ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpsubpropd2 GIF version

Theorem grpsubpropd2 13177
Description: Strong property deduction for the group subtraction operation. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
grpsubpropd2.1 (𝜑𝐵 = (Base‘𝐺))
grpsubpropd2.2 (𝜑𝐵 = (Base‘𝐻))
grpsubpropd2.3 (𝜑𝐺 ∈ Grp)
grpsubpropd2.4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝐻)𝑦))
Assertion
Ref Expression
grpsubpropd2 (𝜑 → (-g𝐺) = (-g𝐻))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐺,𝑦   𝑥,𝐻,𝑦   𝜑,𝑥,𝑦

Proof of Theorem grpsubpropd2
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 999 . . . . . 6 ((𝜑𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → 𝜑)
2 simp2 1000 . . . . . . 7 ((𝜑𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → 𝑎 ∈ (Base‘𝐺))
3 grpsubpropd2.1 . . . . . . . 8 (𝜑𝐵 = (Base‘𝐺))
433ad2ant1 1020 . . . . . . 7 ((𝜑𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → 𝐵 = (Base‘𝐺))
52, 4eleqtrrd 2273 . . . . . 6 ((𝜑𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → 𝑎𝐵)
6 grpsubpropd2.3 . . . . . . . . 9 (𝜑𝐺 ∈ Grp)
763ad2ant1 1020 . . . . . . . 8 ((𝜑𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → 𝐺 ∈ Grp)
8 simp3 1001 . . . . . . . 8 ((𝜑𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → 𝑏 ∈ (Base‘𝐺))
9 eqid 2193 . . . . . . . . 9 (Base‘𝐺) = (Base‘𝐺)
10 eqid 2193 . . . . . . . . 9 (invg𝐺) = (invg𝐺)
119, 10grpinvcl 13120 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑏 ∈ (Base‘𝐺)) → ((invg𝐺)‘𝑏) ∈ (Base‘𝐺))
127, 8, 11syl2anc 411 . . . . . . 7 ((𝜑𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → ((invg𝐺)‘𝑏) ∈ (Base‘𝐺))
1312, 4eleqtrrd 2273 . . . . . 6 ((𝜑𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → ((invg𝐺)‘𝑏) ∈ 𝐵)
14 grpsubpropd2.4 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝐻)𝑦))
1514oveqrspc2v 5945 . . . . . 6 ((𝜑 ∧ (𝑎𝐵 ∧ ((invg𝐺)‘𝑏) ∈ 𝐵)) → (𝑎(+g𝐺)((invg𝐺)‘𝑏)) = (𝑎(+g𝐻)((invg𝐺)‘𝑏)))
161, 5, 13, 15syl12anc 1247 . . . . 5 ((𝜑𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → (𝑎(+g𝐺)((invg𝐺)‘𝑏)) = (𝑎(+g𝐻)((invg𝐺)‘𝑏)))
17 grpsubpropd2.2 . . . . . . . . 9 (𝜑𝐵 = (Base‘𝐻))
18 eqid 2193 . . . . . . . . . . . . 13 (0g𝐺) = (0g𝐺)
199, 18grpidcl 13101 . . . . . . . . . . . 12 (𝐺 ∈ Grp → (0g𝐺) ∈ (Base‘𝐺))
206, 19syl 14 . . . . . . . . . . 11 (𝜑 → (0g𝐺) ∈ (Base‘𝐺))
2120, 3eleqtrrd 2273 . . . . . . . . . 10 (𝜑 → (0g𝐺) ∈ 𝐵)
2217, 21basmexd 12678 . . . . . . . . 9 (𝜑𝐻 ∈ V)
233, 17, 6, 22, 14grpinvpropdg 13147 . . . . . . . 8 (𝜑 → (invg𝐺) = (invg𝐻))
2423fveq1d 5556 . . . . . . 7 (𝜑 → ((invg𝐺)‘𝑏) = ((invg𝐻)‘𝑏))
2524oveq2d 5934 . . . . . 6 (𝜑 → (𝑎(+g𝐻)((invg𝐺)‘𝑏)) = (𝑎(+g𝐻)((invg𝐻)‘𝑏)))
26253ad2ant1 1020 . . . . 5 ((𝜑𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → (𝑎(+g𝐻)((invg𝐺)‘𝑏)) = (𝑎(+g𝐻)((invg𝐻)‘𝑏)))
2716, 26eqtrd 2226 . . . 4 ((𝜑𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → (𝑎(+g𝐺)((invg𝐺)‘𝑏)) = (𝑎(+g𝐻)((invg𝐻)‘𝑏)))
2827mpoeq3dva 5982 . . 3 (𝜑 → (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g𝐺)((invg𝐺)‘𝑏))) = (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g𝐻)((invg𝐻)‘𝑏))))
293, 17eqtr3d 2228 . . . 4 (𝜑 → (Base‘𝐺) = (Base‘𝐻))
30 mpoeq12 5978 . . . 4 (((Base‘𝐺) = (Base‘𝐻) ∧ (Base‘𝐺) = (Base‘𝐻)) → (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g𝐻)((invg𝐻)‘𝑏))) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g𝐻)((invg𝐻)‘𝑏))))
3129, 29, 30syl2anc 411 . . 3 (𝜑 → (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g𝐻)((invg𝐻)‘𝑏))) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g𝐻)((invg𝐻)‘𝑏))))
3228, 31eqtrd 2226 . 2 (𝜑 → (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g𝐺)((invg𝐺)‘𝑏))) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g𝐻)((invg𝐻)‘𝑏))))
33 eqid 2193 . . . 4 (+g𝐺) = (+g𝐺)
34 eqid 2193 . . . 4 (-g𝐺) = (-g𝐺)
359, 33, 10, 34grpsubfvalg 13117 . . 3 (𝐺 ∈ Grp → (-g𝐺) = (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g𝐺)((invg𝐺)‘𝑏))))
366, 35syl 14 . 2 (𝜑 → (-g𝐺) = (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g𝐺)((invg𝐺)‘𝑏))))
37 eqid 2193 . . . 4 (Base‘𝐻) = (Base‘𝐻)
38 eqid 2193 . . . 4 (+g𝐻) = (+g𝐻)
39 eqid 2193 . . . 4 (invg𝐻) = (invg𝐻)
40 eqid 2193 . . . 4 (-g𝐻) = (-g𝐻)
4137, 38, 39, 40grpsubfvalg 13117 . . 3 (𝐻 ∈ V → (-g𝐻) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g𝐻)((invg𝐻)‘𝑏))))
4222, 41syl 14 . 2 (𝜑 → (-g𝐻) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g𝐻)((invg𝐻)‘𝑏))))
4332, 36, 423eqtr4d 2236 1 (𝜑 → (-g𝐺) = (-g𝐻))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2164  Vcvv 2760  cfv 5254  (class class class)co 5918  cmpo 5920  Basecbs 12618  +gcplusg 12695  0gc0g 12867  Grpcgrp 13072  invgcminusg 13073  -gcsg 13074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-inn 8983  df-2 9041  df-ndx 12621  df-slot 12622  df-base 12624  df-plusg 12708  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-minusg 13076  df-sbg 13077
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator