| Step | Hyp | Ref
| Expression |
| 1 | | frecuzrdgtcl.3 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑇 = ran 𝑅) |
| 2 | 1 | eleq2d 2266 |
. . . . . . . . 9
⊢ (𝜑 → (𝑧 ∈ 𝑇 ↔ 𝑧 ∈ ran 𝑅)) |
| 3 | | frec2uz.1 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐶 ∈ ℤ) |
| 4 | | frec2uz.2 |
. . . . . . . . . . 11
⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) |
| 5 | | frecuzrdgrrn.a |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈ 𝑆) |
| 6 | | frecuzrdgrrn.f |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) |
| 7 | | frecuzrdgrrn.2 |
. . . . . . . . . . 11
⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) |
| 8 | 3, 4, 5, 6, 7 | frecuzrdgrcl 10502 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑅:ω⟶((ℤ≥‘𝐶) × 𝑆)) |
| 9 | | ffn 5407 |
. . . . . . . . . 10
⊢ (𝑅:ω⟶((ℤ≥‘𝐶) × 𝑆) → 𝑅 Fn ω) |
| 10 | | fvelrnb 5608 |
. . . . . . . . . 10
⊢ (𝑅 Fn ω → (𝑧 ∈ ran 𝑅 ↔ ∃𝑤 ∈ ω (𝑅‘𝑤) = 𝑧)) |
| 11 | 8, 9, 10 | 3syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝑧 ∈ ran 𝑅 ↔ ∃𝑤 ∈ ω (𝑅‘𝑤) = 𝑧)) |
| 12 | 2, 11 | bitrd 188 |
. . . . . . . 8
⊢ (𝜑 → (𝑧 ∈ 𝑇 ↔ ∃𝑤 ∈ ω (𝑅‘𝑤) = 𝑧)) |
| 13 | 3, 4, 5, 6, 7 | frecuzrdgrrn 10500 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑤 ∈ ω) → (𝑅‘𝑤) ∈ ((ℤ≥‘𝐶) × 𝑆)) |
| 14 | | eleq1 2259 |
. . . . . . . . . 10
⊢ ((𝑅‘𝑤) = 𝑧 → ((𝑅‘𝑤) ∈ ((ℤ≥‘𝐶) × 𝑆) ↔ 𝑧 ∈ ((ℤ≥‘𝐶) × 𝑆))) |
| 15 | 13, 14 | syl5ibcom 155 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ ω) → ((𝑅‘𝑤) = 𝑧 → 𝑧 ∈ ((ℤ≥‘𝐶) × 𝑆))) |
| 16 | 15 | rexlimdva 2614 |
. . . . . . . 8
⊢ (𝜑 → (∃𝑤 ∈ ω (𝑅‘𝑤) = 𝑧 → 𝑧 ∈ ((ℤ≥‘𝐶) × 𝑆))) |
| 17 | 12, 16 | sylbid 150 |
. . . . . . 7
⊢ (𝜑 → (𝑧 ∈ 𝑇 → 𝑧 ∈ ((ℤ≥‘𝐶) × 𝑆))) |
| 18 | 17 | ssrdv 3189 |
. . . . . 6
⊢ (𝜑 → 𝑇 ⊆
((ℤ≥‘𝐶) × 𝑆)) |
| 19 | | xpss 4771 |
. . . . . 6
⊢
((ℤ≥‘𝐶) × 𝑆) ⊆ (V × V) |
| 20 | 18, 19 | sstrdi 3195 |
. . . . 5
⊢ (𝜑 → 𝑇 ⊆ (V × V)) |
| 21 | | df-rel 4670 |
. . . . 5
⊢ (Rel
𝑇 ↔ 𝑇 ⊆ (V × V)) |
| 22 | 20, 21 | sylibr 134 |
. . . 4
⊢ (𝜑 → Rel 𝑇) |
| 23 | 3, 4 | frec2uzf1od 10498 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐺:ω–1-1-onto→(ℤ≥‘𝐶)) |
