ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecuzrdgtcl GIF version

Theorem frecuzrdgtcl 10483
Description: The recursive definition generator on upper integers is a function. See comment in frec2uz0d 10470 for the description of 𝐺 as the mapping from ω to (ℤ𝐶). (Contributed by Jim Kingdon, 26-May-2020.)
Hypotheses
Ref Expression
frec2uz.1 (𝜑𝐶 ∈ ℤ)
frec2uz.2 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
frecuzrdgrrn.a (𝜑𝐴𝑆)
frecuzrdgrrn.f ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
frecuzrdgrrn.2 𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)
frecuzrdgtcl.3 (𝜑𝑇 = ran 𝑅)
Assertion
Ref Expression
frecuzrdgtcl (𝜑𝑇:(ℤ𝐶)⟶𝑆)
Distinct variable groups:   𝑦,𝐴   𝑥,𝐶,𝑦   𝑦,𝐺   𝑥,𝐹,𝑦   𝑥,𝑆,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝑅(𝑥,𝑦)   𝑇(𝑥,𝑦)   𝐺(𝑥)

Proof of Theorem frecuzrdgtcl
Dummy variables 𝑤 𝑧 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frecuzrdgtcl.3 . . . . . . . . . 10 (𝜑𝑇 = ran 𝑅)
21eleq2d 2263 . . . . . . . . 9 (𝜑 → (𝑧𝑇𝑧 ∈ ran 𝑅))
3 frec2uz.1 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℤ)
4 frec2uz.2 . . . . . . . . . . 11 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
5 frecuzrdgrrn.a . . . . . . . . . . 11 (𝜑𝐴𝑆)
6 frecuzrdgrrn.f . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
7 frecuzrdgrrn.2 . . . . . . . . . . 11 𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)
83, 4, 5, 6, 7frecuzrdgrcl 10481 . . . . . . . . . 10 (𝜑𝑅:ω⟶((ℤ𝐶) × 𝑆))
9 ffn 5403 . . . . . . . . . 10 (𝑅:ω⟶((ℤ𝐶) × 𝑆) → 𝑅 Fn ω)
10 fvelrnb 5604 . . . . . . . . . 10 (𝑅 Fn ω → (𝑧 ∈ ran 𝑅 ↔ ∃𝑤 ∈ ω (𝑅𝑤) = 𝑧))
118, 9, 103syl 17 . . . . . . . . 9 (𝜑 → (𝑧 ∈ ran 𝑅 ↔ ∃𝑤 ∈ ω (𝑅𝑤) = 𝑧))
122, 11bitrd 188 . . . . . . . 8 (𝜑 → (𝑧𝑇 ↔ ∃𝑤 ∈ ω (𝑅𝑤) = 𝑧))
133, 4, 5, 6, 7frecuzrdgrrn 10479 . . . . . . . . . 10 ((𝜑𝑤 ∈ ω) → (𝑅𝑤) ∈ ((ℤ𝐶) × 𝑆))
14 eleq1 2256 . . . . . . . . . 10 ((𝑅𝑤) = 𝑧 → ((𝑅𝑤) ∈ ((ℤ𝐶) × 𝑆) ↔ 𝑧 ∈ ((ℤ𝐶) × 𝑆)))
1513, 14syl5ibcom 155 . . . . . . . . 9 ((𝜑𝑤 ∈ ω) → ((𝑅𝑤) = 𝑧𝑧 ∈ ((ℤ𝐶) × 𝑆)))
1615rexlimdva 2611 . . . . . . . 8 (𝜑 → (∃𝑤 ∈ ω (𝑅𝑤) = 𝑧𝑧 ∈ ((ℤ𝐶) × 𝑆)))
1712, 16sylbid 150 . . . . . . 7 (𝜑 → (𝑧𝑇𝑧 ∈ ((ℤ𝐶) × 𝑆)))
1817ssrdv 3185 . . . . . 6 (𝜑𝑇 ⊆ ((ℤ𝐶) × 𝑆))
19 xpss 4767 . . . . . 6 ((ℤ𝐶) × 𝑆) ⊆ (V × V)
2018, 19sstrdi 3191 . . . . 5 (𝜑𝑇 ⊆ (V × V))
21 df-rel 4666 . . . . 5 (Rel 𝑇𝑇 ⊆ (V × V))
2220, 21sylibr 134 . . . 4 (𝜑 → Rel 𝑇)
233, 4frec2uzf1od 10477 . . . . . . . . . . 11 (𝜑𝐺:ω–1-1-onto→(ℤ𝐶))
24 f1ocnvdm 5824 . . . . . . . . . . 11 ((𝐺:ω–1-1-onto→(ℤ𝐶) ∧ 𝑣 ∈ (ℤ𝐶)) → (𝐺𝑣) ∈ ω)
2523, 24sylan 283 . . . . . . . . . 10 ((𝜑𝑣 ∈ (ℤ𝐶)) → (𝐺𝑣) ∈ ω)
263, 4, 5, 6, 7frecuzrdgrrn 10479 . . . . . . . . . 10 ((𝜑 ∧ (𝐺𝑣) ∈ ω) → (𝑅‘(𝐺𝑣)) ∈ ((ℤ𝐶) × 𝑆))
2725, 26syldan 282 . . . . . . . . 9 ((𝜑𝑣 ∈ (ℤ𝐶)) → (𝑅‘(𝐺𝑣)) ∈ ((ℤ𝐶) × 𝑆))
28 xp2nd 6219 . . . . . . . . 9 ((𝑅‘(𝐺𝑣)) ∈ ((ℤ𝐶) × 𝑆) → (2nd ‘(𝑅‘(𝐺𝑣))) ∈ 𝑆)
2927, 28syl 14 . . . . . . . 8 ((𝜑𝑣 ∈ (ℤ𝐶)) → (2nd ‘(𝑅‘(𝐺𝑣))) ∈ 𝑆)
301eleq2d 2263 . . . . . . . . . . . 12 (𝜑 → (⟨𝑣, 𝑧⟩ ∈ 𝑇 ↔ ⟨𝑣, 𝑧⟩ ∈ ran 𝑅))
31 fvelrnb 5604 . . . . . . . . . . . . 13 (𝑅 Fn ω → (⟨𝑣, 𝑧⟩ ∈ ran 𝑅 ↔ ∃𝑤 ∈ ω (𝑅𝑤) = ⟨𝑣, 𝑧⟩))
328, 9, 313syl 17 . . . . . . . . . . . 12 (𝜑 → (⟨𝑣, 𝑧⟩ ∈ ran 𝑅 ↔ ∃𝑤 ∈ ω (𝑅𝑤) = ⟨𝑣, 𝑧⟩))
3330, 32bitrd 188 . . . . . . . . . . 11 (𝜑 → (⟨𝑣, 𝑧⟩ ∈ 𝑇 ↔ ∃𝑤 ∈ ω (𝑅𝑤) = ⟨𝑣, 𝑧⟩))
343adantr 276 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ ω) → 𝐶 ∈ ℤ)
355adantr 276 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ ω) → 𝐴𝑆)
366adantlr 477 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑤 ∈ ω) ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
37 simpr 110 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ ω) → 𝑤 ∈ ω)
3834, 4, 35, 36, 7, 37frec2uzrdg 10480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ∈ ω) → (𝑅𝑤) = ⟨(𝐺𝑤), (2nd ‘(𝑅𝑤))⟩)
