ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqeq1 GIF version

Theorem seqeq1 10228
Description: Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.)
Assertion
Ref Expression
seqeq1 (𝑀 = 𝑁 → seq𝑀( + , 𝐹) = seq𝑁( + , 𝐹))

Proof of Theorem seqeq1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . . . . . 6 (𝑀 = 𝑁𝑀 = 𝑁)
2 fveq2 5421 . . . . . 6 (𝑀 = 𝑁 → (𝐹𝑀) = (𝐹𝑁))
31, 2opeq12d 3713 . . . . 5 (𝑀 = 𝑁 → ⟨𝑀, (𝐹𝑀)⟩ = ⟨𝑁, (𝐹𝑁)⟩)
4 freceq2 6290 . . . . 5 (⟨𝑀, (𝐹𝑀)⟩ = ⟨𝑁, (𝐹𝑁)⟩ → frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩) = frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑁, (𝐹𝑁)⟩))
53, 4syl 14 . . . 4 (𝑀 = 𝑁 → frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩) = frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑁, (𝐹𝑁)⟩))
6 fveq2 5421 . . . . . 6 (𝑀 = 𝑁 → (ℤ𝑀) = (ℤ𝑁))
7 eqid 2139 . . . . . 6 V = V
8 mpoeq12 5831 . . . . . 6 (((ℤ𝑀) = (ℤ𝑁) ∧ V = V) → (𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩) = (𝑥 ∈ (ℤ𝑁), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩))
96, 7, 8sylancl 409 . . . . 5 (𝑀 = 𝑁 → (𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩) = (𝑥 ∈ (ℤ𝑁), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩))
10 freceq1 6289 . . . . 5 ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩) = (𝑥 ∈ (ℤ𝑁), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩) → frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑁, (𝐹𝑁)⟩) = frec((𝑥 ∈ (ℤ𝑁), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑁, (𝐹𝑁)⟩))
119, 10syl 14 . . . 4 (𝑀 = 𝑁 → frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑁, (𝐹𝑁)⟩) = frec((𝑥 ∈ (ℤ𝑁), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑁, (𝐹𝑁)⟩))
125, 11eqtrd 2172 . . 3 (𝑀 = 𝑁 → frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩) = frec((𝑥 ∈ (ℤ𝑁), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑁, (𝐹𝑁)⟩))
1312rneqd 4768 . 2 (𝑀 = 𝑁 → ran frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩) = ran frec((𝑥 ∈ (ℤ𝑁), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑁, (𝐹𝑁)⟩))
14 df-seqfrec 10226 . 2 seq𝑀( + , 𝐹) = ran frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)
15 df-seqfrec 10226 . 2 seq𝑁( + , 𝐹) = ran frec((𝑥 ∈ (ℤ𝑁), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑁, (𝐹𝑁)⟩)
1613, 14, 153eqtr4g 2197 1 (𝑀 = 𝑁 → seq𝑀( + , 𝐹) = seq𝑁( + , 𝐹))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1331  Vcvv 2686  cop 3530  ran crn 4540  cfv 5123  (class class class)co 5774  cmpo 5776  freccfrec 6287  1c1 7628   + caddc 7630  cuz 9333  seqcseq 10225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-mpt 3991  df-cnv 4547  df-dm 4549  df-rn 4550  df-res 4551  df-iota 5088  df-fv 5131  df-oprab 5778  df-mpo 5779  df-recs 6202  df-frec 6288  df-seqfrec 10226
This theorem is referenced by:  seqeq1d  10231  seq3f1olemqsum  10280  seq3id  10288  seq3z  10291  iserex  11115  summodclem2  11158  summodc  11159  zsumdc  11160  isumsplit  11267  ntrivcvgap  11324  ntrivcvgap0  11325  prodmodclem2  11353  prodmodc  11354  ege2le3  11384
  Copyright terms: Public domain W3C validator