ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  txvalex GIF version

Theorem txvalex 14490
Description: Existence of the binary topological product. If 𝑅 and 𝑆 are known to be topologies, see txtop 14496. (Contributed by Jim Kingdon, 3-Aug-2023.)
Assertion
Ref Expression
txvalex ((𝑅𝑉𝑆𝑊) → (𝑅 ×t 𝑆) ∈ V)

Proof of Theorem txvalex
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2774 . . . 4 (𝑅𝑉𝑅 ∈ V)
21adantr 276 . . 3 ((𝑅𝑉𝑆𝑊) → 𝑅 ∈ V)
3 elex 2774 . . . 4 (𝑆𝑊𝑆 ∈ V)
43adantl 277 . . 3 ((𝑅𝑉𝑆𝑊) → 𝑆 ∈ V)
5 mpoexga 6270 . . . 4 ((𝑅𝑉𝑆𝑊) → (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)) ∈ V)
6 rnexg 4931 . . . 4 ((𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)) ∈ V → ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)) ∈ V)
7 tgvalex 12934 . . . 4 (ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)) ∈ V → (topGen‘ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))) ∈ V)
85, 6, 73syl 17 . . 3 ((𝑅𝑉𝑆𝑊) → (topGen‘ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))) ∈ V)
9 mpoeq12 5982 . . . . . 6 ((𝑤 = 𝑅𝑧 = 𝑆) → (𝑥𝑤, 𝑦𝑧 ↦ (𝑥 × 𝑦)) = (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)))
109rneqd 4895 . . . . 5 ((𝑤 = 𝑅𝑧 = 𝑆) → ran (𝑥𝑤, 𝑦𝑧 ↦ (𝑥 × 𝑦)) = ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)))
1110fveq2d 5562 . . . 4 ((𝑤 = 𝑅𝑧 = 𝑆) → (topGen‘ran (𝑥𝑤, 𝑦𝑧 ↦ (𝑥 × 𝑦))) = (topGen‘ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))))
12 df-tx 14489 . . . 4 ×t = (𝑤 ∈ V, 𝑧 ∈ V ↦ (topGen‘ran (𝑥𝑤, 𝑦𝑧 ↦ (𝑥 × 𝑦))))
1311, 12ovmpoga 6052 . . 3 ((𝑅 ∈ V ∧ 𝑆 ∈ V ∧ (topGen‘ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))) ∈ V) → (𝑅 ×t 𝑆) = (topGen‘ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))))
142, 4, 8, 13syl3anc 1249 . 2 ((𝑅𝑉𝑆𝑊) → (𝑅 ×t 𝑆) = (topGen‘ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))))
1514, 8eqeltrd 2273 1 ((𝑅𝑉𝑆𝑊) → (𝑅 ×t 𝑆) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  Vcvv 2763   × cxp 4661  ran crn 4664  cfv 5258  (class class class)co 5922  cmpo 5924  topGenctg 12925   ×t ctx 14488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-topgen 12931  df-tx 14489
This theorem is referenced by:  txbasval  14503
  Copyright terms: Public domain W3C validator