3938eqeq1d 2202 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ ω) → ((𝑅𝑤) = ⟨𝑣, 𝑧⟩ ↔ ⟨(𝐺𝑤), (2nd ‘(𝑅𝑤))⟩ = ⟨𝑣, 𝑧⟩))
40 vex 2763 . . . . . . . . . . . . . . . . . . . 20 𝑣 ∈ V
41 vex 2763 . . . . . . . . . . . . . . . . . . . 20 𝑧 ∈ V
4240, 41opth2 4269 . . . . . . . . . . . . . . . . . . 19 (⟨(𝐺𝑤), (2nd ‘(𝑅𝑤))⟩ = ⟨𝑣, 𝑧⟩ ↔ ((𝐺𝑤) = 𝑣 ∧ (2nd ‘(𝑅𝑤)) = 𝑧))
4342simplbi 274 . . . . . . . . . . . . . . . . . 18 (⟨(𝐺𝑤), (2nd ‘(𝑅𝑤))⟩ = ⟨𝑣, 𝑧⟩ → (𝐺𝑤) = 𝑣)
4439, 43biimtrdi 163 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ ω) → ((𝑅𝑤) = ⟨𝑣, 𝑧⟩ → (𝐺𝑤) = 𝑣))
45 f1ocnvfv 5822 . . . . . . . . . . . . . . . . . 18 ((𝐺:ω–1-1-onto→(ℤ𝐶) ∧ 𝑤 ∈ ω) → ((𝐺𝑤) = 𝑣 → (𝐺𝑣) = 𝑤))
4623, 45sylan 283 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ ω) → ((𝐺𝑤) = 𝑣 → (𝐺𝑣) = 𝑤))
4744, 46syld 45 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ ω) → ((𝑅𝑤) = ⟨𝑣, 𝑧⟩ → (𝐺𝑣) = 𝑤))
48 fveq2 5554 . . . . . . . . . . . . . . . . 17 ((𝐺𝑣) = 𝑤 → (𝑅‘(𝐺𝑣)) = (𝑅𝑤))
4948fveq2d 5558 . . . . . . . . . . . . . . . 16 ((𝐺𝑣) = 𝑤 → (2nd ‘(𝑅‘(𝐺𝑣))) = (2nd ‘(𝑅𝑤)))
5047, 49syl6 33 . . . . . . . . . . . . . . 15 ((𝜑𝑤 ∈ ω) → ((𝑅𝑤) = ⟨𝑣, 𝑧⟩ → (2nd ‘(𝑅‘(𝐺𝑣))) = (2nd ‘(𝑅𝑤))))
5150imp 124 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ ω) ∧ (𝑅𝑤) = ⟨𝑣, 𝑧⟩) → (2nd ‘(𝑅‘(𝐺𝑣))) = (2nd ‘(𝑅𝑤)))
5240, 41op2ndd 6202 . . . . . . . . . . . . . . 15 ((𝑅𝑤) = ⟨𝑣, 𝑧⟩ → (2nd ‘(𝑅𝑤)) = 𝑧)
5352adantl 277 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ ω) ∧ (𝑅𝑤) = ⟨𝑣, 𝑧⟩) → (2nd ‘(𝑅𝑤)) = 𝑧)
5451, 53eqtr2d 2227 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ ω) ∧ (𝑅𝑤) = ⟨𝑣, 𝑧⟩) → 𝑧 = (2nd ‘(𝑅‘(𝐺𝑣))))
5554ex 115 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ ω) → ((𝑅𝑤) = ⟨𝑣, 𝑧⟩ → 𝑧 = (2nd ‘(𝑅‘(𝐺𝑣)))))
5655rexlimdva 2611 . . . . . . . . . . 11 (𝜑 → (∃𝑤 ∈ ω (𝑅𝑤) = ⟨𝑣, 𝑧⟩ → 𝑧 = (2nd ‘(𝑅‘(𝐺𝑣)))))
5733, 56sylbid 150 . . . . . . . . . 10 (𝜑 → (⟨𝑣, 𝑧⟩ ∈ 𝑇𝑧 = (2nd ‘(𝑅‘(𝐺𝑣)))))
5857alrimiv 1885 . . . . . . . . 9 (𝜑 → ∀𝑧(⟨𝑣, 𝑧⟩ ∈ 𝑇𝑧 = (2nd ‘(𝑅‘(𝐺𝑣)))))
