Step | Hyp | Ref
| Expression |
1 | | dffun4f.1 |
. . 3
⊢
Ⅎ𝑥𝐴 |
2 | | dffun4f.2 |
. . 3
⊢
Ⅎ𝑦𝐴 |
3 | 1, 2 | dffun6f 5211 |
. 2
⊢ (Fun
𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦)) |
4 | | nfcv 2312 |
. . . . . . 7
⊢
Ⅎ𝑦𝑥 |
5 | | nfcv 2312 |
. . . . . . 7
⊢
Ⅎ𝑦𝑤 |
6 | 4, 2, 5 | nfbr 4035 |
. . . . . 6
⊢
Ⅎ𝑦 𝑥𝐴𝑤 |
7 | | breq2 3993 |
. . . . . 6
⊢ (𝑦 = 𝑤 → (𝑥𝐴𝑦 ↔ 𝑥𝐴𝑤)) |
8 | 6, 7 | mo4f 2079 |
. . . . 5
⊢
(∃*𝑦 𝑥𝐴𝑦 ↔ ∀𝑦∀𝑤((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑤) → 𝑦 = 𝑤)) |
9 | | nfv 1521 |
. . . . . . 7
⊢
Ⅎ𝑤((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧) |
10 | | nfcv 2312 |
. . . . . . . . . 10
⊢
Ⅎ𝑧𝑥 |
11 | | dffun4f.3 |
. . . . . . . . . 10
⊢
Ⅎ𝑧𝐴 |
12 | | nfcv 2312 |
. . . . . . . . . 10
⊢
Ⅎ𝑧𝑦 |
13 | 10, 11, 12 | nfbr 4035 |
. . . . . . . . 9
⊢
Ⅎ𝑧 𝑥𝐴𝑦 |
14 | | nfcv 2312 |
. . . . . . . . . 10
⊢
Ⅎ𝑧𝑤 |
15 | 10, 11, 14 | nfbr 4035 |
. . . . . . . . 9
⊢
Ⅎ𝑧 𝑥𝐴𝑤 |
16 | 13, 15 | nfan 1558 |
. . . . . . . 8
⊢
Ⅎ𝑧(𝑥𝐴𝑦 ∧ 𝑥𝐴𝑤) |
17 | | nfv 1521 |
. . . . . . . 8
⊢
Ⅎ𝑧 𝑦 = 𝑤 |
18 | 16, 17 | nfim 1565 |
. . . . . . 7
⊢
Ⅎ𝑧((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑤) → 𝑦 = 𝑤) |
19 | | breq2 3993 |
. . . . . . . . 9
⊢ (𝑧 = 𝑤 → (𝑥𝐴𝑧 ↔ 𝑥𝐴𝑤)) |
20 | 19 | anbi2d 461 |
. . . . . . . 8
⊢ (𝑧 = 𝑤 → ((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) ↔ (𝑥𝐴𝑦 ∧ 𝑥𝐴𝑤))) |
21 | | equequ2 1706 |
. . . . . . . 8
⊢ (𝑧 = 𝑤 → (𝑦 = 𝑧 ↔ 𝑦 = 𝑤)) |
22 | 20, 21 | imbi12d 233 |
. . . . . . 7
⊢ (𝑧 = 𝑤 → (((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ ((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑤) → 𝑦 = 𝑤))) |
23 | 9, 18, 22 | cbval 1747 |
. . . . . 6
⊢
(∀𝑧((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ ∀𝑤((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑤) → 𝑦 = 𝑤)) |
24 | 23 | albii 1463 |
. . . . 5
⊢
(∀𝑦∀𝑧((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ ∀𝑦∀𝑤((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑤) → 𝑦 = 𝑤)) |
25 | 8, 24 | bitr4i 186 |
. . . 4
⊢
(∃*𝑦 𝑥𝐴𝑦 ↔ ∀𝑦∀𝑧((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧)) |
26 | 25 | albii 1463 |
. . 3
⊢
(∀𝑥∃*𝑦 𝑥𝐴𝑦 ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧)) |
27 | 26 | anbi2i 454 |
. 2
⊢ ((Rel
𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦) ↔ (Rel 𝐴 ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧))) |
28 | | df-br 3990 |
. . . . . . 7
⊢ (𝑥𝐴𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐴) |
29 | | df-br 3990 |
. . . . . . 7
⊢ (𝑥𝐴𝑧 ↔ 〈𝑥, 𝑧〉 ∈ 𝐴) |
30 | 28, 29 | anbi12i 457 |
. . . . . 6
⊢ ((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) ↔ (〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 〈𝑥, 𝑧〉 ∈ 𝐴)) |
31 | 30 | imbi1i 237 |
. . . . 5
⊢ (((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ ((〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 〈𝑥, 𝑧〉 ∈ 𝐴) → 𝑦 = 𝑧)) |
32 | 31 | 2albii 1464 |
. . . 4
⊢
(∀𝑦∀𝑧((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ ∀𝑦∀𝑧((〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 〈𝑥, 𝑧〉 ∈ 𝐴) → 𝑦 = 𝑧)) |
33 | 32 | albii 1463 |
. . 3
⊢
(∀𝑥∀𝑦∀𝑧((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ ∀𝑥∀𝑦∀𝑧((〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 〈𝑥, 𝑧〉 ∈ 𝐴) → 𝑦 = 𝑧)) |
34 | 33 | anbi2i 454 |
. 2
⊢ ((Rel
𝐴 ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧)) ↔ (Rel 𝐴 ∧ ∀𝑥∀𝑦∀𝑧((〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 〈𝑥, 𝑧〉 ∈ 𝐴) → 𝑦 = 𝑧))) |
35 | 3, 27, 34 | 3bitri 205 |
1
⊢ (Fun
𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∀𝑦∀𝑧((〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 〈𝑥, 𝑧〉 ∈ 𝐴) → 𝑦 = 𝑧))) |