ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffun4f GIF version

Theorem dffun4f 5330
Description: Definition of function like dffun4 5325 but using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Jim Kingdon, 17-Mar-2019.)
Hypotheses
Ref Expression
dffun4f.1 𝑥𝐴
dffun4f.2 𝑦𝐴
dffun4f.3 𝑧𝐴
Assertion
Ref Expression
dffun4f (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) → 𝑦 = 𝑧)))
Distinct variable group:   𝑥,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧)

Proof of Theorem dffun4f
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 dffun4f.1 . . 3 𝑥𝐴
2 dffun4f.2 . . 3 𝑦𝐴
31, 2dffun6f 5327 . 2 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦))
4 nfcv 2372 . . . . . . 7 𝑦𝑥
5 nfcv 2372 . . . . . . 7 𝑦𝑤
64, 2, 5nfbr 4129 . . . . . 6 𝑦 𝑥𝐴𝑤
7 breq2 4086 . . . . . 6 (𝑦 = 𝑤 → (𝑥𝐴𝑦𝑥𝐴𝑤))
86, 7mo4f 2138 . . . . 5 (∃*𝑦 𝑥𝐴𝑦 ↔ ∀𝑦𝑤((𝑥𝐴𝑦𝑥𝐴𝑤) → 𝑦 = 𝑤))
9 nfv 1574 . . . . . . 7 𝑤((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧)
10 nfcv 2372 . . . . . . . . . 10 𝑧𝑥
11 dffun4f.3 . . . . . . . . . 10 𝑧𝐴
12 nfcv 2372 . . . . . . . . . 10 𝑧𝑦
1310, 11, 12nfbr 4129 . . . . . . . . 9 𝑧 𝑥𝐴𝑦
14 nfcv 2372 . . . . . . . . . 10 𝑧𝑤
1510, 11, 14nfbr 4129 . . . . . . . . 9 𝑧 𝑥𝐴𝑤
1613, 15nfan 1611 . . . . . . . 8 𝑧(𝑥𝐴𝑦𝑥𝐴𝑤)
17 nfv 1574 . . . . . . . 8 𝑧 𝑦 = 𝑤
1816, 17nfim 1618 . . . . . . 7 𝑧((𝑥𝐴𝑦𝑥𝐴𝑤) → 𝑦 = 𝑤)
19 breq2 4086 . . . . . . . . 9 (𝑧 = 𝑤 → (𝑥𝐴𝑧𝑥𝐴𝑤))
2019anbi2d 464 . . . . . . . 8 (𝑧 = 𝑤 → ((𝑥𝐴𝑦𝑥𝐴𝑧) ↔ (𝑥𝐴𝑦𝑥𝐴𝑤)))
21 equequ2 1759 . . . . . . . 8 (𝑧 = 𝑤 → (𝑦 = 𝑧𝑦 = 𝑤))
2220, 21imbi12d 234 . . . . . . 7 (𝑧 = 𝑤 → (((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ ((𝑥𝐴𝑦𝑥𝐴𝑤) → 𝑦 = 𝑤)))
239, 18, 22cbval 1800 . . . . . 6 (∀𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ ∀𝑤((𝑥𝐴𝑦𝑥𝐴𝑤) → 𝑦 = 𝑤))
2423albii 1516 . . . . 5 (∀𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ ∀𝑦𝑤((𝑥𝐴𝑦𝑥𝐴𝑤) → 𝑦 = 𝑤))
258, 24bitr4i 187 . . . 4 (∃*𝑦 𝑥𝐴𝑦 ↔ ∀𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧))
2625albii 1516 . . 3 (∀𝑥∃*𝑦 𝑥𝐴𝑦 ↔ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧))
2726anbi2i 457 . 2 ((Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦) ↔ (Rel 𝐴 ∧ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧)))
28 df-br 4083 . . . . . . 7 (𝑥𝐴𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴)
29 df-br 4083 . . . . . . 7 (𝑥𝐴𝑧 ↔ ⟨𝑥, 𝑧⟩ ∈ 𝐴)
3028, 29anbi12i 460 . . . . . 6 ((𝑥𝐴𝑦𝑥𝐴𝑧) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴))
3130imbi1i 238 . . . . 5 (((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ ((⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) → 𝑦 = 𝑧))
32312albii 1517 . . . 4 (∀𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ ∀𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) → 𝑦 = 𝑧))
3332albii 1516 . . 3 (∀𝑥𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) → 𝑦 = 𝑧))
3433anbi2i 457 . 2 ((Rel 𝐴 ∧ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧)) ↔ (Rel 𝐴 ∧ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) → 𝑦 = 𝑧)))
353, 27, 343bitri 206 1 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) → 𝑦 = 𝑧)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1393  ∃*wmo 2078  wcel 2200  wnfc 2359  cop 3669   class class class wbr 4082  Rel wrel 4721  Fun wfun 5308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-id 4381  df-cnv 4724  df-co 4725  df-fun 5316
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator