ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqeq1 GIF version

Theorem seqeq1 10667
Description: Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.)
Assertion
Ref Expression
seqeq1 (𝑀 = 𝑁 → seq𝑀( + , 𝐹) = seq𝑁( + , 𝐹))

Proof of Theorem seqeq1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . . . . . 6 (𝑀 = 𝑁𝑀 = 𝑁)
2 fveq2 5626 . . . . . 6 (𝑀 = 𝑁 → (𝐹𝑀) = (𝐹𝑁))
31, 2opeq12d 3864 . . . . 5 (𝑀 = 𝑁 → ⟨𝑀, (𝐹𝑀)⟩ = ⟨𝑁, (𝐹𝑁)⟩)
4 freceq2 6537 . . . . 5 (⟨𝑀, (𝐹𝑀)⟩ = ⟨𝑁, (𝐹𝑁)⟩ → frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩) = frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑁, (𝐹𝑁)⟩))
53, 4syl 14 . . . 4 (𝑀 = 𝑁 → frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩) = frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑁, (𝐹𝑁)⟩))
6 fveq2 5626 . . . . . 6 (𝑀 = 𝑁 → (ℤ𝑀) = (ℤ𝑁))
7 eqid 2229 . . . . . 6 V = V
8 mpoeq12 6063 . . . . . 6 (((ℤ𝑀) = (ℤ𝑁) ∧ V = V) → (𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩) = (𝑥 ∈ (ℤ𝑁), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩))
96, 7, 8sylancl 413 . . . . 5 (𝑀 = 𝑁 → (𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩) = (𝑥 ∈ (ℤ𝑁), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩))
10 freceq1 6536 . . . . 5 ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩) = (𝑥 ∈ (ℤ𝑁), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩) → frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑁, (𝐹𝑁)⟩) = frec((𝑥 ∈ (ℤ𝑁), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑁, (𝐹𝑁)⟩))
119, 10syl 14 . . . 4 (𝑀 = 𝑁 → frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑁, (𝐹𝑁)⟩) = frec((𝑥 ∈ (ℤ𝑁), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑁, (𝐹𝑁)⟩))
125, 11eqtrd 2262 . . 3 (𝑀 = 𝑁 → frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩) = frec((𝑥 ∈ (ℤ𝑁), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑁, (𝐹𝑁)⟩))
1312rneqd 4952 . 2 (𝑀 = 𝑁 → ran frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩) = ran frec((𝑥 ∈ (ℤ𝑁), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑁, (𝐹𝑁)⟩))
14 df-seqfrec 10665 . 2 seq𝑀( + , 𝐹) = ran frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)
15 df-seqfrec 10665 . 2 seq𝑁( + , 𝐹) = ran frec((𝑥 ∈ (ℤ𝑁), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑁, (𝐹𝑁)⟩)
1613, 14, 153eqtr4g 2287 1 (𝑀 = 𝑁 → seq𝑀( + , 𝐹) = seq𝑁( + , 𝐹))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  Vcvv 2799  cop 3669  ran crn 4719  cfv 5317  (class class class)co 6000  cmpo 6002  freccfrec 6534  1c1 7996   + caddc 7998  cuz 9718  seqcseq 10664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-cnv 4726  df-dm 4728  df-rn 4729  df-res 4730  df-iota 5277  df-fv 5325  df-oprab 6004  df-mpo 6005  df-recs 6449  df-frec 6535  df-seqfrec 10665
This theorem is referenced by:  seqeq1d  10670  seq3f1olemqsum  10730  seqf1oglem2  10737  seq3id  10742  seq3z  10745  iserex  11845  summodclem2  11888  summodc  11889  zsumdc  11890  isumsplit  11997  ntrivcvgap  12054  ntrivcvgap0  12055  prodmodclem2  12083  prodmodc  12084  zproddc  12085  fprodntrivap  12090  ege2le3  12177  gsumfzval  13419  gsumval2  13425
  Copyright terms: Public domain W3C validator