ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  txval GIF version

Theorem txval 14575
Description: Value of the binary topological product operation. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 30-Aug-2015.)
Hypothesis
Ref Expression
txval.1 𝐵 = ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))
Assertion
Ref Expression
txval ((𝑅𝑉𝑆𝑊) → (𝑅 ×t 𝑆) = (topGen‘𝐵))
Distinct variable groups:   𝑥,𝑦,𝑅   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem txval
Dummy variables 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2774 . . . 4 (𝑅𝑉𝑅 ∈ V)
21adantr 276 . . 3 ((𝑅𝑉𝑆𝑊) → 𝑅 ∈ V)
3 elex 2774 . . . 4 (𝑆𝑊𝑆 ∈ V)
43adantl 277 . . 3 ((𝑅𝑉𝑆𝑊) → 𝑆 ∈ V)
5 mpoexga 6279 . . . 4 ((𝑅𝑉𝑆𝑊) → (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)) ∈ V)
6 rnexg 4932 . . . 4 ((𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)) ∈ V → ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)) ∈ V)
7 tgvalex 12965 . . . 4 (ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)) ∈ V → (topGen‘ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))) ∈ V)
85, 6, 73syl 17 . . 3 ((𝑅𝑉𝑆𝑊) → (topGen‘ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))) ∈ V)
9 mpoeq12 5986 . . . . . 6 ((𝑟 = 𝑅𝑠 = 𝑆) → (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)) = (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)))
109rneqd 4896 . . . . 5 ((𝑟 = 𝑅𝑠 = 𝑆) → ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)) = ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)))
1110fveq2d 5565 . . . 4 ((𝑟 = 𝑅𝑠 = 𝑆) → (topGen‘ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦))) = (topGen‘ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))))
12 df-tx 14573 . . . 4 ×t = (𝑟 ∈ V, 𝑠 ∈ V ↦ (topGen‘ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦))))
1311, 12ovmpoga 6056 . . 3 ((𝑅 ∈ V ∧ 𝑆 ∈ V ∧ (topGen‘ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))) ∈ V) → (𝑅 ×t 𝑆) = (topGen‘ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))))
142, 4, 8, 13syl3anc 1249 . 2 ((𝑅𝑉𝑆𝑊) → (𝑅 ×t 𝑆) = (topGen‘ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))))
15 txval.1 . . 3 𝐵 = ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))
1615fveq2i 5564 . 2 (topGen‘𝐵) = (topGen‘ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)))
1714, 16eqtr4di 2247 1 ((𝑅𝑉𝑆𝑊) → (𝑅 ×t 𝑆) = (topGen‘𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  Vcvv 2763   × cxp 4662  ran crn 4665  cfv 5259  (class class class)co 5925  cmpo 5927  topGenctg 12956   ×t ctx 14572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-topgen 12962  df-tx 14573
This theorem is referenced by:  eltx  14579  txtop  14580  txtopon  14582  txopn  14585  txss12  14586  txbasval  14587  txcnp  14591  txcnmpt  14593  txrest  14596  txlm  14599  xmettxlem  14829  xmettx  14830
  Copyright terms: Public domain W3C validator