ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecuzrdgtcl GIF version

Theorem frecuzrdgtcl 10594
Description: The recursive definition generator on upper integers is a function. See comment in frec2uz0d 10581 for the description of 𝐺 as the mapping from ω to (ℤ𝐶). (Contributed by Jim Kingdon, 26-May-2020.)
Hypotheses
Ref Expression
frec2uz.1 (𝜑𝐶 ∈ ℤ)
frec2uz.2 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
frecuzrdgrrn.a (𝜑𝐴𝑆)
frecuzrdgrrn.f ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
frecuzrdgrrn.2 𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)
frecuzrdgtcl.3 (𝜑𝑇 = ran 𝑅)
Assertion
Ref Expression
frecuzrdgtcl (𝜑𝑇:(ℤ𝐶)⟶𝑆)
Distinct variable groups:   𝑦,𝐴   𝑥,𝐶,𝑦   𝑦,𝐺   𝑥,𝐹,𝑦   𝑥,𝑆,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝑅(𝑥,𝑦)   𝑇(𝑥,𝑦)   𝐺(𝑥)

Proof of Theorem frecuzrdgtcl
Dummy variables 𝑤 𝑧 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frecuzrdgtcl.3 . . . . . . . . . 10 (𝜑𝑇 = ran 𝑅)
21eleq2d 2277 . . . . . . . . 9 (𝜑 → (𝑧𝑇𝑧 ∈ ran 𝑅))
3 frec2uz.1 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℤ)
4 frec2uz.2 . . . . . . . . . . 11 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
5 frecuzrdgrrn.a . . . . . . . . . . 11 (𝜑𝐴𝑆)
6 frecuzrdgrrn.f . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
7 frecuzrdgrrn.2 . . . . . . . . . . 11 𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)
83, 4, 5, 6, 7frecuzrdgrcl 10592 . . . . . . . . . 10 (𝜑𝑅:ω⟶((ℤ𝐶) × 𝑆))
9 ffn 5445 . . . . . . . . . 10 (𝑅:ω⟶((ℤ𝐶) × 𝑆) → 𝑅 Fn ω)
10 fvelrnb 5649 . . . . . . . . . 10 (𝑅 Fn ω → (𝑧 ∈ ran 𝑅 ↔ ∃𝑤 ∈ ω (𝑅𝑤) = 𝑧))
118, 9, 103syl 17 . . . . . . . . 9 (𝜑 → (𝑧 ∈ ran 𝑅 ↔ ∃𝑤 ∈ ω (𝑅𝑤) = 𝑧))
122, 11bitrd 188 . . . . . . . 8 (𝜑 → (𝑧𝑇 ↔ ∃𝑤 ∈ ω (𝑅𝑤) = 𝑧))
133, 4, 5, 6, 7frecuzrdgrrn 10590 . . . . . . . . . 10 ((𝜑𝑤 ∈ ω) → (𝑅𝑤) ∈ ((ℤ𝐶) × 𝑆))
14 eleq1 2270 . . . . . . . . . 10 ((𝑅𝑤) = 𝑧 → ((𝑅𝑤) ∈ ((ℤ𝐶) × 𝑆) ↔ 𝑧 ∈ ((ℤ𝐶) × 𝑆)))
