| Step | Hyp | Ref
| Expression |
| 1 | | simp1 999 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → 𝜑) |
| 2 | | simp2 1000 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → 𝑎 ∈ (Base‘𝐺)) |
| 3 | | grpsubpropd2.1 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 = (Base‘𝐺)) |
| 4 | 3 | 3ad2ant1 1020 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → 𝐵 = (Base‘𝐺)) |
| 5 | 2, 4 | eleqtrrd 2276 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → 𝑎 ∈ 𝐵) |
| 6 | | grpsubpropd2.3 |
. . . . . . . . 9
⊢ (𝜑 → 𝐺 ∈ Grp) |
| 7 | 6 | 3ad2ant1 1020 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → 𝐺 ∈ Grp) |
| 8 | | simp3 1001 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → 𝑏 ∈ (Base‘𝐺)) |
| 9 | | eqid 2196 |
. . . . . . . . 9
⊢
(Base‘𝐺) =
(Base‘𝐺) |
| 10 | | eqid 2196 |
. . . . . . . . 9
⊢
(invg‘𝐺) = (invg‘𝐺) |
| 11 | 9, 10 | grpinvcl 13250 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑏 ∈ (Base‘𝐺)) →
((invg‘𝐺)‘𝑏) ∈ (Base‘𝐺)) |
| 12 | 7, 8, 11 | syl2anc 411 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → ((invg‘𝐺)‘𝑏) ∈ (Base‘𝐺)) |
| 13 | 12, 4 | eleqtrrd 2276 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → ((invg‘𝐺)‘𝑏) ∈ 𝐵) |
| 14 | | grpsubpropd2.4 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐺)𝑦) = (𝑥(+g‘𝐻)𝑦)) |
| 15 | 14 | oveqrspc2v 5952 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ ((invg‘𝐺)‘𝑏) ∈ 𝐵)) → (𝑎(+g‘𝐺)((invg‘𝐺)‘𝑏)) = (𝑎(+g‘𝐻)((invg‘𝐺)‘𝑏))) |
| 16 | 1, 5, 13, 15 | syl12anc 1247 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → (𝑎(+g‘𝐺)((invg‘𝐺)‘𝑏)) = (𝑎(+g‘𝐻)((invg‘𝐺)‘𝑏))) |
| 17 | | grpsubpropd2.2 |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 = (Base‘𝐻)) |
| 18 | | eqid 2196 |
. . . . . . . . . . . . 13
⊢
(0g‘𝐺) = (0g‘𝐺) |
| 19 | 9, 18 | grpidcl 13231 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ Grp →
(0g‘𝐺)
∈ (Base‘𝐺)) |
| 20 | 6, 19 | syl 14 |
. . . . . . . . . . 11
⊢ (𝜑 → (0g‘𝐺) ∈ (Base‘𝐺)) |
| 21 | 20, 3 | eleqtrrd 2276 |
. . . . . . . . . 10
⊢ (𝜑 → (0g‘𝐺) ∈ 𝐵) |
| 22 | 17, 21 | basmexd 12763 |
. . . . . . . . 9
⊢ (𝜑 → 𝐻 ∈ V) |
| 23 | 3, 17, 6, 22, 14 | grpinvpropdg 13277 |
. . . . . . . 8
⊢ (𝜑 →
(invg‘𝐺) =
(invg‘𝐻)) |
| 24 | 23 | fveq1d 5563 |
. . . . . . 7
⊢ (𝜑 →
((invg‘𝐺)‘𝑏) = ((invg‘𝐻)‘𝑏)) |
| 25 | 24 | oveq2d 5941 |
. . . . . 6
⊢ (𝜑 → (𝑎(+g‘𝐻)((invg‘𝐺)‘𝑏)) = (𝑎(+g‘𝐻)((invg‘𝐻)‘𝑏))) |
| 26 | 25 | 3ad2ant1 1020 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → (𝑎(+g‘𝐻)((invg‘𝐺)‘𝑏)) = (𝑎(+g‘𝐻)((invg‘𝐻)‘𝑏))) |
| 27 | 16, 26 | eqtrd 2229 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → (𝑎(+g‘𝐺)((invg‘𝐺)‘𝑏)) = (𝑎(+g‘𝐻)((invg‘𝐻)‘𝑏))) |
| 28 | 27 | mpoeq3dva 5990 |
. . 3
⊢ (𝜑 → (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g‘𝐺)((invg‘𝐺)‘𝑏))) = (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g‘𝐻)((invg‘𝐻)‘𝑏)))) |
| 29 | 3, 17 | eqtr3d 2231 |
. . . 4
⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐻)) |
| 30 | | mpoeq12 5986 |
. . . 4
⊢
(((Base‘𝐺) =
(Base‘𝐻) ∧
(Base‘𝐺) =
(Base‘𝐻)) →
(𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g‘𝐻)((invg‘𝐻)‘𝑏))) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g‘𝐻)((invg‘𝐻)‘𝑏)))) |
| 31 | 29, 29, 30 | syl2anc 411 |
. . 3
⊢ (𝜑 → (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g‘𝐻)((invg‘𝐻)‘𝑏))) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g‘𝐻)((invg‘𝐻)‘𝑏)))) |
| 32 | 28, 31 | eqtrd 2229 |
. 2
⊢ (𝜑 → (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g‘𝐺)((invg‘𝐺)‘𝑏))) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g‘𝐻)((invg‘𝐻)‘𝑏)))) |
| 33 | | eqid 2196 |
. . . 4
⊢
(+g‘𝐺) = (+g‘𝐺) |
| 34 | | eqid 2196 |
. . . 4
⊢
(-g‘𝐺) = (-g‘𝐺) |
| 35 | 9, 33, 10, 34 | grpsubfvalg 13247 |
. . 3
⊢ (𝐺 ∈ Grp →
(-g‘𝐺) =
(𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g‘𝐺)((invg‘𝐺)‘𝑏)))) |
| 36 | 6, 35 | syl 14 |
. 2
⊢ (𝜑 → (-g‘𝐺) = (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g‘𝐺)((invg‘𝐺)‘𝑏)))) |
| 37 | | eqid 2196 |
. . . 4
⊢
(Base‘𝐻) =
(Base‘𝐻) |
| 38 | | eqid 2196 |
. . . 4
⊢
(+g‘𝐻) = (+g‘𝐻) |
| 39 | | eqid 2196 |
. . . 4
⊢
(invg‘𝐻) = (invg‘𝐻) |
| 40 | | eqid 2196 |
. . . 4
⊢
(-g‘𝐻) = (-g‘𝐻) |
| 41 | 37, 38, 39, 40 | grpsubfvalg 13247 |
. . 3
⊢ (𝐻 ∈ V →
(-g‘𝐻) =
(𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g‘𝐻)((invg‘𝐻)‘𝑏)))) |
| 42 | 22, 41 | syl 14 |
. 2
⊢ (𝜑 → (-g‘𝐻) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g‘𝐻)((invg‘𝐻)‘𝑏)))) |
| 43 | 32, 36, 42 | 3eqtr4d 2239 |
1
⊢ (𝜑 → (-g‘𝐺) = (-g‘𝐻)) |