5958adantr 276 . . . . . . . 8 ((𝜑𝑣 ∈ (ℤ𝐶)) → ∀𝑧(⟨𝑣, 𝑧⟩ ∈ 𝑇𝑧 = (2nd ‘(𝑅‘(𝐺𝑣)))))
60 eqeq2 2203 . . . . . . . . . . 11 (𝑤 = (2nd ‘(𝑅‘(𝐺𝑣))) → (𝑧 = 𝑤𝑧 = (2nd ‘(𝑅‘(𝐺𝑣)))))
6160imbi2d 230 . . . . . . . . . 10 (𝑤 = (2nd ‘(𝑅‘(𝐺𝑣))) → ((⟨𝑣, 𝑧⟩ ∈ 𝑇𝑧 = 𝑤) ↔ (⟨𝑣, 𝑧⟩ ∈ 𝑇𝑧 = (2nd ‘(𝑅‘(𝐺𝑣))))))
6261albidv 1835 . . . . . . . . 9 (𝑤 = (2nd ‘(𝑅‘(𝐺𝑣))) → (∀𝑧(⟨𝑣, 𝑧⟩ ∈ 𝑇𝑧 = 𝑤) ↔ ∀𝑧(⟨𝑣, 𝑧⟩ ∈ 𝑇𝑧 = (2nd ‘(𝑅‘(𝐺𝑣))))))
6362spcegv 2848 . . . . . . . 8 ((2nd ‘(𝑅‘(𝐺𝑣))) ∈ 𝑆 → (∀𝑧(⟨𝑣, 𝑧⟩ ∈ 𝑇𝑧 = (2nd ‘(𝑅‘(𝐺𝑣)))) → ∃𝑤𝑧(⟨𝑣, 𝑧⟩ ∈ 𝑇𝑧 = 𝑤)))
6429, 59, 63sylc 62 . . . . . . 7 ((𝜑𝑣 ∈ (ℤ𝐶)) → ∃𝑤𝑧(⟨𝑣, 𝑧⟩ ∈ 𝑇𝑧 = 𝑤))
65 nfv 1539 . . . . . . . 8 𝑤𝑣, 𝑧⟩ ∈ 𝑇
6665mo2r 2094 . . . . . . 7 (∃𝑤𝑧(⟨𝑣, 𝑧⟩ ∈ 𝑇𝑧 = 𝑤) → ∃*𝑧𝑣, 𝑧⟩ ∈ 𝑇)
6764, 66syl 14 . . . . . 6 ((𝜑𝑣 ∈ (ℤ𝐶)) → ∃*𝑧𝑣, 𝑧⟩ ∈ 𝑇)
68 dmss 4861 . . . . . . . . . . 11 (𝑇 ⊆ ((ℤ𝐶) × 𝑆) → dom 𝑇 ⊆ dom ((ℤ𝐶) × 𝑆))
6918, 68syl 14 . . . . . . . . . 10 (𝜑 → dom 𝑇 ⊆ dom ((ℤ𝐶) × 𝑆))
70 dmxpss 5096 . . . . . . . . . 10 dom ((ℤ𝐶) × 𝑆) ⊆ (ℤ𝐶)
7169, 70sstrdi 3191 . . . . . . . . 9 (𝜑 → dom 𝑇 ⊆ (ℤ𝐶))
723adantr 276 . . . . . . . . . . . . . 14 ((𝜑𝑣 ∈ (ℤ𝐶)) → 𝐶 ∈ ℤ)
735adantr 276 . . . . . . . . . . . . . 14 ((𝜑𝑣 ∈ (ℤ𝐶)) → 𝐴𝑆)
746adantlr 477 . . . . . . . . . . . . . 14 (((𝜑𝑣 ∈ (ℤ𝐶)) ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
75 simpr 110 . . . . . . . . . . . . . 14 ((𝜑𝑣 ∈ (ℤ𝐶)) → 𝑣 ∈ (ℤ𝐶))
7672, 4, 73, 74, 7, 75frecuzrdglem 10482 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (ℤ𝐶)) → ⟨𝑣, (2nd ‘(𝑅‘(𝐺𝑣)))⟩ ∈ ran 𝑅)
771eleq2d 2263 . . . . . . . . . . . . . 14 (𝜑 → (⟨𝑣, (2nd ‘(𝑅‘(𝐺𝑣)))⟩ ∈ 𝑇 ↔ ⟨𝑣, (2nd ‘(𝑅‘(𝐺𝑣)))⟩ ∈ ran 𝑅))
7877adantr 276 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (ℤ𝐶)) → (⟨𝑣, (2nd ‘(𝑅‘(𝐺𝑣)))⟩ ∈ 𝑇 ↔ ⟨𝑣, (2nd ‘(𝑅‘(𝐺𝑣)))⟩ ∈ ran 𝑅))
7976, 78mpbird 167 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (ℤ𝐶)) → ⟨𝑣, (2nd ‘(𝑅‘(𝐺𝑣)))⟩ ∈ 𝑇)
