ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecuzrdgtcl GIF version

Theorem frecuzrdgtcl 10634
Description: The recursive definition generator on upper integers is a function. See comment in frec2uz0d 10621 for the description of 𝐺 as the mapping from ω to (ℤ𝐶). (Contributed by Jim Kingdon, 26-May-2020.)
Hypotheses
Ref Expression
frec2uz.1 (𝜑𝐶 ∈ ℤ)
frec2uz.2 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
frecuzrdgrrn.a (𝜑𝐴𝑆)
frecuzrdgrrn.f ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
frecuzrdgrrn.2 𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)
frecuzrdgtcl.3 (𝜑𝑇 = ran 𝑅)
Assertion
Ref Expression
frecuzrdgtcl (𝜑𝑇:(ℤ𝐶)⟶𝑆)
Distinct variable groups:   𝑦,𝐴   𝑥,𝐶,𝑦   𝑦,𝐺   𝑥,𝐹,𝑦   𝑥,𝑆,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝑅(𝑥,𝑦)   𝑇(𝑥,𝑦)   𝐺(𝑥)

Proof of Theorem frecuzrdgtcl
Dummy variables 𝑤 𝑧 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frecuzrdgtcl.3 . . . . . . . . . 10 (𝜑𝑇 = ran 𝑅)
21eleq2d 2299 . . . . . . . . 9 (𝜑 → (𝑧𝑇𝑧 ∈ ran 𝑅))
3 frec2uz.1 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℤ)
4 frec2uz.2 . . . . . . . . . . 11 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
5 frecuzrdgrrn.a . . . . . . . . . . 11 (𝜑𝐴𝑆)
6 frecuzrdgrrn.f . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
7 frecuzrdgrrn.2 . . . . . . . . . . 11 𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)
83, 4, 5, 6, 7frecuzrdgrcl 10632 . . . . . . . . . 10 (𝜑𝑅:ω⟶((ℤ𝐶) × 𝑆))
9 ffn 5473 . . . . . . . . . 10 (𝑅:ω⟶((ℤ𝐶) × 𝑆) → 𝑅 Fn ω)
10 fvelrnb 5681 . . . . . . . . . 10 (𝑅 Fn ω → (𝑧 ∈ ran 𝑅 ↔ ∃𝑤 ∈ ω (𝑅𝑤) = 𝑧))
118, 9, 103syl 17 . . . . . . . . 9 (𝜑 → (𝑧 ∈ ran 𝑅 ↔ ∃𝑤 ∈ ω (𝑅𝑤) = 𝑧))
122, 11bitrd 188 . . . . . . . 8 (𝜑 → (𝑧𝑇 ↔ ∃𝑤 ∈ ω (𝑅𝑤) = 𝑧))
133, 4, 5, 6, 7frecuzrdgrrn 10630 . . . . . . . . . 10 ((𝜑𝑤 ∈ ω) → (𝑅𝑤) ∈ ((ℤ𝐶) × 𝑆))
14 eleq1 2292 . . . . . . . . . 10 ((𝑅𝑤) = 𝑧 → ((𝑅𝑤) ∈ ((ℤ𝐶) × 𝑆) ↔ 𝑧 ∈ ((ℤ𝐶) × 𝑆)))
