantl 277 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ ω) ∧ (𝑅𝑤) = ⟨𝑣, 𝑧⟩) → (2nd ‘(𝑅𝑤)) = 𝑧)
5047, 49eqtr2d 2263 . . . . . . . . . . 11 (((𝜑𝑤 ∈ ω) ∧ (𝑅𝑤) = ⟨𝑣, 𝑧⟩) → 𝑧 = (2nd ‘(𝑅‘(𝐺𝑣))))
5150ex 115 . . . . . . . . . 10 ((𝜑𝑤 ∈ ω) → ((𝑅𝑤) = ⟨𝑣, 𝑧⟩ → 𝑧 = (2nd ‘(𝑅‘(𝐺𝑣)))))
5251rexlimdva 2648 . . . . . . . . 9 (𝜑 → (∃𝑤 ∈ ω (𝑅𝑤) = ⟨𝑣, 𝑧⟩ → 𝑧 = (2nd ‘(𝑅‘(𝐺𝑣)))))
5323, 52sylbid 150 . . . . . . . 8 (𝜑 → (⟨𝑣, 𝑧⟩ ∈ ran 𝑅𝑧 = (2nd ‘(𝑅‘(𝐺𝑣)))))
5453alrimiv 1920 . . . . . . 7 (𝜑 → ∀𝑧(⟨𝑣, 𝑧⟩ ∈ ran 𝑅𝑧 = (2nd ‘(𝑅‘(𝐺𝑣)))))
5554adantr 276 . . . . . 6 ((𝜑𝑣 ∈ (ℤ𝐶)) → ∀𝑧(⟨𝑣, 𝑧⟩ ∈ ran 𝑅𝑧 = (2nd ‘(𝑅‘(𝐺𝑣)))))
56 eqeq2 2239 . . . . . . . . 9 (𝑤 = (2nd ‘(𝑅‘(𝐺𝑣))) → (𝑧 = 𝑤𝑧 = (2nd ‘(𝑅‘(𝐺𝑣)))))
5756imbi2d 230 . . . . . . . 8 (𝑤 = (2nd ‘(𝑅‘(𝐺𝑣))) → ((⟨𝑣, 𝑧⟩ ∈ ran 𝑅𝑧 = 𝑤) ↔ (⟨𝑣, 𝑧⟩ ∈ ran 𝑅𝑧 = (2nd ‘(𝑅‘(𝐺𝑣))))))
5857albidv 1870 . . . . . . 7 (𝑤 = (2nd ‘(𝑅‘(𝐺𝑣))) → (∀𝑧(⟨𝑣, 𝑧⟩ ∈ ran 𝑅𝑧 = 𝑤) ↔ ∀𝑧(⟨𝑣, 𝑧⟩ ∈ ran 𝑅𝑧 = (2nd ‘(𝑅‘(𝐺𝑣))))))
5958spcegv 2891 . . . . . 6 ((2nd ‘(𝑅‘(𝐺𝑣))) ∈ 𝑆 → (∀𝑧(⟨𝑣, 𝑧⟩ ∈ ran 𝑅𝑧 = (2nd ‘(𝑅‘(𝐺𝑣)))) → ∃𝑤𝑧(⟨𝑣, 𝑧⟩ ∈ ran 𝑅𝑧 = 𝑤)))
6020, 55, 59sylc 62 . . . . 5 ((𝜑𝑣 ∈ (ℤ𝐶)) → ∃𝑤𝑧(⟨𝑣, 𝑧⟩ ∈ ran 𝑅𝑧 = 𝑤))
61 nfv 1574 . . . . . 6 𝑤𝑣, 𝑧⟩ ∈ ran 𝑅
6261mo2r 2130 . . . . 5 (∃𝑤𝑧(⟨𝑣, 𝑧⟩ ∈ ran 𝑅𝑧 = 𝑤) → ∃*𝑧𝑣, 𝑧⟩ ∈ ran 𝑅)
6360, 62syl 14 . . . 4 ((𝜑𝑣 ∈ (ℤ𝐶)) → ∃*𝑧𝑣, 𝑧⟩ ∈ ran 𝑅)
641, 2, 3, 4, 5frecuzrdgdom 10635 . . . . . 6 (𝜑 → dom ran 𝑅 = (ℤ𝐶))
6564eleq2d 2299 . . . . 5 (𝜑 → (𝑣 ∈ dom ran 𝑅𝑣 ∈ (ℤ𝐶)))
6665pm5.32i 454 . . . 4 ((𝜑𝑣 ∈ dom ran 𝑅) ↔ (𝜑𝑣 ∈ (ℤ𝐶)))
67 df-br 4083 . . . . 5 (𝑣ran 𝑅 𝑧 ↔ ⟨𝑣, 𝑧⟩ ∈ ran 𝑅)
6867mobii 2114 . . . 4 (∃*𝑧 𝑣ran 𝑅 𝑧 ↔ ∃*𝑧𝑣, 𝑧⟩ ∈ ran 𝑅)
6963, 66, 683imtr4i 201 . . 3 ((𝜑𝑣 ∈ dom ran 𝑅) → ∃*𝑧 𝑣ran 𝑅 𝑧)
7069ralrimiva 2603 . 2 (𝜑 → ∀𝑣 ∈ dom ran 𝑅∃*𝑧 𝑣ran 𝑅 𝑧)
71 dffun7 5344 . 2 (Fun ran 𝑅 ↔ (Rel ran 𝑅 ∧ ∀𝑣 ∈ dom ran 𝑅∃*𝑧 𝑣ran 𝑅 𝑧))
7212, 70, 71sylanbrc 417 1 (𝜑 → Fun ran 𝑅)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1393   = wceq 1395  wex 1538  ∃*wmo 2078  wcel 2200  wral 2508  wrex 2509  Vcvv 2799  wss 3197  cop 3669   class class class wbr 4082  cmpt 4144  ωcom 4681   × cxp 4716  ccnv 4717  dom cdm 4718  ran crn 4719  Rel wrel 4723  Fun wfun 5311   Fn wfn 5312  wf 5313  1-1-ontowf1o 5316  cfv 5317  (class class class)co 6000  cmpo 6002  1st c1st 6282  2nd c2nd 6283  freccfrec 6534  1c1 7996   + caddc 7998  cz 9442  cuz 9718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-n0 9366  df-z 9443  df-uz 9719
This theorem is referenced by:  frecuzrdgfun  10637
  Copyright terms: Public domain W3C validator