80 opeldmg 4867 . . . . . . . . . . . . 13 ((𝑣 ∈ V ∧ (2nd ‘(𝑅‘(𝐺𝑣))) ∈ 𝑆) → (⟨𝑣, (2nd ‘(𝑅‘(𝐺𝑣)))⟩ ∈ 𝑇𝑣 ∈ dom 𝑇))
8140, 80mpan 424 . . . . . . . . . . . 12 ((2nd ‘(𝑅‘(𝐺𝑣))) ∈ 𝑆 → (⟨𝑣, (2nd ‘(𝑅‘(𝐺𝑣)))⟩ ∈ 𝑇𝑣 ∈ dom 𝑇))
8229, 79, 81sylc 62 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (ℤ𝐶)) → 𝑣 ∈ dom 𝑇)
8382ex 115 . . . . . . . . . 10 (𝜑 → (𝑣 ∈ (ℤ𝐶) → 𝑣 ∈ dom 𝑇))
8483ssrdv 3185 . . . . . . . . 9 (𝜑 → (ℤ𝐶) ⊆ dom 𝑇)
8571, 84eqssd 3196 . . . . . . . 8 (𝜑 → dom 𝑇 = (ℤ𝐶))
8685eleq2d 2263 . . . . . . 7 (𝜑 → (𝑣 ∈ dom 𝑇𝑣 ∈ (ℤ𝐶)))
8786pm5.32i 454 . . . . . 6 ((𝜑𝑣 ∈ dom 𝑇) ↔ (𝜑𝑣 ∈ (ℤ𝐶)))
88 df-br 4030 . . . . . . 7 (𝑣𝑇𝑧 ↔ ⟨𝑣, 𝑧⟩ ∈ 𝑇)
8988mobii 2079 . . . . . 6 (∃*𝑧 𝑣𝑇𝑧 ↔ ∃*𝑧𝑣, 𝑧⟩ ∈ 𝑇)
9067, 87, 893imtr4i 201 . . . . 5 ((𝜑𝑣 ∈ dom 𝑇) → ∃*𝑧 𝑣𝑇𝑧)
9190ralrimiva 2567 . . . 4 (𝜑 → ∀𝑣 ∈ dom 𝑇∃*𝑧 𝑣𝑇𝑧)
92 dffun7 5281 . . . 4 (Fun 𝑇 ↔ (Rel 𝑇 ∧ ∀𝑣 ∈ dom 𝑇∃*𝑧 𝑣𝑇𝑧))
9322, 91, 92sylanbrc 417 . . 3 (𝜑 → Fun 𝑇)
94 df-fn 5257 . . 3 (𝑇 Fn (ℤ𝐶) ↔ (Fun 𝑇 ∧ dom 𝑇 = (ℤ𝐶)))
9593, 85, 94sylanbrc 417 . 2 (𝜑𝑇 Fn (ℤ𝐶))
96 rnss 4892 . . . 4 (𝑇 ⊆ ((ℤ𝐶) × 𝑆) → ran 𝑇 ⊆ ran ((ℤ𝐶) × 𝑆))
9718, 96syl 14 . . 3 (𝜑 → ran 𝑇 ⊆ ran ((ℤ𝐶) × 𝑆))
98 rnxpss 5097 . . 3 ran ((ℤ𝐶) × 𝑆) ⊆ 𝑆
9997, 98sstrdi 3191 . 2 (𝜑 → ran 𝑇𝑆)
100 df-f 5258 . 2 (𝑇:(ℤ𝐶)⟶𝑆 ↔ (𝑇 Fn (ℤ𝐶) ∧ ran 𝑇𝑆))
10195, 99, 100sylanbrc 417 1 (𝜑𝑇:(ℤ𝐶)⟶𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1362   = wceq 1364  wex 1503  ∃*wmo 2043  wcel 2164  wral 2472  wrex 2473  Vcvv 2760  wss 3153  cop 3621   class class class wbr 4029  cmpt 4090  ωcom 4622   × cxp 4657  ccnv 4658  dom cdm 4659  ran crn 4660  Rel wrel 4664  Fun wfun 5248   Fn wfn 5249  wf 5250  1-1-ontowf1o 5253  cfv 5254  (class class class)co 5918  cmpo 5920  2nd c2nd 6192  freccfrec 6443  1c1 7873   + caddc 7875  cz 9317  cuz 9592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318  df-uz 9593
This theorem is referenced by:  frecuzrdg0  10484  frecuzrdgsuc  10485
  Copyright terms: Public domain W3C validator