1513, 14syl5ibcom 155 . . . . . . . . 9 ((𝜑𝑤 ∈ ω) → ((𝑅𝑤) = 𝑧𝑧 ∈ ((ℤ𝐶) × 𝑆)))
1615rexlimdva 2648 . . . . . . . 8 (𝜑 → (∃𝑤 ∈ ω (𝑅𝑤) = 𝑧𝑧 ∈ ((ℤ𝐶) × 𝑆)))
1712, 16sylbid 150 . . . . . . 7 (𝜑 → (𝑧𝑇𝑧 ∈ ((ℤ𝐶) × 𝑆)))
1817ssrdv 3230 . . . . . 6 (𝜑𝑇 ⊆ ((ℤ𝐶) × 𝑆))
19 xpss 4827 . . . . . 6 ((ℤ𝐶) × 𝑆) ⊆ (V × V)
2018, 19sstrdi 3236 . . . . 5 (𝜑𝑇 ⊆ (V × V))
21 df-rel 4726 . . . . 5 (Rel 𝑇𝑇 ⊆ (V × V))
2220, 21sylibr 134 . . . 4 (𝜑 → Rel 𝑇)
233, 4frec2uzf1od 10628 . . . . . . . . . . 11 (𝜑𝐺:ω–1-1-onto→(ℤ𝐶))
24 f1ocnvdm 5905 . . . . . . . . . . 11 ((𝐺:ω–1-1-onto→(ℤ𝐶) ∧ 𝑣 ∈ (ℤ𝐶)) → (𝐺𝑣) ∈ ω)
2523, 24sylan 283 . . . . . . . . . 10 ((𝜑𝑣 ∈ (ℤ𝐶)) → (𝐺𝑣) ∈ ω)
263, 4, 5, 6, 7frecuzrdgrrn 10630 . . . . . . . . . 10 ((𝜑 ∧ (𝐺𝑣) ∈ ω) → (𝑅‘(𝐺𝑣)) ∈ ((ℤ𝐶) × 𝑆))
2725, 26syldan 282 . . . . . . . . 9 ((𝜑𝑣 ∈ (ℤ𝐶)) → (𝑅‘(𝐺𝑣)) ∈ ((ℤ𝐶) × 𝑆))
28 xp2nd 6312 . . . . . . . . 9 ((𝑅‘(𝐺𝑣)) ∈ ((ℤ𝐶) × 𝑆) → (2nd ‘(𝑅‘(𝐺𝑣))) ∈ 𝑆)
2927, 28syl 14 . . . . . . . 8 ((𝜑𝑣 ∈ (ℤ𝐶)) → (2nd ‘(𝑅‘(𝐺𝑣))) ∈ 𝑆)
301eleq2d 2299 . . . . . . . . . . . 12 (𝜑 → (⟨𝑣, 𝑧⟩ ∈ 𝑇 ↔ ⟨𝑣, 𝑧⟩ ∈ ran 𝑅))
31 fvelrnb 5681 . . . . . . . . . . . . 13 (𝑅 Fn ω → (⟨𝑣, 𝑧⟩ ∈ ran 𝑅 ↔ ∃𝑤 ∈ ω (𝑅𝑤) = ⟨𝑣, 𝑧⟩))
328, 9, 313syl 17 . . . . . . . . . . . 12 (𝜑 → (⟨𝑣, 𝑧⟩ ∈ ran 𝑅 ↔ ∃𝑤 ∈ ω (𝑅𝑤) = ⟨𝑣, 𝑧⟩))
3330, 32bitrd 188 . . . . . . . . . . 11 (𝜑 → (⟨𝑣, 𝑧⟩ ∈ 𝑇 ↔ ∃𝑤 ∈ ω (𝑅𝑤) = ⟨𝑣, 𝑧⟩))
343adantr 276 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ ω) → 𝐶 ∈ ℤ)
355adantr 276 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ ω) → 𝐴𝑆)
366adantlr 477 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑤 ∈ ω) ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
37 simpr 110 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ ω) → 𝑤 ∈ ω)
3834, 4, 35, 36, 7, 37frec2uzrdg 10631 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ∈ ω) → (𝑅𝑤) = ⟨(𝐺𝑤), (2nd ‘(𝑅𝑤))⟩)
