Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > txvalex | GIF version |
Description: Existence of the binary topological product. If 𝑅 and 𝑆 are known to be topologies, see txtop 12900. (Contributed by Jim Kingdon, 3-Aug-2023.) |
Ref | Expression |
---|---|
txvalex | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝑅 ×t 𝑆) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2737 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
2 | 1 | adantr 274 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → 𝑅 ∈ V) |
3 | elex 2737 | . . . 4 ⊢ (𝑆 ∈ 𝑊 → 𝑆 ∈ V) | |
4 | 3 | adantl 275 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → 𝑆 ∈ V) |
5 | mpoexga 6180 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦)) ∈ V) | |
6 | rnexg 4869 | . . . 4 ⊢ ((𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦)) ∈ V → ran (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦)) ∈ V) | |
7 | tgvalex 12690 | . . . 4 ⊢ (ran (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦)) ∈ V → (topGen‘ran (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦))) ∈ V) | |
8 | 5, 6, 7 | 3syl 17 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (topGen‘ran (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦))) ∈ V) |
9 | mpoeq12 5902 | . . . . . 6 ⊢ ((𝑤 = 𝑅 ∧ 𝑧 = 𝑆) → (𝑥 ∈ 𝑤, 𝑦 ∈ 𝑧 ↦ (𝑥 × 𝑦)) = (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦))) | |
10 | 9 | rneqd 4833 | . . . . 5 ⊢ ((𝑤 = 𝑅 ∧ 𝑧 = 𝑆) → ran (𝑥 ∈ 𝑤, 𝑦 ∈ 𝑧 ↦ (𝑥 × 𝑦)) = ran (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦))) |
11 | 10 | fveq2d 5490 | . . . 4 ⊢ ((𝑤 = 𝑅 ∧ 𝑧 = 𝑆) → (topGen‘ran (𝑥 ∈ 𝑤, 𝑦 ∈ 𝑧 ↦ (𝑥 × 𝑦))) = (topGen‘ran (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦)))) |
12 | df-tx 12893 | . . . 4 ⊢ ×t = (𝑤 ∈ V, 𝑧 ∈ V ↦ (topGen‘ran (𝑥 ∈ 𝑤, 𝑦 ∈ 𝑧 ↦ (𝑥 × 𝑦)))) | |
13 | 11, 12 | ovmpoga 5971 | . . 3 ⊢ ((𝑅 ∈ V ∧ 𝑆 ∈ V ∧ (topGen‘ran (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦))) ∈ V) → (𝑅 ×t 𝑆) = (topGen‘ran (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦)))) |
14 | 2, 4, 8, 13 | syl3anc 1228 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝑅 ×t 𝑆) = (topGen‘ran (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦)))) |
15 | 14, 8 | eqeltrd 2243 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝑅 ×t 𝑆) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∈ wcel 2136 Vcvv 2726 × cxp 4602 ran crn 4605 ‘cfv 5188 (class class class)co 5842 ∈ cmpo 5844 topGenctg 12571 ×t ctx 12892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-topgen 12577 df-tx 12893 |
This theorem is referenced by: txbasval 12907 |
Copyright terms: Public domain | W3C validator |