Step | Hyp | Ref
| Expression |
1 | | simp3 994 |
. . 3
⊢ ((𝐴 ∈ 𝐵 ∧ ∃*𝑥𝜑 ∧ 𝜑) → 𝜑) |
2 | | moi2.1 |
. . 3
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
3 | 1, 2 | syl5ibcom 154 |
. 2
⊢ ((𝐴 ∈ 𝐵 ∧ ∃*𝑥𝜑 ∧ 𝜑) → (𝑥 = 𝐴 → 𝜓)) |
4 | | nfs1v 1932 |
. . . . . . . 8
⊢
Ⅎ𝑥[𝑦 / 𝑥]𝜑 |
5 | | sbequ12 1764 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
6 | 4, 5 | mo4f 2079 |
. . . . . . 7
⊢
(∃*𝑥𝜑 ↔ ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) |
7 | | sp 1504 |
. . . . . . 7
⊢
(∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → ∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) |
8 | 6, 7 | sylbi 120 |
. . . . . 6
⊢
(∃*𝑥𝜑 → ∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) |
9 | | nfv 1521 |
. . . . . . . . . 10
⊢
Ⅎ𝑥𝜓 |
10 | 9, 2 | sbhypf 2779 |
. . . . . . . . 9
⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ 𝜓)) |
11 | 10 | anbi2d 461 |
. . . . . . . 8
⊢ (𝑦 = 𝐴 → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) ↔ (𝜑 ∧ 𝜓))) |
12 | | eqeq2 2180 |
. . . . . . . 8
⊢ (𝑦 = 𝐴 → (𝑥 = 𝑦 ↔ 𝑥 = 𝐴)) |
13 | 11, 12 | imbi12d 233 |
. . . . . . 7
⊢ (𝑦 = 𝐴 → (((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) ↔ ((𝜑 ∧ 𝜓) → 𝑥 = 𝐴))) |
14 | 13 | spcgv 2817 |
. . . . . 6
⊢ (𝐴 ∈ 𝐵 → (∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → ((𝜑 ∧ 𝜓) → 𝑥 = 𝐴))) |
15 | 8, 14 | syl5 32 |
. . . . 5
⊢ (𝐴 ∈ 𝐵 → (∃*𝑥𝜑 → ((𝜑 ∧ 𝜓) → 𝑥 = 𝐴))) |
16 | 15 | imp 123 |
. . . 4
⊢ ((𝐴 ∈ 𝐵 ∧ ∃*𝑥𝜑) → ((𝜑 ∧ 𝜓) → 𝑥 = 𝐴)) |
17 | 16 | expd 256 |
. . 3
⊢ ((𝐴 ∈ 𝐵 ∧ ∃*𝑥𝜑) → (𝜑 → (𝜓 → 𝑥 = 𝐴))) |
18 | 17 | 3impia 1195 |
. 2
⊢ ((𝐴 ∈ 𝐵 ∧ ∃*𝑥𝜑 ∧ 𝜑) → (𝜓 → 𝑥 = 𝐴)) |
19 | 3, 18 | impbid 128 |
1
⊢ ((𝐴 ∈ 𝐵 ∧ ∃*𝑥𝜑 ∧ 𝜑) → (𝑥 = 𝐴 ↔ 𝜓)) |