Step | Hyp | Ref
| Expression |
1 | | elex 2750 |
. . . 4
β’ (π
β π β π
β V) |
2 | 1 | adantr 276 |
. . 3
β’ ((π
β π β§ π β π) β π
β V) |
3 | | elex 2750 |
. . . 4
β’ (π β π β π β V) |
4 | 3 | adantl 277 |
. . 3
β’ ((π
β π β§ π β π) β π β V) |
5 | | mpoexga 6215 |
. . . 4
β’ ((π
β π β§ π β π) β (π₯ β π
, π¦ β π β¦ (π₯ Γ π¦)) β V) |
6 | | rnexg 4894 |
. . . 4
β’ ((π₯ β π
, π¦ β π β¦ (π₯ Γ π¦)) β V β ran (π₯ β π
, π¦ β π β¦ (π₯ Γ π¦)) β V) |
7 | | tgvalex 12717 |
. . . 4
β’ (ran
(π₯ β π
, π¦ β π β¦ (π₯ Γ π¦)) β V β (topGenβran (π₯ β π
, π¦ β π β¦ (π₯ Γ π¦))) β V) |
8 | 5, 6, 7 | 3syl 17 |
. . 3
β’ ((π
β π β§ π β π) β (topGenβran (π₯ β π
, π¦ β π β¦ (π₯ Γ π¦))) β V) |
9 | | mpoeq12 5937 |
. . . . . 6
β’ ((π€ = π
β§ π§ = π) β (π₯ β π€, π¦ β π§ β¦ (π₯ Γ π¦)) = (π₯ β π
, π¦ β π β¦ (π₯ Γ π¦))) |
10 | 9 | rneqd 4858 |
. . . . 5
β’ ((π€ = π
β§ π§ = π) β ran (π₯ β π€, π¦ β π§ β¦ (π₯ Γ π¦)) = ran (π₯ β π
, π¦ β π β¦ (π₯ Γ π¦))) |
11 | 10 | fveq2d 5521 |
. . . 4
β’ ((π€ = π
β§ π§ = π) β (topGenβran (π₯ β π€, π¦ β π§ β¦ (π₯ Γ π¦))) = (topGenβran (π₯ β π
, π¦ β π β¦ (π₯ Γ π¦)))) |
12 | | df-tx 13792 |
. . . 4
β’
Γt = (π€
β V, π§ β V
β¦ (topGenβran (π₯ β π€, π¦ β π§ β¦ (π₯ Γ π¦)))) |
13 | 11, 12 | ovmpoga 6006 |
. . 3
β’ ((π
β V β§ π β V β§
(topGenβran (π₯ β
π
, π¦ β π β¦ (π₯ Γ π¦))) β V) β (π
Γt π) = (topGenβran (π₯ β π
, π¦ β π β¦ (π₯ Γ π¦)))) |
14 | 2, 4, 8, 13 | syl3anc 1238 |
. 2
β’ ((π
β π β§ π β π) β (π
Γt π) = (topGenβran (π₯ β π
, π¦ β π β¦ (π₯ Γ π¦)))) |
15 | 14, 8 | eqeltrd 2254 |
1
β’ ((π
β π β§ π β π) β (π
Γt π) β V) |