| Step | Hyp | Ref
| Expression |
| 1 | | simp3 1001 |
. . 3
⊢ ((𝐴 ∈ 𝐵 ∧ ∃*𝑥𝜑 ∧ 𝜑) → 𝜑) |
| 2 | | moi2.1 |
. . 3
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| 3 | 1, 2 | syl5ibcom 155 |
. 2
⊢ ((𝐴 ∈ 𝐵 ∧ ∃*𝑥𝜑 ∧ 𝜑) → (𝑥 = 𝐴 → 𝜓)) |
| 4 | | nfs1v 1958 |
. . . . . . . 8
⊢
Ⅎ𝑥[𝑦 / 𝑥]𝜑 |
| 5 | | sbequ12 1785 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
| 6 | 4, 5 | mo4f 2105 |
. . . . . . 7
⊢
(∃*𝑥𝜑 ↔ ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) |
| 7 | | sp 1525 |
. . . . . . 7
⊢
(∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → ∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) |
| 8 | 6, 7 | sylbi 121 |
. . . . . 6
⊢
(∃*𝑥𝜑 → ∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) |
| 9 | | nfv 1542 |
. . . . . . . . . 10
⊢
Ⅎ𝑥𝜓 |
| 10 | 9, 2 | sbhypf 2813 |
. . . . . . . . 9
⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ 𝜓)) |
| 11 | 10 | anbi2d 464 |
. . . . . . . 8
⊢ (𝑦 = 𝐴 → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) ↔ (𝜑 ∧ 𝜓))) |
| 12 | | eqeq2 2206 |
. . . . . . . 8
⊢ (𝑦 = 𝐴 → (𝑥 = 𝑦 ↔ 𝑥 = 𝐴)) |
| 13 | 11, 12 | imbi12d 234 |
. . . . . . 7
⊢ (𝑦 = 𝐴 → (((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) ↔ ((𝜑 ∧ 𝜓) → 𝑥 = 𝐴))) |
| 14 | 13 | spcgv 2851 |
. . . . . 6
⊢ (𝐴 ∈ 𝐵 → (∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → ((𝜑 ∧ 𝜓) → 𝑥 = 𝐴))) |
| 15 | 8, 14 | syl5 32 |
. . . . 5
⊢ (𝐴 ∈ 𝐵 → (∃*𝑥𝜑 → ((𝜑 ∧ 𝜓) → 𝑥 = 𝐴))) |
| 16 | 15 | imp 124 |
. . . 4
⊢ ((𝐴 ∈ 𝐵 ∧ ∃*𝑥𝜑) → ((𝜑 ∧ 𝜓) → 𝑥 = 𝐴)) |
| 17 | 16 | expd 258 |
. . 3
⊢ ((𝐴 ∈ 𝐵 ∧ ∃*𝑥𝜑) → (𝜑 → (𝜓 → 𝑥 = 𝐴))) |
| 18 | 17 | 3impia 1202 |
. 2
⊢ ((𝐴 ∈ 𝐵 ∧ ∃*𝑥𝜑 ∧ 𝜑) → (𝜓 → 𝑥 = 𝐴)) |
| 19 | 3, 18 | impbid 129 |
1
⊢ ((𝐴 ∈ 𝐵 ∧ ∃*𝑥𝜑 ∧ 𝜑) → (𝑥 = 𝐴 ↔ 𝜓)) |