1513, 14syl5ibcom 155 . . . . . . . . 9 ((𝜑𝑤 ∈ ω) → ((𝑅𝑤) = 𝑧𝑧 ∈ ((ℤ𝐶) × 𝑆)))
1615rexlimdva 2625 . . . . . . . 8 (𝜑 → (∃𝑤 ∈ ω (𝑅𝑤) = 𝑧𝑧 ∈ ((ℤ𝐶) × 𝑆)))
1712, 16sylbid 150 . . . . . . 7 (𝜑 → (𝑧𝑇𝑧 ∈ ((ℤ𝐶) × 𝑆)))
1817ssrdv 3207 . . . . . 6 (𝜑𝑇 ⊆ ((ℤ𝐶) × 𝑆))
19 xpss 4801 . . . . . 6 ((ℤ𝐶) × 𝑆) ⊆ (V × V)
2018, 19sstrdi 3213 . . . . 5 (𝜑𝑇 ⊆ (V × V))
21 df-rel 4700 . . . . 5 (Rel 𝑇𝑇 ⊆ (V × V))
2220, 21sylibr 134 . . . 4 (𝜑 → Rel 𝑇)
233, 4frec2uzf1od 10588 . . . . . . . . . . 11 (𝜑𝐺:ω–1-1-onto→(ℤ𝐶))
24 f1ocnvdm 5873 . . . . . . . . . . 11 ((𝐺:ω–1-1-onto→(ℤ𝐶) ∧ 𝑣 ∈ (ℤ𝐶)) → (𝐺𝑣) ∈ ω)
2523, 24sylan 283 . . . . . . . . . 10 ((𝜑𝑣 ∈ (ℤ𝐶)) → (𝐺𝑣) ∈ ω)
263, 4, 5, 6, 7frecuzrdgrrn 10590 . . . . . . . . . 10 ((𝜑 ∧ (𝐺𝑣) ∈ ω) → (𝑅‘(𝐺𝑣)) ∈ ((ℤ𝐶) × 𝑆))
2725, 26syldan 282 . . . . . . . . 9 ((𝜑𝑣 ∈ (ℤ𝐶)) → (𝑅‘(𝐺𝑣)) ∈ ((ℤ𝐶) × 𝑆))
28 xp2nd 6275 . . . . . . . . 9 ((𝑅‘(𝐺𝑣)) ∈ ((ℤ𝐶) × 𝑆) → (2nd ‘(𝑅‘(𝐺𝑣))) ∈ 𝑆)
2927, 28syl 14 . . . . . . . 8 ((𝜑𝑣 ∈ (ℤ𝐶)) → (2nd ‘(𝑅‘(𝐺𝑣))) ∈ 𝑆)
301eleq2d 2277 . . . . . . . . . . . 12 (𝜑 → (⟨𝑣, 𝑧⟩ ∈ 𝑇 ↔ ⟨𝑣, 𝑧⟩ ∈ ran 𝑅))
31 fvelrnb 5649 . . . . . . . . . . . . 13 (𝑅 Fn ω → (⟨𝑣, 𝑧⟩ ∈ ran 𝑅 ↔ ∃𝑤 ∈ ω (𝑅𝑤) = ⟨𝑣, 𝑧⟩))
328, 9, 313syl 17 . . . . . . . . . . . 12 (𝜑 → (⟨𝑣, 𝑧⟩ ∈ ran 𝑅 ↔ ∃𝑤 ∈ ω (𝑅𝑤) = ⟨𝑣, 𝑧⟩))
3330, 32bitrd 188 . . . . . . . . . . 11 (𝜑 → (⟨𝑣, 𝑧⟩ ∈ 𝑇 ↔ ∃𝑤 ∈ ω (𝑅𝑤) = ⟨𝑣, 𝑧⟩))
343adantr 276 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ ω) → 𝐶 ∈ ℤ)
355adantr 276 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ ω) → 𝐴𝑆)
366adantlr 477 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑤 ∈ ω) ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
37 simpr 110 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ ω) → 𝑤 ∈ ω)
3834, 4, 35, 36, 7, 37frec2uzrdg 10591 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ∈ ω) → (𝑅𝑤) = ⟨(𝐺𝑤), (2nd ‘(𝑅𝑤))⟩)