| 24 | | f1ocnvdm 5828 |
. . . . . . . . . . 11
⊢ ((𝐺:ω–1-1-onto→(ℤ≥‘𝐶) ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → (◡𝐺‘𝑣) ∈ ω) |
| 25 | 23, 24 | sylan 283 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → (◡𝐺‘𝑣) ∈ ω) |
| 26 | 3, 4, 5, 6, 7 | frecuzrdgrrn 10500 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (◡𝐺‘𝑣) ∈ ω) → (𝑅‘(◡𝐺‘𝑣)) ∈
((ℤ≥‘𝐶) × 𝑆)) |
| 27 | 25, 26 | syldan 282 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → (𝑅‘(◡𝐺‘𝑣)) ∈
((ℤ≥‘𝐶) × 𝑆)) |
| 28 | | xp2nd 6224 |
. . . . . . . . 9
⊢ ((𝑅‘(◡𝐺‘𝑣)) ∈
((ℤ≥‘𝐶) × 𝑆) → (2nd ‘(𝑅‘(◡𝐺‘𝑣))) ∈ 𝑆) |
| 29 | 27, 28 | syl 14 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → (2nd
‘(𝑅‘(◡𝐺‘𝑣))) ∈ 𝑆) |
| 30 | 1 | eleq2d 2266 |
. . . . . . . . . . . 12
⊢ (𝜑 → (〈𝑣, 𝑧〉 ∈ 𝑇 ↔ 〈𝑣, 𝑧〉 ∈ ran 𝑅)) |
| 31 | | fvelrnb 5608 |
. . . . . . . . . . . . 13
⊢ (𝑅 Fn ω → (〈𝑣, 𝑧〉 ∈ ran 𝑅 ↔ ∃𝑤 ∈ ω (𝑅‘𝑤) = 〈𝑣, 𝑧〉)) |
| 32 | 8, 9, 31 | 3syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (〈𝑣, 𝑧〉 ∈ ran 𝑅 ↔ ∃𝑤 ∈ ω (𝑅‘𝑤) = 〈𝑣, 𝑧〉)) |
| 33 | 30, 32 | bitrd 188 |
. . . . . . . . . . 11
⊢ (𝜑 → (〈𝑣, 𝑧〉 ∈ 𝑇 ↔ ∃𝑤 ∈ ω (𝑅‘𝑤) = 〈𝑣, 𝑧〉)) |
| 34 | 3 | adantr 276 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑤 ∈ ω) → 𝐶 ∈ ℤ) |
| 35 | 5 | adantr 276 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑤 ∈ ω) → 𝐴 ∈ 𝑆) |
| 36 | 6 | adantlr 477 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑤 ∈ ω) ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) |
| 37 | | simpr 110 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑤 ∈ ω) → 𝑤 ∈ ω) |
| 38 | 34, 4, 35, 36, 7, 37 | frec2uzrdg 10501 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑤 ∈ ω) → (𝑅‘𝑤) = 〈(𝐺‘𝑤), (2nd ‘(𝑅‘𝑤))〉) |
| 39 | 38 | eqeq1d 2205 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑤 ∈ ω) → ((𝑅‘𝑤) = 〈𝑣, 𝑧〉 ↔ 〈(𝐺‘𝑤), (2nd ‘(𝑅‘𝑤))〉 = 〈𝑣, 𝑧〉)) |
| 40 | | vex 2766 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑣 ∈ V |
| 41 | | vex 2766 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑧 ∈ V |
| 42 | 40, 41 | opth2 4273 |
. . . . . . . . . . . . . . . . . . 19
⊢
(〈(𝐺‘𝑤), (2nd ‘(𝑅‘𝑤))〉 = 〈𝑣, 𝑧〉 ↔ ((𝐺‘𝑤) = 𝑣 ∧ (2nd ‘(𝑅‘𝑤)) = 𝑧)) |
| 43 | 42 | simplbi 274 |
. . . . . . . . . . . . . . . . . 18
⊢
(〈(𝐺‘𝑤), (2nd ‘(𝑅‘𝑤))〉 = 〈𝑣, 𝑧〉 → (𝐺‘𝑤) = 𝑣) |
| 44 | 39, 43 | biimtrdi 163 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑤 ∈ ω) → ((𝑅‘𝑤) = 〈𝑣, 𝑧〉 → (𝐺‘𝑤) = 𝑣)) |
| 45 | | f1ocnvfv 5826 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐺:ω–1-1-onto→(ℤ≥‘𝐶) ∧ 𝑤 ∈ ω) → ((𝐺‘𝑤) = 𝑣 → (◡𝐺‘𝑣) = 𝑤)) |
| 46 | 23, 45 | sylan 283 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑤 ∈ ω) → ((𝐺‘𝑤) = 𝑣 → (◡𝐺‘𝑣) = 𝑤)) |
| 47 | 44, 46 | syld 45 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑤 ∈ ω) → ((𝑅‘𝑤) = 〈𝑣, 𝑧〉 → (◡𝐺‘𝑣) = 𝑤)) |
| 48 | | fveq2 5558 |
. . . . . . . . . . . . . . . . 17
⊢ ((◡𝐺‘𝑣) = 𝑤 → (𝑅‘(◡𝐺‘𝑣)) = (𝑅‘𝑤)) |
| 49 | 48 | fveq2d 5562 |
. . . . . . . . . . . . . . . 16
⊢ ((◡𝐺‘𝑣) = 𝑤 → (2nd ‘(𝑅‘(◡𝐺‘𝑣))) = (2nd ‘(𝑅‘𝑤))) |
| 50 | 47, 49 | syl6 33 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑤 ∈ ω) → ((𝑅‘𝑤) = 〈𝑣, 𝑧〉 → (2nd ‘(𝑅‘(◡𝐺‘𝑣))) = (2nd ‘(𝑅‘𝑤)))) |
| 51 | 50 | imp 124 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑤 ∈ ω) ∧ (𝑅‘𝑤) = 〈𝑣, 𝑧〉) → (2nd ‘(𝑅‘(◡𝐺‘𝑣))) = (2nd ‘(𝑅‘𝑤))) |
| 52 | 40, 41 | op2ndd 6207 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅‘𝑤) = 〈𝑣, 𝑧〉 → (2nd ‘(𝑅‘𝑤)) = 𝑧) |
| 53 | 52 | adantl 277 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑤 ∈ ω) ∧ (𝑅‘𝑤) = 〈𝑣, 𝑧〉) → (2nd ‘(𝑅‘𝑤)) = 𝑧) |
| 54 | 51, 53 | eqtr2d 2230 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑤 ∈ ω) ∧ (𝑅‘𝑤) = 〈𝑣, 𝑧〉) → 𝑧 = (2nd ‘(𝑅‘(◡𝐺‘𝑣)))) |
| 55 | 54 | ex 115 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑤 ∈ ω) → ((𝑅‘𝑤) = 〈𝑣, 𝑧〉 → 𝑧 = (2nd ‘(𝑅‘(◡𝐺‘𝑣))))) |
| 56 | 55 | rexlimdva 2614 |
. . . . . . . . . . 11
⊢ (𝜑 → (∃𝑤 ∈ ω (𝑅‘𝑤) = 〈𝑣, 𝑧〉 → 𝑧 = (2nd ‘(𝑅‘(◡𝐺‘𝑣))))) |
| 57 | 33, 56 | sylbid 150 |
. . . . . . . . . 10
⊢ (𝜑 → (〈𝑣, 𝑧〉 ∈ 𝑇 → 𝑧 = (2nd ‘(𝑅‘(◡𝐺‘𝑣))))) |
