| Step | Hyp | Ref
 | Expression | 
| 1 |   | simp1 999 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → 𝜑) | 
| 2 |   | simp2 1000 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → 𝑎 ∈ (Base‘𝐺)) | 
| 3 |   | grpsubpropd2.1 | 
. . . . . . . 8
⊢ (𝜑 → 𝐵 = (Base‘𝐺)) | 
| 4 | 3 | 3ad2ant1 1020 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → 𝐵 = (Base‘𝐺)) | 
| 5 | 2, 4 | eleqtrrd 2276 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → 𝑎 ∈ 𝐵) | 
| 6 |   | grpsubpropd2.3 | 
. . . . . . . . 9
⊢ (𝜑 → 𝐺 ∈ Grp) | 
| 7 | 6 | 3ad2ant1 1020 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → 𝐺 ∈ Grp) | 
| 8 |   | simp3 1001 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → 𝑏 ∈ (Base‘𝐺)) | 
| 9 |   | eqid 2196 | 
. . . . . . . . 9
⊢
(Base‘𝐺) =
(Base‘𝐺) | 
| 10 |   | eqid 2196 | 
. . . . . . . . 9
⊢
(invg‘𝐺) = (invg‘𝐺) | 
| 11 | 9, 10 | grpinvcl 13180 | 
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑏 ∈ (Base‘𝐺)) →
((invg‘𝐺)‘𝑏) ∈ (Base‘𝐺)) | 
| 12 | 7, 8, 11 | syl2anc 411 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → ((invg‘𝐺)‘𝑏) ∈ (Base‘𝐺)) | 
| 13 | 12, 4 | eleqtrrd 2276 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → ((invg‘𝐺)‘𝑏) ∈ 𝐵) | 
| 14 |   | grpsubpropd2.4 | 
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐺)𝑦) = (𝑥(+g‘𝐻)𝑦)) | 
| 15 | 14 | oveqrspc2v 5949 | 
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ ((invg‘𝐺)‘𝑏) ∈ 𝐵)) → (𝑎(+g‘𝐺)((invg‘𝐺)‘𝑏)) = (𝑎(+g‘𝐻)((invg‘𝐺)‘𝑏))) | 
| 16 | 1, 5, 13, 15 | syl12anc 1247 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → (𝑎(+g‘𝐺)((invg‘𝐺)‘𝑏)) = (𝑎(+g‘𝐻)((invg‘𝐺)‘𝑏))) | 
| 17 |   | grpsubpropd2.2 | 
. . . . . . . . 9
⊢ (𝜑 → 𝐵 = (Base‘𝐻)) | 
| 18 |   | eqid 2196 | 
. . . . . . . . . . . . 13
⊢
(0g‘𝐺) = (0g‘𝐺) | 
| 19 | 9, 18 | grpidcl 13161 | 
. . . . . . . . . . . 12
⊢ (𝐺 ∈ Grp →
(0g‘𝐺)
∈ (Base‘𝐺)) | 
| 20 | 6, 19 | syl 14 | 
. . . . . . . . . . 11
⊢ (𝜑 → (0g‘𝐺) ∈ (Base‘𝐺)) | 
| 21 | 20, 3 | eleqtrrd 2276 | 
. . . . . . . . . 10
⊢ (𝜑 → (0g‘𝐺) ∈ 𝐵) | 
| 22 | 17, 21 | basmexd 12738 | 
. . . . . . . . 9
⊢ (𝜑 → 𝐻 ∈ V) | 
| 23 | 3, 17, 6, 22, 14 | grpinvpropdg 13207 | 
. . . . . . . 8
⊢ (𝜑 →
(invg‘𝐺) =
(invg‘𝐻)) | 
| 24 | 23 | fveq1d 5560 | 
. . . . . . 7
⊢ (𝜑 →
((invg‘𝐺)‘𝑏) = ((invg‘𝐻)‘𝑏)) | 
| 25 | 24 | oveq2d 5938 | 
. . . . . 6
⊢ (𝜑 → (𝑎(+g‘𝐻)((invg‘𝐺)‘𝑏)) = (𝑎(+g‘𝐻)((invg‘𝐻)‘𝑏))) | 
| 26 | 25 | 3ad2ant1 1020 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → (𝑎(+g‘𝐻)((invg‘𝐺)‘𝑏)) = (𝑎(+g‘𝐻)((invg‘𝐻)‘𝑏))) | 
| 27 | 16, 26 | eqtrd 2229 | 
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → (𝑎(+g‘𝐺)((invg‘𝐺)‘𝑏)) = (𝑎(+g‘𝐻)((invg‘𝐻)‘𝑏))) | 
| 28 | 27 | mpoeq3dva 5986 | 
. . 3
⊢ (𝜑 → (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g‘𝐺)((invg‘𝐺)‘𝑏))) = (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g‘𝐻)((invg‘𝐻)‘𝑏)))) | 
| 29 | 3, 17 | eqtr3d 2231 | 
. . . 4
⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐻)) | 
| 30 |   | mpoeq12 5982 | 
. . . 4
⊢
(((Base‘𝐺) =
(Base‘𝐻) ∧
(Base‘𝐺) =
(Base‘𝐻)) →
(𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g‘𝐻)((invg‘𝐻)‘𝑏))) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g‘𝐻)((invg‘𝐻)‘𝑏)))) | 
| 31 | 29, 29, 30 | syl2anc 411 | 
. . 3
⊢ (𝜑 → (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g‘𝐻)((invg‘𝐻)‘𝑏))) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g‘𝐻)((invg‘𝐻)‘𝑏)))) | 
| 32 | 28, 31 | eqtrd 2229 | 
. 2
⊢ (𝜑 → (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g‘𝐺)((invg‘𝐺)‘𝑏))) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g‘𝐻)((invg‘𝐻)‘𝑏)))) | 
| 33 |   | eqid 2196 | 
. . . 4
⊢
(+g‘𝐺) = (+g‘𝐺) | 
| 34 |   | eqid 2196 | 
. . . 4
⊢
(-g‘𝐺) = (-g‘𝐺) | 
| 35 | 9, 33, 10, 34 | grpsubfvalg 13177 | 
. . 3
⊢ (𝐺 ∈ Grp →
(-g‘𝐺) =
(𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g‘𝐺)((invg‘𝐺)‘𝑏)))) | 
| 36 | 6, 35 | syl 14 | 
. 2
⊢ (𝜑 → (-g‘𝐺) = (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g‘𝐺)((invg‘𝐺)‘𝑏)))) | 
| 37 |   | eqid 2196 | 
. . . 4
⊢
(Base‘𝐻) =
(Base‘𝐻) | 
| 38 |   | eqid 2196 | 
. . . 4
⊢
(+g‘𝐻) = (+g‘𝐻) | 
| 39 |   | eqid 2196 | 
. . . 4
⊢
(invg‘𝐻) = (invg‘𝐻) | 
| 40 |   | eqid 2196 | 
. . . 4
⊢
(-g‘𝐻) = (-g‘𝐻) | 
| 41 | 37, 38, 39, 40 | grpsubfvalg 13177 | 
. . 3
⊢ (𝐻 ∈ V →
(-g‘𝐻) =
(𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g‘𝐻)((invg‘𝐻)‘𝑏)))) | 
| 42 | 22, 41 | syl 14 | 
. 2
⊢ (𝜑 → (-g‘𝐻) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g‘𝐻)((invg‘𝐻)‘𝑏)))) | 
| 43 | 32, 36, 42 | 3eqtr4d 2239 | 
1
⊢ (𝜑 → (-g‘𝐺) = (-g‘𝐻)) |