3938eqeq1d 2238 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ ω) → ((𝑅𝑤) = ⟨𝑣, 𝑧⟩ ↔ ⟨(𝐺𝑤), (2nd ‘(𝑅𝑤))⟩ = ⟨𝑣, 𝑧⟩))
40 vex 2802 . . . . . . . . . . . . . . . . . . . 20 𝑣 ∈ V
41 vex 2802 . . . . . . . . . . . . . . . . . . . 20 𝑧 ∈ V
4240, 41opth2 4326 . . . . . . . . . . . . . . . . . . 19 (⟨(𝐺𝑤), (2nd ‘(𝑅𝑤))⟩ = ⟨𝑣, 𝑧⟩ ↔ ((𝐺𝑤) = 𝑣 ∧ (2nd ‘(𝑅𝑤)) = 𝑧))
4342simplbi 274 . . . . . . . . . . . . . . . . . 18 (⟨(𝐺𝑤), (2nd ‘(𝑅𝑤))⟩ = ⟨𝑣, 𝑧⟩ → (𝐺𝑤) = 𝑣)
4439, 43biimtrdi 163 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ ω) → ((𝑅𝑤) = ⟨𝑣, 𝑧⟩ → (𝐺𝑤) = 𝑣))
45 f1ocnvfv 5903 . . . . . . . . . . . . . . . . . 18 ((𝐺:ω–1-1-onto→(ℤ𝐶) ∧ 𝑤 ∈ ω) → ((𝐺𝑤) = 𝑣 → (𝐺𝑣) = 𝑤))
4623, 45sylan 283 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ ω) → ((𝐺𝑤) = 𝑣 → (𝐺𝑣) = 𝑤))
4744, 46syld 45 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ ω) → ((𝑅𝑤) = ⟨𝑣, 𝑧⟩ → (𝐺𝑣) = 𝑤))
48 fveq2 5627 . . . . . . . . . . . . . . . . 17 ((𝐺𝑣) = 𝑤 → (𝑅‘(𝐺𝑣)) = (𝑅𝑤))
4948fveq2d 5631 . . . . . . . . . . . . . . . 16 ((𝐺𝑣) = 𝑤 → (2nd ‘(𝑅‘(𝐺𝑣))) = (2nd ‘(𝑅𝑤)))
5047, 49syl6 33 . . . . . . . . . . . . . . 15 ((𝜑𝑤 ∈ ω) → ((𝑅𝑤) = ⟨𝑣, 𝑧⟩ → (2nd ‘(𝑅‘(𝐺𝑣))) = (2nd ‘(𝑅𝑤))))
5150imp 124 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ ω) ∧ (𝑅𝑤) = ⟨𝑣, 𝑧⟩) → (2nd ‘(𝑅‘(𝐺𝑣))) = (2nd ‘(𝑅𝑤)))
5240, 41op2ndd 6295 . . . . . . . . . . . . . . 15 ((𝑅𝑤) = ⟨𝑣, 𝑧⟩ → (2nd ‘(𝑅𝑤)) = 𝑧)
5352adantl 277 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ ω) ∧ (𝑅𝑤) = ⟨𝑣, 𝑧⟩) → (2nd ‘(𝑅𝑤)) = 𝑧)
5451, 53eqtr2d 2263 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ ω) ∧ (𝑅𝑤) = ⟨𝑣, 𝑧⟩) → 𝑧 = (2nd ‘(𝑅‘(𝐺𝑣))))
5554ex 115 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ ω) → ((𝑅𝑤) = ⟨𝑣, 𝑧⟩ → 𝑧 = (2nd ‘(𝑅‘(𝐺𝑣)))))
5655rexlimdva 2648 . . . . . . . . . . 11 (𝜑 → (∃𝑤 ∈ ω (𝑅𝑤) = ⟨𝑣, 𝑧⟩ → 𝑧 = (2nd ‘(𝑅‘(𝐺𝑣)))))
5733, 56sylbid 150 . . . . . . . . . 10 (𝜑 → (⟨𝑣, 𝑧⟩ ∈ 𝑇𝑧 = (2nd ‘(𝑅‘(𝐺𝑣)))))
5857alrimiv 1920 . . . . . . . . 9 (𝜑 → ∀𝑧(⟨𝑣, 𝑧⟩ ∈ 𝑇𝑧 = (2nd ‘(𝑅‘(𝐺𝑣)))))
