ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  txvalex GIF version

Theorem txvalex 14433
Description: Existence of the binary topological product. If 𝑅 and 𝑆 are known to be topologies, see txtop 14439. (Contributed by Jim Kingdon, 3-Aug-2023.)
Assertion
Ref Expression
txvalex ((𝑅𝑉𝑆𝑊) → (𝑅 ×t 𝑆) ∈ V)

Proof of Theorem txvalex
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2771 . . . 4 (𝑅𝑉𝑅 ∈ V)
21adantr 276 . . 3 ((𝑅𝑉𝑆𝑊) → 𝑅 ∈ V)
3 elex 2771 . . . 4 (𝑆𝑊𝑆 ∈ V)
43adantl 277 . . 3 ((𝑅𝑉𝑆𝑊) → 𝑆 ∈ V)
5 mpoexga 6267 . . . 4 ((𝑅𝑉𝑆𝑊) → (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)) ∈ V)
6 rnexg 4928 . . . 4 ((𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)) ∈ V → ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)) ∈ V)
7 tgvalex 12877 . . . 4 (ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)) ∈ V → (topGen‘ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))) ∈ V)
85, 6, 73syl 17 . . 3 ((𝑅𝑉𝑆𝑊) → (topGen‘ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))) ∈ V)
9 mpoeq12 5979 . . . . . 6 ((𝑤 = 𝑅𝑧 = 𝑆) → (𝑥𝑤, 𝑦𝑧 ↦ (𝑥 × 𝑦)) = (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)))
109rneqd 4892 . . . . 5 ((𝑤 = 𝑅𝑧 = 𝑆) → ran (𝑥𝑤, 𝑦𝑧 ↦ (𝑥 × 𝑦)) = ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)))
1110fveq2d 5559 . . . 4 ((𝑤 = 𝑅𝑧 = 𝑆) → (topGen‘ran (𝑥𝑤, 𝑦𝑧 ↦ (𝑥 × 𝑦))) = (topGen‘ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))))
12 df-tx 14432 . . . 4 ×t = (𝑤 ∈ V, 𝑧 ∈ V ↦ (topGen‘ran (𝑥𝑤, 𝑦𝑧 ↦ (𝑥 × 𝑦))))
1311, 12ovmpoga 6049 . . 3 ((𝑅 ∈ V ∧ 𝑆 ∈ V ∧ (topGen‘ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))) ∈ V) → (𝑅 ×t 𝑆) = (topGen‘ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))))
142, 4, 8, 13syl3anc 1249 . 2 ((𝑅𝑉𝑆𝑊) → (𝑅 ×t 𝑆) = (topGen‘ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))))
1514, 8eqeltrd 2270 1 ((𝑅𝑉𝑆𝑊) → (𝑅 ×t 𝑆) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  Vcvv 2760   × cxp 4658  ran crn 4661  cfv 5255  (class class class)co 5919  cmpo 5921  topGenctg 12868   ×t ctx 14431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-topgen 12874  df-tx 14432
This theorem is referenced by:  txbasval  14446
  Copyright terms: Public domain W3C validator