| 58 | 57 | alrimiv 1888 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑧(〈𝑣, 𝑧〉 ∈ 𝑇 → 𝑧 = (2nd ‘(𝑅‘(◡𝐺‘𝑣))))) |
| 59 | 58 | adantr 276 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → ∀𝑧(〈𝑣, 𝑧〉 ∈ 𝑇 → 𝑧 = (2nd ‘(𝑅‘(◡𝐺‘𝑣))))) |
| 60 | | eqeq2 2206 |
. . . . . . . . . . 11
⊢ (𝑤 = (2nd ‘(𝑅‘(◡𝐺‘𝑣))) → (𝑧 = 𝑤 ↔ 𝑧 = (2nd ‘(𝑅‘(◡𝐺‘𝑣))))) |
| 61 | 60 | imbi2d 230 |
. . . . . . . . . 10
⊢ (𝑤 = (2nd ‘(𝑅‘(◡𝐺‘𝑣))) → ((〈𝑣, 𝑧〉 ∈ 𝑇 → 𝑧 = 𝑤) ↔ (〈𝑣, 𝑧〉 ∈ 𝑇 → 𝑧 = (2nd ‘(𝑅‘(◡𝐺‘𝑣)))))) |
| 62 | 61 | albidv 1838 |
. . . . . . . . 9
⊢ (𝑤 = (2nd ‘(𝑅‘(◡𝐺‘𝑣))) → (∀𝑧(〈𝑣, 𝑧〉 ∈ 𝑇 → 𝑧 = 𝑤) ↔ ∀𝑧(〈𝑣, 𝑧〉 ∈ 𝑇 → 𝑧 = (2nd ‘(𝑅‘(◡𝐺‘𝑣)))))) |
| 63 | 62 | spcegv 2852 |
. . . . . . . 8
⊢
((2nd ‘(𝑅‘(◡𝐺‘𝑣))) ∈ 𝑆 → (∀𝑧(〈𝑣, 𝑧〉 ∈ 𝑇 → 𝑧 = (2nd ‘(𝑅‘(◡𝐺‘𝑣)))) → ∃𝑤∀𝑧(〈𝑣, 𝑧〉 ∈ 𝑇 → 𝑧 = 𝑤))) |
| 64 | 29, 59, 63 | sylc 62 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → ∃𝑤∀𝑧(〈𝑣, 𝑧〉 ∈ 𝑇 → 𝑧 = 𝑤)) |
| 65 | | nfv 1542 |
. . . . . . . 8
⊢
Ⅎ𝑤〈𝑣, 𝑧〉 ∈ 𝑇 |
| 66 | 65 | mo2r 2097 |
. . . . . . 7
⊢
(∃𝑤∀𝑧(〈𝑣, 𝑧〉 ∈ 𝑇 → 𝑧 = 𝑤) → ∃*𝑧〈𝑣, 𝑧〉 ∈ 𝑇) |
| 67 | 64, 66 | syl 14 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → ∃*𝑧〈𝑣, 𝑧〉 ∈ 𝑇) |
| 68 | | dmss 4865 |
. . . . . . . . . . 11
⊢ (𝑇 ⊆
((ℤ≥‘𝐶) × 𝑆) → dom 𝑇 ⊆ dom
((ℤ≥‘𝐶) × 𝑆)) |
| 69 | 18, 68 | syl 14 |
. . . . . . . . . 10
⊢ (𝜑 → dom 𝑇 ⊆ dom
((ℤ≥‘𝐶) × 𝑆)) |
| 70 | | dmxpss 5100 |
. . . . . . . . . 10
⊢ dom
((ℤ≥‘𝐶) × 𝑆) ⊆
(ℤ≥‘𝐶) |
| 71 | 69, 70 | sstrdi 3195 |
. . . . . . . . 9
⊢ (𝜑 → dom 𝑇 ⊆ (ℤ≥‘𝐶)) |
| 72 | 3 | adantr 276 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → 𝐶 ∈ ℤ) |
| 73 | 5 | adantr 276 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → 𝐴 ∈ 𝑆) |
| 74 | 6 | adantlr 477 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) |
| 75 | | simpr 110 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → 𝑣 ∈ (ℤ≥‘𝐶)) |
| 76 | 72, 4, 73, 74, 7, 75 | frecuzrdglem 10503 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → 〈𝑣, (2nd ‘(𝑅‘(◡𝐺‘𝑣)))〉 ∈ ran 𝑅) |
| 77 | 1 | eleq2d 2266 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (〈𝑣, (2nd ‘(𝑅‘(◡𝐺‘𝑣)))〉 ∈ 𝑇 ↔ 〈𝑣, (2nd ‘(𝑅‘(◡𝐺‘𝑣)))〉 ∈ ran 𝑅)) |
| 78 | 77 | adantr 276 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → (〈𝑣, (2nd ‘(𝑅‘(◡𝐺‘𝑣)))〉 ∈ 𝑇 ↔ 〈𝑣, (2nd ‘(𝑅‘(◡𝐺‘𝑣)))〉 ∈ ran 𝑅)) |
| 79 | 76, 78 | mpbird 167 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → 〈𝑣, (2nd ‘(𝑅‘(◡𝐺‘𝑣)))〉 ∈ 𝑇) |
| 80 | | opeldmg 4871 |
. . . . . . . . . . . . 13
⊢ ((𝑣 ∈ V ∧ (2nd
‘(𝑅‘(◡𝐺‘𝑣))) ∈ 𝑆) → (〈𝑣, (2nd ‘(𝑅‘(◡𝐺‘𝑣)))〉 ∈ 𝑇 → 𝑣 ∈ dom 𝑇)) |
| 81 | 40, 80 | mpan 424 |
. . . . . . . . . . . 12
⊢
((2nd ‘(𝑅‘(◡𝐺‘𝑣))) ∈ 𝑆 → (〈𝑣, (2nd ‘(𝑅‘(◡𝐺‘𝑣)))〉 ∈ 𝑇 → 𝑣 ∈ dom 𝑇)) |
| 82 | 29, 79, 81 | sylc 62 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → 𝑣 ∈ dom 𝑇) |
| 83 | 82 | ex 115 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑣 ∈ (ℤ≥‘𝐶) → 𝑣 ∈ dom 𝑇)) |
| 84 | 83 | ssrdv 3189 |
. . . . . . . . 9
⊢ (𝜑 →
(ℤ≥‘𝐶) ⊆ dom 𝑇) |
| 85 | 71, 84 | eqssd 3200 |
. . . . . . . 8
⊢ (𝜑 → dom 𝑇 = (ℤ≥‘𝐶)) |
| 86 | 85 | eleq2d 2266 |
. . . . . . 7
⊢ (𝜑 → (𝑣 ∈ dom 𝑇 ↔ 𝑣 ∈ (ℤ≥‘𝐶))) |
| 87 | 86 | pm5.32i 454 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑣 ∈ dom 𝑇) ↔ (𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶))) |
| 88 | | df-br 4034 |
. . . . . . 7
⊢ (𝑣𝑇𝑧 ↔ 〈𝑣, 𝑧〉 ∈ 𝑇) |
| 89 | 88 | mobii 2082 |
. . . . . 6
⊢
(∃*𝑧 𝑣𝑇𝑧 ↔ ∃*𝑧〈𝑣, 𝑧〉 ∈ 𝑇) |
| 90 | 67, 87, 89 | 3imtr4i 201 |
. . . . 5
⊢ ((𝜑 ∧ 𝑣 ∈ dom 𝑇) → ∃*𝑧 𝑣𝑇𝑧) |
| 91 | 90 | ralrimiva 2570 |
. . . 4
⊢ (𝜑 → ∀𝑣 ∈ dom 𝑇∃*𝑧 𝑣𝑇𝑧) |
| 92 | | dffun7 5285 |
. . . 4
⊢ (Fun
𝑇 ↔ (Rel 𝑇 ∧ ∀𝑣 ∈ dom 𝑇∃*𝑧 𝑣𝑇𝑧)) |
| 93 | 22, 91, 92 | sylanbrc 417 |
. . 3
⊢ (𝜑 → Fun 𝑇) |
| 94 | | df-fn 5261 |
. . 3
⊢ (𝑇 Fn
(ℤ≥‘𝐶) ↔ (Fun 𝑇 ∧ dom 𝑇 = (ℤ≥‘𝐶))) |
| 95 | 93, 85, 94 | sylanbrc 417 |
. 2
⊢ (𝜑 → 𝑇 Fn (ℤ≥‘𝐶)) |
| 96 | | rnss 4896 |
. . . 4
⊢ (𝑇 ⊆
((ℤ≥‘𝐶) × 𝑆) → ran 𝑇 ⊆ ran
((ℤ≥‘𝐶) × 𝑆)) |
| 97 | 18, 96 | syl 14 |
. . 3
⊢ (𝜑 → ran 𝑇 ⊆ ran
((ℤ≥‘𝐶) × 𝑆)) |
| 98 | | rnxpss 5101 |
. . 3
⊢ ran
((ℤ≥‘𝐶) × 𝑆) ⊆ 𝑆 |
| 99 | 97, 98 | sstrdi 3195 |
. 2
⊢ (𝜑 → ran 𝑇 ⊆ 𝑆) |
| 100 | | df-f 5262 |
. 2
⊢ (𝑇:(ℤ≥‘𝐶)⟶𝑆 ↔ (𝑇 Fn (ℤ≥‘𝐶) ∧ ran 𝑇 ⊆ 𝑆)) |
| 101 | 95, 99, 100 | sylanbrc 417 |
1
⊢ (𝜑 → 𝑇:(ℤ≥‘𝐶)⟶𝑆) |