3938eqeq1d 2216 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ ω) → ((𝑅𝑤) = ⟨𝑣, 𝑧⟩ ↔ ⟨(𝐺𝑤), (2nd ‘(𝑅𝑤))⟩ = ⟨𝑣, 𝑧⟩))
40 vex 2779 . . . . . . . . . . . . . . . . . . . 20 𝑣 ∈ V
41 vex 2779 . . . . . . . . . . . . . . . . . . . 20 𝑧 ∈ V
4240, 41opth2 4302 . . . . . . . . . . . . . . . . . . 19 (⟨(𝐺𝑤), (2nd ‘(𝑅𝑤))⟩ = ⟨𝑣, 𝑧⟩ ↔ ((𝐺𝑤) = 𝑣 ∧ (2nd ‘(𝑅𝑤)) = 𝑧))
4342simplbi 274 . . . . . . . . . . . . . . . . . 18 (⟨(𝐺𝑤), (2nd ‘(𝑅𝑤))⟩ = ⟨𝑣, 𝑧⟩ → (𝐺𝑤) = 𝑣)
4439, 43biimtrdi 163 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ ω) → ((𝑅𝑤) = ⟨𝑣, 𝑧⟩ → (𝐺𝑤) = 𝑣))
45 f1ocnvfv 5871 . . . . . . . . . . . . . . . . . 18 ((𝐺:ω–1-1-onto→(ℤ𝐶) ∧ 𝑤 ∈ ω) → ((𝐺𝑤) = 𝑣 → (𝐺𝑣) = 𝑤))
4623, 45sylan 283 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ ω) → ((𝐺𝑤) = 𝑣 → (𝐺𝑣) = 𝑤))
4744, 46syld 45 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ ω) → ((𝑅𝑤) = ⟨𝑣, 𝑧⟩ → (𝐺𝑣) = 𝑤))
48 fveq2 5599 . . . . . . . . . . . . . . . . 17 ((𝐺𝑣) = 𝑤 → (𝑅‘(𝐺𝑣)) = (𝑅𝑤))
4948fveq2d 5603 . . . . . . . . . . . . . . . 16 ((𝐺𝑣) = 𝑤 → (2nd ‘(𝑅‘(𝐺𝑣))) = (2nd ‘(𝑅𝑤)))
5047, 49syl6 33 . . . . . . . . . . . . . . 15 ((𝜑𝑤 ∈ ω) → ((𝑅𝑤) = ⟨𝑣, 𝑧⟩ → (2nd ‘(𝑅‘(𝐺𝑣))) = (2nd ‘(𝑅𝑤))))
5150imp 124 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ ω) ∧ (𝑅𝑤) = ⟨𝑣, 𝑧⟩) → (2nd ‘(𝑅‘(𝐺𝑣))) = (2nd ‘(𝑅𝑤)))
5240, 41op2ndd 6258 . . . . . . . . . . . . . . 15 ((𝑅𝑤) = ⟨𝑣, 𝑧⟩ → (2nd ‘(𝑅𝑤)) = 𝑧)
5352adantl 277 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ ω) ∧ (𝑅𝑤) = ⟨𝑣, 𝑧⟩) → (2nd ‘(𝑅𝑤)) = 𝑧)
5451, 53eqtr2d 2241 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ ω) ∧ (𝑅𝑤) = ⟨𝑣, 𝑧⟩) → 𝑧 = (2nd ‘(𝑅‘(𝐺𝑣))))
5554ex 115 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ ω) → ((𝑅𝑤) = ⟨𝑣, 𝑧⟩ → 𝑧 = (2nd ‘(𝑅‘(𝐺𝑣)))))
5655rexlimdva 2625 . . . . . . . . . . 11 (𝜑 → (∃𝑤 ∈ ω (𝑅𝑤) = ⟨𝑣, 𝑧⟩ → 𝑧 = (2nd ‘(𝑅‘(𝐺𝑣)))))
5733, 56sylbid 150 . . . . . . . . . 10 (𝜑 → (⟨𝑣, 𝑧⟩ ∈ 𝑇𝑧 = (2nd ‘(𝑅‘(𝐺𝑣)))))
5857alrimiv 1898 . . . . . . . . 9 (𝜑 → ∀𝑧(⟨𝑣, 𝑧⟩ ∈ 𝑇𝑧 = (2nd ‘(𝑅‘(𝐺𝑣)))))
