| Step | Hyp | Ref
 | Expression | 
| 1 |   | dffun4f.1 | 
. . 3
⊢
Ⅎ𝑥𝐴 | 
| 2 |   | dffun4f.2 | 
. . 3
⊢
Ⅎ𝑦𝐴 | 
| 3 | 1, 2 | dffun6f 5271 | 
. 2
⊢ (Fun
𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦)) | 
| 4 |   | nfcv 2339 | 
. . . . . . 7
⊢
Ⅎ𝑦𝑥 | 
| 5 |   | nfcv 2339 | 
. . . . . . 7
⊢
Ⅎ𝑦𝑤 | 
| 6 | 4, 2, 5 | nfbr 4079 | 
. . . . . 6
⊢
Ⅎ𝑦 𝑥𝐴𝑤 | 
| 7 |   | breq2 4037 | 
. . . . . 6
⊢ (𝑦 = 𝑤 → (𝑥𝐴𝑦 ↔ 𝑥𝐴𝑤)) | 
| 8 | 6, 7 | mo4f 2105 | 
. . . . 5
⊢
(∃*𝑦 𝑥𝐴𝑦 ↔ ∀𝑦∀𝑤((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑤) → 𝑦 = 𝑤)) | 
| 9 |   | nfv 1542 | 
. . . . . . 7
⊢
Ⅎ𝑤((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧) | 
| 10 |   | nfcv 2339 | 
. . . . . . . . . 10
⊢
Ⅎ𝑧𝑥 | 
| 11 |   | dffun4f.3 | 
. . . . . . . . . 10
⊢
Ⅎ𝑧𝐴 | 
| 12 |   | nfcv 2339 | 
. . . . . . . . . 10
⊢
Ⅎ𝑧𝑦 | 
| 13 | 10, 11, 12 | nfbr 4079 | 
. . . . . . . . 9
⊢
Ⅎ𝑧 𝑥𝐴𝑦 | 
| 14 |   | nfcv 2339 | 
. . . . . . . . . 10
⊢
Ⅎ𝑧𝑤 | 
| 15 | 10, 11, 14 | nfbr 4079 | 
. . . . . . . . 9
⊢
Ⅎ𝑧 𝑥𝐴𝑤 | 
| 16 | 13, 15 | nfan 1579 | 
. . . . . . . 8
⊢
Ⅎ𝑧(𝑥𝐴𝑦 ∧ 𝑥𝐴𝑤) | 
| 17 |   | nfv 1542 | 
. . . . . . . 8
⊢
Ⅎ𝑧 𝑦 = 𝑤 | 
| 18 | 16, 17 | nfim 1586 | 
. . . . . . 7
⊢
Ⅎ𝑧((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑤) → 𝑦 = 𝑤) | 
| 19 |   | breq2 4037 | 
. . . . . . . . 9
⊢ (𝑧 = 𝑤 → (𝑥𝐴𝑧 ↔ 𝑥𝐴𝑤)) | 
| 20 | 19 | anbi2d 464 | 
. . . . . . . 8
⊢ (𝑧 = 𝑤 → ((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) ↔ (𝑥𝐴𝑦 ∧ 𝑥𝐴𝑤))) | 
| 21 |   | equequ2 1727 | 
. . . . . . . 8
⊢ (𝑧 = 𝑤 → (𝑦 = 𝑧 ↔ 𝑦 = 𝑤)) | 
| 22 | 20, 21 | imbi12d 234 | 
. . . . . . 7
⊢ (𝑧 = 𝑤 → (((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ ((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑤) → 𝑦 = 𝑤))) | 
| 23 | 9, 18, 22 | cbval 1768 | 
. . . . . 6
⊢
(∀𝑧((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ ∀𝑤((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑤) → 𝑦 = 𝑤)) | 
| 24 | 23 | albii 1484 | 
. . . . 5
⊢
(∀𝑦∀𝑧((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ ∀𝑦∀𝑤((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑤) → 𝑦 = 𝑤)) | 
| 25 | 8, 24 | bitr4i 187 | 
. . . 4
⊢
(∃*𝑦 𝑥𝐴𝑦 ↔ ∀𝑦∀𝑧((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧)) | 
| 26 | 25 | albii 1484 | 
. . 3
⊢
(∀𝑥∃*𝑦 𝑥𝐴𝑦 ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧)) | 
| 27 | 26 | anbi2i 457 | 
. 2
⊢ ((Rel
𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦) ↔ (Rel 𝐴 ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧))) | 
| 28 |   | df-br 4034 | 
. . . . . . 7
⊢ (𝑥𝐴𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐴) | 
| 29 |   | df-br 4034 | 
. . . . . . 7
⊢ (𝑥𝐴𝑧 ↔ 〈𝑥, 𝑧〉 ∈ 𝐴) | 
| 30 | 28, 29 | anbi12i 460 | 
. . . . . 6
⊢ ((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) ↔ (〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 〈𝑥, 𝑧〉 ∈ 𝐴)) | 
| 31 | 30 | imbi1i 238 | 
. . . . 5
⊢ (((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ ((〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 〈𝑥, 𝑧〉 ∈ 𝐴) → 𝑦 = 𝑧)) | 
| 32 | 31 | 2albii 1485 | 
. . . 4
⊢
(∀𝑦∀𝑧((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ ∀𝑦∀𝑧((〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 〈𝑥, 𝑧〉 ∈ 𝐴) → 𝑦 = 𝑧)) | 
| 33 | 32 | albii 1484 | 
. . 3
⊢
(∀𝑥∀𝑦∀𝑧((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ ∀𝑥∀𝑦∀𝑧((〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 〈𝑥, 𝑧〉 ∈ 𝐴) → 𝑦 = 𝑧)) | 
| 34 | 33 | anbi2i 457 | 
. 2
⊢ ((Rel
𝐴 ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧)) ↔ (Rel 𝐴 ∧ ∀𝑥∀𝑦∀𝑧((〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 〈𝑥, 𝑧〉 ∈ 𝐴) → 𝑦 = 𝑧))) | 
| 35 | 3, 27, 34 | 3bitri 206 | 
1
⊢ (Fun
𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∀𝑦∀𝑧((〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 〈𝑥, 𝑧〉 ∈ 𝐴) → 𝑦 = 𝑧))) |