ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpsubpropd2 GIF version

Theorem grpsubpropd2 13481
Description: Strong property deduction for the group subtraction operation. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
grpsubpropd2.1 (𝜑𝐵 = (Base‘𝐺))
grpsubpropd2.2 (𝜑𝐵 = (Base‘𝐻))
grpsubpropd2.3 (𝜑𝐺 ∈ Grp)
grpsubpropd2.4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝐻)𝑦))
Assertion
Ref Expression
grpsubpropd2 (𝜑 → (-g𝐺) = (-g𝐻))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐺,𝑦   𝑥,𝐻,𝑦   𝜑,𝑥,𝑦

Proof of Theorem grpsubpropd2
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1000 . . . . . 6 ((𝜑𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → 𝜑)
2 simp2 1001 . . . . . . 7 ((𝜑𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → 𝑎 ∈ (Base‘𝐺))
3 grpsubpropd2.1 . . . . . . . 8 (𝜑𝐵 = (Base‘𝐺))
433ad2ant1 1021 . . . . . . 7 ((𝜑𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → 𝐵 = (Base‘𝐺))
52, 4eleqtrrd 2286 . . . . . 6 ((𝜑𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → 𝑎𝐵)
6 grpsubpropd2.3 . . . . . . . . 9 (𝜑𝐺 ∈ Grp)
763ad2ant1 1021 . . . . . . . 8 ((𝜑𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → 𝐺 ∈ Grp)
8 simp3 1002 . . . . . . . 8 ((𝜑𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → 𝑏 ∈ (Base‘𝐺))
9 eqid 2206 . . . . . . . . 9 (Base‘𝐺) = (Base‘𝐺)
10 eqid 2206 . . . . . . . . 9 (invg𝐺) = (invg𝐺)
119, 10grpinvcl 13424 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑏 ∈ (Base‘𝐺)) → ((invg𝐺)‘𝑏) ∈ (Base‘𝐺))
127, 8, 11syl2anc 411 . . . . . . 7 ((𝜑𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → ((invg𝐺)‘𝑏) ∈ (Base‘𝐺))
1312, 4eleqtrrd 2286 . . . . . 6 ((𝜑𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → ((invg𝐺)‘𝑏) ∈ 𝐵)
14 grpsubpropd2.4 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝐻)𝑦))
1514oveqrspc2v 5978 . . . . . 6 ((𝜑 ∧ (𝑎𝐵 ∧ ((invg𝐺)‘𝑏) ∈ 𝐵)) → (𝑎(+g𝐺)((invg𝐺)‘𝑏)) = (𝑎(+g𝐻)((invg𝐺)‘𝑏)))
161, 5, 13, 15syl12anc 1248 . . . . 5 ((𝜑𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → (𝑎(+g𝐺)((invg𝐺)‘𝑏)) = (𝑎(+g𝐻)((invg𝐺)‘𝑏)))
17 grpsubpropd2.2 . . . . . . . . 9 (𝜑𝐵 = (Base‘𝐻))
18 eqid 2206 . . . . . . . . . . . . 13 (0g𝐺) = (0g𝐺)
199, 18grpidcl 13405 . . . . . . . . . . . 12 (𝐺 ∈ Grp → (0g𝐺) ∈ (Base‘𝐺))
206, 19syl 14 . . . . . . . . . . 11 (𝜑 → (0g𝐺) ∈ (Base‘𝐺))
2120, 3eleqtrrd 2286 . . . . . . . . . 10 (𝜑 → (0g𝐺) ∈ 𝐵)
2217, 21basmexd 12936 . . . . . . . . 9 (𝜑𝐻 ∈ V)
233, 17, 6, 22, 14grpinvpropdg 13451 . . . . . . . 8 (𝜑 → (invg𝐺) = (invg𝐻))
2423fveq1d 5585 . . . . . . 7 (𝜑 → ((invg𝐺)‘𝑏) = ((invg𝐻)‘𝑏))
2524oveq2d 5967 . . . . . 6 (𝜑 → (𝑎(+g𝐻)((invg𝐺)‘𝑏)) = (𝑎(+g𝐻)((invg𝐻)‘𝑏)))
26253ad2ant1 1021 . . . . 5 ((𝜑𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → (𝑎(+g𝐻)((invg𝐺)‘𝑏)) = (𝑎(+g𝐻)((invg𝐻)‘𝑏)))
2716, 26eqtrd 2239 . . . 4 ((𝜑𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → (𝑎(+g𝐺)((invg𝐺)‘𝑏)) = (𝑎(+g𝐻)((invg𝐻)‘𝑏)))
2827mpoeq3dva 6016 . . 3 (𝜑 → (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g𝐺)((invg𝐺)‘𝑏))) = (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g𝐻)((invg𝐻)‘𝑏))))
293, 17eqtr3d 2241 . . . 4 (𝜑 → (Base‘𝐺) = (Base‘𝐻))
30 mpoeq12 6012 . . . 4 (((Base‘𝐺) = (Base‘𝐻) ∧ (Base‘𝐺) = (Base‘𝐻)) → (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g𝐻)((invg𝐻)‘𝑏))) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g𝐻)((invg𝐻)‘𝑏))))
3129, 29, 30syl2anc 411 . . 3 (𝜑 → (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g𝐻)((invg𝐻)‘𝑏))) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g𝐻)((invg𝐻)‘𝑏))))
3228, 31eqtrd 2239 . 2 (𝜑 → (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g𝐺)((invg𝐺)‘𝑏))) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g𝐻)((invg𝐻)‘𝑏))))
33 eqid 2206 . . . 4 (+g𝐺) = (+g𝐺)
34 eqid 2206 . . . 4 (-g𝐺) = (-g𝐺)
359, 33, 10, 34grpsubfvalg 13421 . . 3 (𝐺 ∈ Grp → (-g𝐺) = (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g𝐺)((invg𝐺)‘𝑏))))
366, 35syl 14 . 2 (𝜑 → (-g𝐺) = (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g𝐺)((invg𝐺)‘𝑏))))
37 eqid 2206 . . . 4 (Base‘𝐻) = (Base‘𝐻)
38 eqid 2206 . . . 4 (+g𝐻) = (+g𝐻)
39 eqid 2206 . . . 4 (invg𝐻) = (invg𝐻)
40 eqid 2206 . . . 4 (-g𝐻) = (-g𝐻)
4137, 38, 39, 40grpsubfvalg 13421 . . 3 (𝐻 ∈ V → (-g𝐻) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g𝐻)((invg𝐻)‘𝑏))))
4222, 41syl 14 . 2 (𝜑 → (-g𝐻) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g𝐻)((invg𝐻)‘𝑏))))
4332, 36, 423eqtr4d 2249 1 (𝜑 → (-g𝐺) = (-g𝐻))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wcel 2177  Vcvv 2773  cfv 5276  (class class class)co 5951  cmpo 5953  Basecbs 12876  +gcplusg 12953  0gc0g 13132  Grpcgrp 13376  invgcminusg 13377  -gcsg 13378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-cnex 8023  ax-resscn 8024  ax-1re 8026  ax-addrcl 8029
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-inn 9044  df-2 9102  df-ndx 12879  df-slot 12880  df-base 12882  df-plusg 12966  df-0g 13134  df-mgm 13232  df-sgrp 13278  df-mnd 13293  df-grp 13379  df-minusg 13380  df-sbg 13381
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator