Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > txvalex | GIF version |
Description: Existence of the binary topological product. If 𝑅 and 𝑆 are known to be topologies, see txtop 12620. (Contributed by Jim Kingdon, 3-Aug-2023.) |
Ref | Expression |
---|---|
txvalex | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝑅 ×t 𝑆) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2723 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
2 | 1 | adantr 274 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → 𝑅 ∈ V) |
3 | elex 2723 | . . . 4 ⊢ (𝑆 ∈ 𝑊 → 𝑆 ∈ V) | |
4 | 3 | adantl 275 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → 𝑆 ∈ V) |
5 | mpoexga 6154 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦)) ∈ V) | |
6 | rnexg 4848 | . . . 4 ⊢ ((𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦)) ∈ V → ran (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦)) ∈ V) | |
7 | tgvalex 12410 | . . . 4 ⊢ (ran (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦)) ∈ V → (topGen‘ran (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦))) ∈ V) | |
8 | 5, 6, 7 | 3syl 17 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (topGen‘ran (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦))) ∈ V) |
9 | mpoeq12 5875 | . . . . . 6 ⊢ ((𝑤 = 𝑅 ∧ 𝑧 = 𝑆) → (𝑥 ∈ 𝑤, 𝑦 ∈ 𝑧 ↦ (𝑥 × 𝑦)) = (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦))) | |
10 | 9 | rneqd 4812 | . . . . 5 ⊢ ((𝑤 = 𝑅 ∧ 𝑧 = 𝑆) → ran (𝑥 ∈ 𝑤, 𝑦 ∈ 𝑧 ↦ (𝑥 × 𝑦)) = ran (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦))) |
11 | 10 | fveq2d 5469 | . . . 4 ⊢ ((𝑤 = 𝑅 ∧ 𝑧 = 𝑆) → (topGen‘ran (𝑥 ∈ 𝑤, 𝑦 ∈ 𝑧 ↦ (𝑥 × 𝑦))) = (topGen‘ran (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦)))) |
12 | df-tx 12613 | . . . 4 ⊢ ×t = (𝑤 ∈ V, 𝑧 ∈ V ↦ (topGen‘ran (𝑥 ∈ 𝑤, 𝑦 ∈ 𝑧 ↦ (𝑥 × 𝑦)))) | |
13 | 11, 12 | ovmpoga 5944 | . . 3 ⊢ ((𝑅 ∈ V ∧ 𝑆 ∈ V ∧ (topGen‘ran (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦))) ∈ V) → (𝑅 ×t 𝑆) = (topGen‘ran (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦)))) |
14 | 2, 4, 8, 13 | syl3anc 1220 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝑅 ×t 𝑆) = (topGen‘ran (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦)))) |
15 | 14, 8 | eqeltrd 2234 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝑅 ×t 𝑆) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1335 ∈ wcel 2128 Vcvv 2712 × cxp 4581 ran crn 4584 ‘cfv 5167 (class class class)co 5818 ∈ cmpo 5820 topGenctg 12326 ×t ctx 12612 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4252 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-f1 5172 df-fo 5173 df-f1o 5174 df-fv 5175 df-ov 5821 df-oprab 5822 df-mpo 5823 df-1st 6082 df-2nd 6083 df-topgen 12332 df-tx 12613 |
This theorem is referenced by: txbasval 12627 |
Copyright terms: Public domain | W3C validator |