Step | Hyp | Ref
| Expression |
1 | | frecuzrdgrclt.c |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ ℤ) |
2 | | frecuzrdgrclt.a |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ 𝑆) |
3 | | frecuzrdgrclt.t |
. . . . . 6
⊢ (𝜑 → 𝑆 ⊆ 𝑇) |
4 | | frecuzrdgrclt.f |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) |
5 | | frecuzrdgrclt.r |
. . . . . 6
⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) |
6 | 1, 2, 3, 4, 5 | frecuzrdgrclt 10350 |
. . . . 5
⊢ (𝜑 → 𝑅:ω⟶((ℤ≥‘𝐶) × 𝑆)) |
7 | | frn 5346 |
. . . . 5
⊢ (𝑅:ω⟶((ℤ≥‘𝐶) × 𝑆) → ran 𝑅 ⊆ ((ℤ≥‘𝐶) × 𝑆)) |
8 | 6, 7 | syl 14 |
. . . 4
⊢ (𝜑 → ran 𝑅 ⊆
((ℤ≥‘𝐶) × 𝑆)) |
9 | | xpss 4712 |
. . . 4
⊢
((ℤ≥‘𝐶) × 𝑆) ⊆ (V × V) |
10 | 8, 9 | sstrdi 3154 |
. . 3
⊢ (𝜑 → ran 𝑅 ⊆ (V × V)) |
11 | | df-rel 4611 |
. . 3
⊢ (Rel ran
𝑅 ↔ ran 𝑅 ⊆ (V ×
V)) |
12 | 10, 11 | sylibr 133 |
. 2
⊢ (𝜑 → Rel ran 𝑅) |
13 | | frecuzrdgfunlem.g |
. . . . . . . . . 10
⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) |
14 | 1, 13 | frec2uzf1od 10341 |
. . . . . . . . 9
⊢ (𝜑 → 𝐺:ω–1-1-onto→(ℤ≥‘𝐶)) |
15 | | f1ocnvdm 5749 |
. . . . . . . . 9
⊢ ((𝐺:ω–1-1-onto→(ℤ≥‘𝐶) ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → (◡𝐺‘𝑣) ∈ ω) |
16 | 14, 15 | sylan 281 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → (◡𝐺‘𝑣) ∈ ω) |
17 | 6 | ffvelrnda 5620 |
. . . . . . . 8
⊢ ((𝜑 ∧ (◡𝐺‘𝑣) ∈ ω) → (𝑅‘(◡𝐺‘𝑣)) ∈
((ℤ≥‘𝐶) × 𝑆)) |
18 | 16, 17 | syldan 280 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → (𝑅‘(◡𝐺‘𝑣)) ∈
((ℤ≥‘𝐶) × 𝑆)) |
19 | | xp2nd 6134 |
. . . . . . 7
⊢ ((𝑅‘(◡𝐺‘𝑣)) ∈
((ℤ≥‘𝐶) × 𝑆) → (2nd ‘(𝑅‘(◡𝐺‘𝑣))) ∈ 𝑆) |
20 | 18, 19 | syl 14 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → (2nd
‘(𝑅‘(◡𝐺‘𝑣))) ∈ 𝑆) |
21 | | ffn 5337 |
. . . . . . . . . 10
⊢ (𝑅:ω⟶((ℤ≥‘𝐶) × 𝑆) → 𝑅 Fn ω) |
22 | | fvelrnb 5534 |
. . . . . . . . . 10
⊢ (𝑅 Fn ω → (〈𝑣, 𝑧〉 ∈ ran 𝑅 ↔ ∃𝑤 ∈ ω (𝑅‘𝑤) = 〈𝑣, 𝑧〉)) |
23 | 6, 21, 22 | 3syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (〈𝑣, 𝑧〉 ∈ ran 𝑅 ↔ ∃𝑤 ∈ ω (𝑅‘𝑤) = 〈𝑣, 𝑧〉)) |
24 | 6 | ffvelrnda 5620 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑤 ∈ ω) → (𝑅‘𝑤) ∈ ((ℤ≥‘𝐶) × 𝑆)) |
25 | | 1st2nd2 6143 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅‘𝑤) ∈ ((ℤ≥‘𝐶) × 𝑆) → (𝑅‘𝑤) = 〈(1st ‘(𝑅‘𝑤)), (2nd ‘(𝑅‘𝑤))〉) |
26 | 24, 25 | syl 14 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑤 ∈ ω) → (𝑅‘𝑤) = 〈(1st ‘(𝑅‘𝑤)), (2nd ‘(𝑅‘𝑤))〉) |
27 | 1 | adantr 274 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑤 ∈ ω) → 𝐶 ∈ ℤ) |
