ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  txvalex GIF version

Theorem txvalex 13048
Description: Existence of the binary topological product. If 𝑅 and 𝑆 are known to be topologies, see txtop 13054. (Contributed by Jim Kingdon, 3-Aug-2023.)
Assertion
Ref Expression
txvalex ((𝑅𝑉𝑆𝑊) → (𝑅 ×t 𝑆) ∈ V)

Proof of Theorem txvalex
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2741 . . . 4 (𝑅𝑉𝑅 ∈ V)
21adantr 274 . . 3 ((𝑅𝑉𝑆𝑊) → 𝑅 ∈ V)
3 elex 2741 . . . 4 (𝑆𝑊𝑆 ∈ V)
43adantl 275 . . 3 ((𝑅𝑉𝑆𝑊) → 𝑆 ∈ V)
5 mpoexga 6191 . . . 4 ((𝑅𝑉𝑆𝑊) → (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)) ∈ V)
6 rnexg 4876 . . . 4 ((𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)) ∈ V → ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)) ∈ V)
7 tgvalex 12844 . . . 4 (ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)) ∈ V → (topGen‘ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))) ∈ V)
85, 6, 73syl 17 . . 3 ((𝑅𝑉𝑆𝑊) → (topGen‘ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))) ∈ V)
9 mpoeq12 5913 . . . . . 6 ((𝑤 = 𝑅𝑧 = 𝑆) → (𝑥𝑤, 𝑦𝑧 ↦ (𝑥 × 𝑦)) = (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)))
109rneqd 4840 . . . . 5 ((𝑤 = 𝑅𝑧 = 𝑆) → ran (𝑥𝑤, 𝑦𝑧 ↦ (𝑥 × 𝑦)) = ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)))
1110fveq2d 5500 . . . 4 ((𝑤 = 𝑅𝑧 = 𝑆) → (topGen‘ran (𝑥𝑤, 𝑦𝑧 ↦ (𝑥 × 𝑦))) = (topGen‘ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))))
12 df-tx 13047 . . . 4 ×t = (𝑤 ∈ V, 𝑧 ∈ V ↦ (topGen‘ran (𝑥𝑤, 𝑦𝑧 ↦ (𝑥 × 𝑦))))
1311, 12ovmpoga 5982 . . 3 ((𝑅 ∈ V ∧ 𝑆 ∈ V ∧ (topGen‘ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))) ∈ V) → (𝑅 ×t 𝑆) = (topGen‘ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))))
142, 4, 8, 13syl3anc 1233 . 2 ((𝑅𝑉𝑆𝑊) → (𝑅 ×t 𝑆) = (topGen‘ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))))
1514, 8eqeltrd 2247 1 ((𝑅𝑉𝑆𝑊) → (𝑅 ×t 𝑆) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  Vcvv 2730   × cxp 4609  ran crn 4612  cfv 5198  (class class class)co 5853  cmpo 5855  topGenctg 12594   ×t ctx 13046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-topgen 12600  df-tx 13047
This theorem is referenced by:  txbasval  13061
  Copyright terms: Public domain W3C validator