5958adantr 276 . . . . . . . 8 ((𝜑𝑣 ∈ (ℤ𝐶)) → ∀𝑧(⟨𝑣, 𝑧⟩ ∈ 𝑇𝑧 = (2nd ‘(𝑅‘(𝐺𝑣)))))
60 eqeq2 2239 . . . . . . . . . . 11 (𝑤 = (2nd ‘(𝑅‘(𝐺𝑣))) → (𝑧 = 𝑤𝑧 = (2nd ‘(𝑅‘(𝐺𝑣)))))
6160imbi2d 230 . . . . . . . . . 10 (𝑤 = (2nd ‘(𝑅‘(𝐺𝑣))) → ((⟨𝑣, 𝑧⟩ ∈ 𝑇𝑧 = 𝑤) ↔ (⟨𝑣, 𝑧⟩ ∈ 𝑇𝑧 = (2nd ‘(𝑅‘(𝐺𝑣))))))
6261albidv 1870 . . . . . . . . 9 (𝑤 = (2nd ‘(𝑅‘(𝐺𝑣))) → (∀𝑧(⟨𝑣, 𝑧⟩ ∈ 𝑇𝑧 = 𝑤) ↔ ∀𝑧(⟨𝑣, 𝑧⟩ ∈ 𝑇𝑧 = (2nd ‘(𝑅‘(𝐺𝑣))))))
6362spcegv 2891 . . . . . . . 8 ((2nd ‘(𝑅‘(𝐺𝑣))) ∈ 𝑆 → (∀𝑧(⟨𝑣, 𝑧⟩ ∈ 𝑇𝑧 = (2nd ‘(𝑅‘(𝐺𝑣)))) → ∃𝑤𝑧(⟨𝑣, 𝑧⟩ ∈ 𝑇𝑧 = 𝑤)))
6429, 59, 63sylc 62 . . . . . . 7 ((𝜑𝑣 ∈ (ℤ𝐶)) → ∃𝑤𝑧(⟨𝑣, 𝑧⟩ ∈ 𝑇𝑧 = 𝑤))
65 nfv 1574 . . . . . . . 8 𝑤𝑣, 𝑧⟩ ∈ 𝑇
6665mo2r 2130 . . . . . . 7 (∃𝑤𝑧(⟨𝑣, 𝑧⟩ ∈ 𝑇𝑧 = 𝑤) → ∃*𝑧𝑣, 𝑧⟩ ∈ 𝑇)
6764, 66syl 14 . . . . . 6 ((𝜑𝑣 ∈ (ℤ𝐶)) → ∃*𝑧𝑣, 𝑧⟩ ∈ 𝑇)
68 dmss 4922 . . . . . . . . . . 11 (𝑇 ⊆ ((ℤ𝐶) × 𝑆) → dom 𝑇 ⊆ dom ((ℤ𝐶) × 𝑆))
6918, 68syl 14 . . . . . . . . . 10 (𝜑 → dom 𝑇 ⊆ dom ((ℤ𝐶) × 𝑆))
70 dmxpss 5159 . . . . . . . . . 10 dom ((ℤ𝐶) × 𝑆) ⊆ (ℤ𝐶)
7169, 70sstrdi 3236 . . . . . . . . 9 (𝜑 → dom 𝑇 ⊆ (ℤ𝐶))
723adantr 276 . . . . . . . . . . . . . 14 ((𝜑𝑣 ∈ (ℤ𝐶)) → 𝐶 ∈ ℤ)
735adantr 276 . . . . . . . . . . . . . 14 ((𝜑𝑣 ∈ (ℤ𝐶)) → 𝐴𝑆)
746adantlr 477 . . . . . . . . . . . . . 14 (((𝜑𝑣 ∈ (ℤ𝐶)) ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
75 simpr 110 . . . . . . . . . . . . . 14 ((𝜑𝑣 ∈ (ℤ𝐶)) → 𝑣 ∈ (ℤ𝐶))
7672, 4, 73, 74, 7, 75frecuzrdglem 10633 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (ℤ𝐶)) → ⟨𝑣, (2nd ‘(𝑅‘(𝐺𝑣)))⟩ ∈ ran 𝑅)
771eleq2d 2299 . . . . . . . . . . . . . 14 (𝜑 → (⟨𝑣, (2nd ‘(𝑅‘(𝐺𝑣)))⟩ ∈ 𝑇 ↔ ⟨𝑣, (2nd ‘(𝑅‘(𝐺𝑣)))⟩ ∈ ran 𝑅))
7877adantr 276 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (ℤ𝐶)) → (⟨𝑣, (2nd ‘(𝑅‘(𝐺𝑣)))⟩ ∈ 𝑇 ↔ ⟨𝑣, (2nd ‘(𝑅‘(𝐺𝑣)))⟩ ∈ ran 𝑅))
7976, 78mpbird 167 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (ℤ𝐶)) → ⟨𝑣, (2nd ‘(𝑅‘(𝐺𝑣)))⟩ ∈ 𝑇)