28 | 2 | adantr 274 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑤 ∈ ω) → 𝐴 ∈ 𝑆) |
29 | 3 | adantr 274 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑤 ∈ ω) → 𝑆 ⊆ 𝑇) |
30 | 4 | adantlr 469 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑤 ∈ ω) ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) |
31 | | simpr 109 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑤 ∈ ω) → 𝑤 ∈ ω) |
32 | 27, 28, 29, 30, 5, 31, 13 | frecuzrdgg 10351 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑤 ∈ ω) → (1st
‘(𝑅‘𝑤)) = (𝐺‘𝑤)) |
33 | 32 | opeq1d 3764 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑤 ∈ ω) → 〈(1st
‘(𝑅‘𝑤)), (2nd
‘(𝑅‘𝑤))〉 = 〈(𝐺‘𝑤), (2nd ‘(𝑅‘𝑤))〉) |
34 | 26, 33 | eqtrd 2198 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑤 ∈ ω) → (𝑅‘𝑤) = 〈(𝐺‘𝑤), (2nd ‘(𝑅‘𝑤))〉) |
35 | 34 | eqeq1d 2174 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑤 ∈ ω) → ((𝑅‘𝑤) = 〈𝑣, 𝑧〉 ↔ 〈(𝐺‘𝑤), (2nd ‘(𝑅‘𝑤))〉 = 〈𝑣, 𝑧〉)) |
36 | | vex 2729 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑣 ∈ V |
37 | | vex 2729 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑧 ∈ V |
38 | 36, 37 | opth2 4218 |
. . . . . . . . . . . . . . . . 17
⊢
(〈(𝐺‘𝑤), (2nd ‘(𝑅‘𝑤))〉 = 〈𝑣, 𝑧〉 ↔ ((𝐺‘𝑤) = 𝑣 ∧ (2nd ‘(𝑅‘𝑤)) = 𝑧)) |
39 | 38 | simplbi 272 |
. . . . . . . . . . . . . . . 16
⊢
(〈(𝐺‘𝑤), (2nd ‘(𝑅‘𝑤))〉 = 〈𝑣, 𝑧〉 → (𝐺‘𝑤) = 𝑣) |
40 | 35, 39 | syl6bi 162 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑤 ∈ ω) → ((𝑅‘𝑤) = 〈𝑣, 𝑧〉 → (𝐺‘𝑤) = 𝑣)) |
41 | | f1ocnvfv 5747 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺:ω–1-1-onto→(ℤ≥‘𝐶) ∧ 𝑤 ∈ ω) → ((𝐺‘𝑤) = 𝑣 → (◡𝐺‘𝑣) = 𝑤)) |
42 | 14, 41 | sylan 281 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑤 ∈ ω) → ((𝐺‘𝑤) = 𝑣 → (◡𝐺‘𝑣) = 𝑤)) |
43 | 40, 42 | syld 45 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑤 ∈ ω) → ((𝑅‘𝑤) = 〈𝑣, 𝑧〉 → (◡𝐺‘𝑣) = 𝑤)) |
44 | | fveq2 5486 |
. . . . . . . . . . . . . . 15
⊢ ((◡𝐺‘𝑣) = 𝑤 → (𝑅‘(◡𝐺‘𝑣)) = (𝑅‘𝑤)) |
45 | 44 | fveq2d 5490 |
. . . . . . . . . . . . . 14
⊢ ((◡𝐺‘𝑣) = 𝑤 → (2nd ‘(𝑅‘(◡𝐺‘𝑣))) = (2nd ‘(𝑅‘𝑤))) |
46 | 43, 45 | syl6 33 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑤 ∈ ω) → ((𝑅‘𝑤) = 〈𝑣, 𝑧〉 → (2nd ‘(𝑅‘(◡𝐺‘𝑣))) = (2nd ‘(𝑅‘𝑤)))) |
47 | 46 | imp 123 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑤 ∈ ω) ∧ (𝑅‘𝑤) = 〈𝑣, 𝑧〉) → (2nd ‘(𝑅‘(◡𝐺‘𝑣))) = (2nd ‘(𝑅‘𝑤))) |
48 | 36, 37 | op2ndd 6117 |
. . . . . . . . . . . . 13
⊢ ((𝑅‘𝑤) = 〈𝑣, 𝑧〉 → (2nd ‘(𝑅‘𝑤)) = 𝑧) |