5958adantr 276 . . . . . . . 8 ((𝜑𝑣 ∈ (ℤ𝐶)) → ∀𝑧(⟨𝑣, 𝑧⟩ ∈ 𝑇𝑧 = (2nd ‘(𝑅‘(𝐺𝑣)))))
60 eqeq2 2217 . . . . . . . . . . 11 (𝑤 = (2nd ‘(𝑅‘(𝐺𝑣))) → (𝑧 = 𝑤𝑧 = (2nd ‘(𝑅‘(𝐺𝑣)))))
6160imbi2d 230 . . . . . . . . . 10 (𝑤 = (2nd ‘(𝑅‘(𝐺𝑣))) → ((⟨𝑣, 𝑧⟩ ∈ 𝑇𝑧 = 𝑤) ↔ (⟨𝑣, 𝑧⟩ ∈ 𝑇𝑧 = (2nd ‘(𝑅‘(𝐺𝑣))))))
6261albidv 1848 . . . . . . . . 9 (𝑤 = (2nd ‘(𝑅‘(𝐺𝑣))) → (∀𝑧(⟨𝑣, 𝑧⟩ ∈ 𝑇𝑧 = 𝑤) ↔ ∀𝑧(⟨𝑣, 𝑧⟩ ∈ 𝑇𝑧 = (2nd ‘(𝑅‘(𝐺𝑣))))))
6362spcegv 2868 . . . . . . . 8 ((2nd ‘(𝑅‘(𝐺𝑣))) ∈ 𝑆 → (∀𝑧(⟨𝑣, 𝑧⟩ ∈ 𝑇𝑧 = (2nd ‘(𝑅‘(𝐺𝑣)))) → ∃𝑤𝑧(⟨𝑣, 𝑧⟩ ∈ 𝑇𝑧 = 𝑤)))
6429, 59, 63sylc 62 . . . . . . 7 ((𝜑𝑣 ∈ (ℤ𝐶)) → ∃𝑤𝑧(⟨𝑣, 𝑧⟩ ∈ 𝑇𝑧 = 𝑤))
65 nfv 1552 . . . . . . . 8 𝑤𝑣, 𝑧⟩ ∈ 𝑇
6665mo2r 2108 . . . . . . 7 (∃𝑤𝑧(⟨𝑣, 𝑧⟩ ∈ 𝑇𝑧 = 𝑤) → ∃*𝑧𝑣, 𝑧⟩ ∈ 𝑇)
6764, 66syl 14 . . . . . 6 ((𝜑𝑣 ∈ (ℤ𝐶)) → ∃*𝑧𝑣, 𝑧⟩ ∈ 𝑇)
68 dmss 4896 . . . . . . . . . . 11 (𝑇 ⊆ ((ℤ𝐶) × 𝑆) → dom 𝑇 ⊆ dom ((ℤ𝐶) × 𝑆))
6918, 68syl 14 . . . . . . . . . 10 (𝜑 → dom 𝑇 ⊆ dom ((ℤ𝐶) × 𝑆))
70 dmxpss 5132 . . . . . . . . . 10 dom ((ℤ𝐶) × 𝑆) ⊆ (ℤ𝐶)
7169, 70sstrdi 3213 . . . . . . . . 9 (𝜑 → dom 𝑇 ⊆ (ℤ𝐶))
723adantr 276 . . . . . . . . . . . . . 14 ((𝜑𝑣 ∈ (ℤ𝐶)) → 𝐶 ∈ ℤ)
735adantr 276 . . . . . . . . . . . . . 14 ((𝜑𝑣 ∈ (ℤ𝐶)) → 𝐴𝑆)
746adantlr 477 . . . . . . . . . . . . . 14 (((𝜑𝑣 ∈ (ℤ𝐶)) ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
75 simpr 110 . . . . . . . . . . . . . 14 ((𝜑𝑣 ∈ (ℤ𝐶)) → 𝑣 ∈ (ℤ𝐶))
7672, 4, 73, 74, 7, 75frecuzrdglem 10593 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (ℤ𝐶)) → ⟨𝑣, (2nd ‘(𝑅‘(𝐺𝑣)))⟩ ∈ ran 𝑅)
771eleq2d 2277 . . . . . . . . . . . . . 14 (𝜑 → (⟨𝑣, (2nd ‘(𝑅‘(𝐺𝑣)))⟩ ∈ 𝑇 ↔ ⟨𝑣, (2nd ‘(𝑅‘(𝐺𝑣)))⟩ ∈ ran 𝑅))
7877adantr 276 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (ℤ𝐶)) → (⟨𝑣, (2nd ‘(𝑅‘(𝐺𝑣)))⟩ ∈ 𝑇 ↔ ⟨𝑣, (2nd ‘(𝑅‘(𝐺𝑣)))⟩ ∈ ran 𝑅))
7976, 78mpbird 167 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (ℤ𝐶)) → ⟨𝑣, (2nd ‘(𝑅‘(𝐺𝑣)))⟩ ∈ 𝑇)
80 opeldmg 4902 . . . . . . . . . . . . 13 ((𝑣 ∈ V ∧ (2nd ‘(𝑅‘(𝐺𝑣))) ∈ 𝑆) → (⟨𝑣, (2nd ‘(𝑅‘(𝐺𝑣)))⟩ ∈ 𝑇𝑣 ∈ dom 𝑇))
