| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > txvalex | GIF version | ||
| Description: Existence of the binary topological product. If 𝑅 and 𝑆 are known to be topologies, see txtop 14580. (Contributed by Jim Kingdon, 3-Aug-2023.) |
| Ref | Expression |
|---|---|
| txvalex | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝑅 ×t 𝑆) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2774 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
| 2 | 1 | adantr 276 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → 𝑅 ∈ V) |
| 3 | elex 2774 | . . . 4 ⊢ (𝑆 ∈ 𝑊 → 𝑆 ∈ V) | |
| 4 | 3 | adantl 277 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → 𝑆 ∈ V) |
| 5 | mpoexga 6279 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦)) ∈ V) | |
| 6 | rnexg 4932 | . . . 4 ⊢ ((𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦)) ∈ V → ran (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦)) ∈ V) | |
| 7 | tgvalex 12965 | . . . 4 ⊢ (ran (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦)) ∈ V → (topGen‘ran (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦))) ∈ V) | |
| 8 | 5, 6, 7 | 3syl 17 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (topGen‘ran (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦))) ∈ V) |
| 9 | mpoeq12 5986 | . . . . . 6 ⊢ ((𝑤 = 𝑅 ∧ 𝑧 = 𝑆) → (𝑥 ∈ 𝑤, 𝑦 ∈ 𝑧 ↦ (𝑥 × 𝑦)) = (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦))) | |
| 10 | 9 | rneqd 4896 | . . . . 5 ⊢ ((𝑤 = 𝑅 ∧ 𝑧 = 𝑆) → ran (𝑥 ∈ 𝑤, 𝑦 ∈ 𝑧 ↦ (𝑥 × 𝑦)) = ran (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦))) |
| 11 | 10 | fveq2d 5565 | . . . 4 ⊢ ((𝑤 = 𝑅 ∧ 𝑧 = 𝑆) → (topGen‘ran (𝑥 ∈ 𝑤, 𝑦 ∈ 𝑧 ↦ (𝑥 × 𝑦))) = (topGen‘ran (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦)))) |
| 12 | df-tx 14573 | . . . 4 ⊢ ×t = (𝑤 ∈ V, 𝑧 ∈ V ↦ (topGen‘ran (𝑥 ∈ 𝑤, 𝑦 ∈ 𝑧 ↦ (𝑥 × 𝑦)))) | |
| 13 | 11, 12 | ovmpoga 6056 | . . 3 ⊢ ((𝑅 ∈ V ∧ 𝑆 ∈ V ∧ (topGen‘ran (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦))) ∈ V) → (𝑅 ×t 𝑆) = (topGen‘ran (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦)))) |
| 14 | 2, 4, 8, 13 | syl3anc 1249 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝑅 ×t 𝑆) = (topGen‘ran (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦)))) |
| 15 | 14, 8 | eqeltrd 2273 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝑅 ×t 𝑆) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 Vcvv 2763 × cxp 4662 ran crn 4665 ‘cfv 5259 (class class class)co 5925 ∈ cmpo 5927 topGenctg 12956 ×t ctx 14572 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-topgen 12962 df-tx 14573 |
| This theorem is referenced by: txbasval 14587 |
| Copyright terms: Public domain | W3C validator |