49 | 48 | adantl 275 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑤 ∈ ω) ∧ (𝑅‘𝑤) = 〈𝑣, 𝑧〉) → (2nd ‘(𝑅‘𝑤)) = 𝑧) |
50 | 47, 49 | eqtr2d 2199 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑤 ∈ ω) ∧ (𝑅‘𝑤) = 〈𝑣, 𝑧〉) → 𝑧 = (2nd ‘(𝑅‘(◡𝐺‘𝑣)))) |
51 | 50 | ex 114 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑤 ∈ ω) → ((𝑅‘𝑤) = 〈𝑣, 𝑧〉 → 𝑧 = (2nd ‘(𝑅‘(◡𝐺‘𝑣))))) |
52 | 51 | rexlimdva 2583 |
. . . . . . . . 9
⊢ (𝜑 → (∃𝑤 ∈ ω (𝑅‘𝑤) = 〈𝑣, 𝑧〉 → 𝑧 = (2nd ‘(𝑅‘(◡𝐺‘𝑣))))) |
53 | 23, 52 | sylbid 149 |
. . . . . . . 8
⊢ (𝜑 → (〈𝑣, 𝑧〉 ∈ ran 𝑅 → 𝑧 = (2nd ‘(𝑅‘(◡𝐺‘𝑣))))) |
54 | 53 | alrimiv 1862 |
. . . . . . 7
⊢ (𝜑 → ∀𝑧(〈𝑣, 𝑧〉 ∈ ran 𝑅 → 𝑧 = (2nd ‘(𝑅‘(◡𝐺‘𝑣))))) |
55 | 54 | adantr 274 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → ∀𝑧(〈𝑣, 𝑧〉 ∈ ran 𝑅 → 𝑧 = (2nd ‘(𝑅‘(◡𝐺‘𝑣))))) |
56 | | eqeq2 2175 |
. . . . . . . . 9
⊢ (𝑤 = (2nd ‘(𝑅‘(◡𝐺‘𝑣))) → (𝑧 = 𝑤 ↔ 𝑧 = (2nd ‘(𝑅‘(◡𝐺‘𝑣))))) |
57 | 56 | imbi2d 229 |
. . . . . . . 8
⊢ (𝑤 = (2nd ‘(𝑅‘(◡𝐺‘𝑣))) → ((〈𝑣, 𝑧〉 ∈ ran 𝑅 → 𝑧 = 𝑤) ↔ (〈𝑣, 𝑧〉 ∈ ran 𝑅 → 𝑧 = (2nd ‘(𝑅‘(◡𝐺‘𝑣)))))) |
58 | 57 | albidv 1812 |
. . . . . . 7
⊢ (𝑤 = (2nd ‘(𝑅‘(◡𝐺‘𝑣))) → (∀𝑧(〈𝑣, 𝑧〉 ∈ ran 𝑅 → 𝑧 = 𝑤) ↔ ∀𝑧(〈𝑣, 𝑧〉 ∈ ran 𝑅 → 𝑧 = (2nd ‘(𝑅‘(◡𝐺‘𝑣)))))) |
59 | 58 | spcegv 2814 |
. . . . . 6
⊢
((2nd ‘(𝑅‘(◡𝐺‘𝑣))) ∈ 𝑆 → (∀𝑧(〈𝑣, 𝑧〉 ∈ ran 𝑅 → 𝑧 = (2nd ‘(𝑅‘(◡𝐺‘𝑣)))) → ∃𝑤∀𝑧(〈𝑣, 𝑧〉 ∈ ran 𝑅 → 𝑧 = 𝑤))) |
60 | 20, 55, 59 | sylc 62 |
. . . . 5
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → ∃𝑤∀𝑧(〈𝑣, 𝑧〉 ∈ ran 𝑅 → 𝑧 = 𝑤)) |
61 | | nfv 1516 |
. . . . . 6
⊢
Ⅎ𝑤〈𝑣, 𝑧〉 ∈ ran 𝑅 |
62 | 61 | mo2r 2066 |
. . . . 5
⊢
(∃𝑤∀𝑧(〈𝑣, 𝑧〉 ∈ ran 𝑅 → 𝑧 = 𝑤) → ∃*𝑧〈𝑣, 𝑧〉 ∈ ran 𝑅) |
63 | 60, 62 | syl 14 |
. . . 4
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → ∃*𝑧〈𝑣, 𝑧〉 ∈ ran 𝑅) |
64 | 1, 2, 3, 4, 5 | frecuzrdgdom 10353 |
. . . . . 6
⊢ (𝜑 → dom ran 𝑅 = (ℤ≥‘𝐶)) |
65 | 64 | eleq2d 2236 |
. . . . 5
⊢ (𝜑 → (𝑣 ∈ dom ran 𝑅 ↔ 𝑣 ∈ (ℤ≥‘𝐶))) |
66 | 65 | pm5.32i 450 |
. . . 4
⊢ ((𝜑 ∧ 𝑣 ∈ dom ran 𝑅) ↔ (𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶))) |
67 | | df-br 3983 |
. . . . 5
⊢ (𝑣ran 𝑅 𝑧 ↔ 〈𝑣, 𝑧〉 ∈ ran 𝑅) |
68 | 67 | mobii 2051 |
. . . 4
⊢
(∃*𝑧 𝑣ran 𝑅 𝑧 ↔ ∃*𝑧〈𝑣, 𝑧〉 ∈ ran 𝑅) |
69 | 63, 66, 68 | 3imtr4i 200 |
. . 3
⊢ ((𝜑 ∧ 𝑣 ∈ dom ran 𝑅) → ∃*𝑧 𝑣ran 𝑅 𝑧) |
70 | 69 | ralrimiva 2539 |
. 2
⊢ (𝜑 → ∀𝑣 ∈ dom ran 𝑅∃*𝑧 𝑣ran 𝑅 𝑧) |
71 | | dffun7 5215 |
. 2
⊢ (Fun ran
𝑅 ↔ (Rel ran 𝑅 ∧ ∀𝑣 ∈ dom ran 𝑅∃*𝑧 𝑣ran 𝑅 𝑧)) |
72 | 12, 70, 71 | sylanbrc 414 |
1
⊢ (𝜑 → Fun ran 𝑅) |