8140, 80mpan 424 . . . . . . . . . . . 12 ((2nd ‘(𝑅‘(𝐺𝑣))) ∈ 𝑆 → (⟨𝑣, (2nd ‘(𝑅‘(𝐺𝑣)))⟩ ∈ 𝑇𝑣 ∈ dom 𝑇))
8229, 79, 81sylc 62 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (ℤ𝐶)) → 𝑣 ∈ dom 𝑇)
8382ex 115 . . . . . . . . . 10 (𝜑 → (𝑣 ∈ (ℤ𝐶) → 𝑣 ∈ dom 𝑇))
8483ssrdv 3207 . . . . . . . . 9 (𝜑 → (ℤ𝐶) ⊆ dom 𝑇)
8571, 84eqssd 3218 . . . . . . . 8 (𝜑 → dom 𝑇 = (ℤ𝐶))
8685eleq2d 2277 . . . . . . 7 (𝜑 → (𝑣 ∈ dom 𝑇𝑣 ∈ (ℤ𝐶)))
8786pm5.32i 454 . . . . . 6 ((𝜑𝑣 ∈ dom 𝑇) ↔ (𝜑𝑣 ∈ (ℤ𝐶)))
88 df-br 4060 . . . . . . 7 (𝑣𝑇𝑧 ↔ ⟨𝑣, 𝑧⟩ ∈ 𝑇)
8988mobii 2092 . . . . . 6 (∃*𝑧 𝑣𝑇𝑧 ↔ ∃*𝑧𝑣, 𝑧⟩ ∈ 𝑇)
9067, 87, 893imtr4i 201 . . . . 5 ((𝜑𝑣 ∈ dom 𝑇) → ∃*𝑧 𝑣𝑇𝑧)
9190ralrimiva 2581 . . . 4 (𝜑 → ∀𝑣 ∈ dom 𝑇∃*𝑧 𝑣𝑇𝑧)
92 dffun7 5317 . . . 4 (Fun 𝑇 ↔ (Rel 𝑇 ∧ ∀𝑣 ∈ dom 𝑇∃*𝑧 𝑣𝑇𝑧))
9322, 91, 92sylanbrc 417 . . 3 (𝜑 → Fun 𝑇)
94 df-fn 5293 . . 3 (𝑇 Fn (ℤ𝐶) ↔ (Fun 𝑇 ∧ dom 𝑇 = (ℤ𝐶)))
9593, 85, 94sylanbrc 417 . 2 (𝜑𝑇 Fn (ℤ𝐶))
96 rnss 4927 . . . 4 (𝑇 ⊆ ((ℤ𝐶) × 𝑆) → ran 𝑇 ⊆ ran ((ℤ𝐶) × 𝑆))
9718, 96syl 14 . . 3 (𝜑 → ran 𝑇 ⊆ ran ((ℤ𝐶) × 𝑆))
98 rnxpss 5133 . . 3 ran ((ℤ𝐶) × 𝑆) ⊆ 𝑆
9997, 98sstrdi 3213 . 2 (𝜑 → ran 𝑇𝑆)
100 df-f 5294 . 2 (𝑇:(ℤ𝐶)⟶𝑆 ↔ (𝑇 Fn (ℤ𝐶) ∧ ran 𝑇𝑆))
10195, 99, 100sylanbrc 417 1 (𝜑𝑇:(ℤ𝐶)⟶𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1371   = wceq 1373  wex 1516  ∃*wmo 2056  wcel 2178  wral 2486  wrex 2487  Vcvv 2776  wss 3174  cop 3646   class class class wbr 4059  cmpt 4121  ωcom 4656   × cxp 4691  ccnv 4692  dom cdm 4693  ran crn 4694  Rel wrel 4698  Fun wfun 5284   Fn wfn 5285  wf 5286  1-1-ontowf1o 5289  cfv 5290  (class class class)co 5967  cmpo 5969  2nd c2nd 6248  freccfrec 6499  1c1 7961   + caddc 7963  cz 9407  cuz 9683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-n0 9331  df-z 9408  df-uz 9684
This theorem is referenced by:  frecuzrdg0  10595  frecuzrdgsuc  10596
  Copyright terms: Public domain W3C validator