ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  txval GIF version

Theorem txval 12424
Description: Value of the binary topological product operation. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 30-Aug-2015.)
Hypothesis
Ref Expression
txval.1 𝐵 = ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))
Assertion
Ref Expression
txval ((𝑅𝑉𝑆𝑊) → (𝑅 ×t 𝑆) = (topGen‘𝐵))
Distinct variable groups:   𝑥,𝑦,𝑅   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem txval
Dummy variables 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2697 . . . 4 (𝑅𝑉𝑅 ∈ V)
21adantr 274 . . 3 ((𝑅𝑉𝑆𝑊) → 𝑅 ∈ V)
3 elex 2697 . . . 4 (𝑆𝑊𝑆 ∈ V)
43adantl 275 . . 3 ((𝑅𝑉𝑆𝑊) → 𝑆 ∈ V)
5 mpoexga 6110 . . . 4 ((𝑅𝑉𝑆𝑊) → (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)) ∈ V)
6 rnexg 4804 . . . 4 ((𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)) ∈ V → ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)) ∈ V)
7 tgvalex 12219 . . . 4 (ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)) ∈ V → (topGen‘ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))) ∈ V)
85, 6, 73syl 17 . . 3 ((𝑅𝑉𝑆𝑊) → (topGen‘ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))) ∈ V)
9 mpoeq12 5831 . . . . . 6 ((𝑟 = 𝑅𝑠 = 𝑆) → (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)) = (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)))
109rneqd 4768 . . . . 5 ((𝑟 = 𝑅𝑠 = 𝑆) → ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)) = ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)))
1110fveq2d 5425 . . . 4 ((𝑟 = 𝑅𝑠 = 𝑆) → (topGen‘ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦))) = (topGen‘ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))))
12 df-tx 12422 . . . 4 ×t = (𝑟 ∈ V, 𝑠 ∈ V ↦ (topGen‘ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦))))
1311, 12ovmpoga 5900 . . 3 ((𝑅 ∈ V ∧ 𝑆 ∈ V ∧ (topGen‘ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))) ∈ V) → (𝑅 ×t 𝑆) = (topGen‘ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))))
142, 4, 8, 13syl3anc 1216 . 2 ((𝑅𝑉𝑆𝑊) → (𝑅 ×t 𝑆) = (topGen‘ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))))
15 txval.1 . . 3 𝐵 = ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))
1615fveq2i 5424 . 2 (topGen‘𝐵) = (topGen‘ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)))
1714, 16syl6eqr 2190 1 ((𝑅𝑉𝑆𝑊) → (𝑅 ×t 𝑆) = (topGen‘𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  Vcvv 2686   × cxp 4537  ran crn 4540  cfv 5123  (class class class)co 5774  cmpo 5776  topGenctg 12135   ×t ctx 12421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-topgen 12141  df-tx 12422
This theorem is referenced by:  eltx  12428  txtop  12429  txtopon  12431  txopn  12434  txss12  12435  txbasval  12436  txcnp  12440  txcnmpt  12442  txrest  12445  txlm  12448  xmettxlem  12678  xmettx  12679
  Copyright terms: Public domain W3C validator