80 opeldmg 4928 . . . . . . . . . . . . 13 ((𝑣 ∈ V ∧ (2nd ‘(𝑅‘(𝐺𝑣))) ∈ 𝑆) → (⟨𝑣, (2nd ‘(𝑅‘(𝐺𝑣)))⟩ ∈ 𝑇𝑣 ∈ dom 𝑇))
8140, 80mpan 424 . . . . . . . . . . . 12 ((2nd ‘(𝑅‘(𝐺𝑣))) ∈ 𝑆 → (⟨𝑣, (2nd ‘(𝑅‘(𝐺𝑣)))⟩ ∈ 𝑇𝑣 ∈ dom 𝑇))
8229, 79, 81sylc 62 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (ℤ𝐶)) → 𝑣 ∈ dom 𝑇)
8382ex 115 . . . . . . . . . 10 (𝜑 → (𝑣 ∈ (ℤ𝐶) → 𝑣 ∈ dom 𝑇))
8483ssrdv 3230 . . . . . . . . 9 (𝜑 → (ℤ𝐶) ⊆ dom 𝑇)
8571, 84eqssd 3241 . . . . . . . 8 (𝜑 → dom 𝑇 = (ℤ𝐶))
8685eleq2d 2299 . . . . . . 7 (𝜑 → (𝑣 ∈ dom 𝑇𝑣 ∈ (ℤ𝐶)))
8786pm5.32i 454 . . . . . 6 ((𝜑𝑣 ∈ dom 𝑇) ↔ (𝜑𝑣 ∈ (ℤ𝐶)))
88 df-br 4084 . . . . . . 7 (𝑣𝑇𝑧 ↔ ⟨𝑣, 𝑧⟩ ∈ 𝑇)
8988mobii 2114 . . . . . 6 (∃*𝑧 𝑣𝑇𝑧 ↔ ∃*𝑧𝑣, 𝑧⟩ ∈ 𝑇)
9067, 87, 893imtr4i 201 . . . . 5 ((𝜑𝑣 ∈ dom 𝑇) → ∃*𝑧 𝑣𝑇𝑧)
9190ralrimiva 2603 . . . 4 (𝜑 → ∀𝑣 ∈ dom 𝑇∃*𝑧 𝑣𝑇𝑧)
92 dffun7 5345 . . . 4 (Fun 𝑇 ↔ (Rel 𝑇 ∧ ∀𝑣 ∈ dom 𝑇∃*𝑧 𝑣𝑇𝑧))
9322, 91, 92sylanbrc 417 . . 3 (𝜑 → Fun 𝑇)
94 df-fn 5321 . . 3 (𝑇 Fn (ℤ𝐶) ↔ (Fun 𝑇 ∧ dom 𝑇 = (ℤ𝐶)))
9593, 85, 94sylanbrc 417 . 2 (𝜑𝑇 Fn (ℤ𝐶))
96 rnss 4954 . . . 4 (𝑇 ⊆ ((ℤ𝐶) × 𝑆) → ran 𝑇 ⊆ ran ((ℤ𝐶) × 𝑆))
9718, 96syl 14 . . 3 (𝜑 → ran 𝑇 ⊆ ran ((ℤ𝐶) × 𝑆))
98 rnxpss 5160 . . 3 ran ((ℤ𝐶) × 𝑆) ⊆ 𝑆
9997, 98sstrdi 3236 . 2 (𝜑 → ran 𝑇𝑆)
100 df-f 5322 . 2 (𝑇:(ℤ𝐶)⟶𝑆 ↔ (𝑇 Fn (ℤ𝐶) ∧ ran 𝑇𝑆))
10195, 99, 100sylanbrc 417 1 (𝜑𝑇:(ℤ𝐶)⟶𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1393   = wceq 1395  wex 1538  ∃*wmo 2078  wcel 2200  wral 2508  wrex 2509  Vcvv 2799  wss 3197  cop 3669   class class class wbr 4083  cmpt 4145  ωcom 4682   × cxp 4717  ccnv 4718  dom cdm 4719  ran crn 4720  Rel wrel 4724  Fun wfun 5312   Fn wfn 5313  wf 5314  1-1-ontowf1o 5317  cfv 5318  (class class class)co 6001  cmpo 6003  2nd c2nd 6285  freccfrec 6536  1c1 8000   + caddc 8002  cz 9446  cuz 9722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447  df-uz 9723
This theorem is referenced by:  frecuzrdg0  10635  frecuzrdgsuc  10636
  Copyright terms: Public domain W3C validator