Step | Hyp | Ref
| Expression |
1 | | simp1 995 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → 𝜑) |
2 | | simp2 996 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → 𝑎 ∈ (Base‘𝐺)) |
3 | | grpsubpropd2.1 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 = (Base‘𝐺)) |
4 | 3 | 3ad2ant1 1016 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → 𝐵 = (Base‘𝐺)) |
5 | 2, 4 | eleqtrrd 2253 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → 𝑎 ∈ 𝐵) |
6 | | grpsubpropd2.3 |
. . . . . . . . 9
⊢ (𝜑 → 𝐺 ∈ Grp) |
7 | 6 | 3ad2ant1 1016 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → 𝐺 ∈ Grp) |
8 | | simp3 997 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → 𝑏 ∈ (Base‘𝐺)) |
9 | | eqid 2173 |
. . . . . . . . 9
⊢
(Base‘𝐺) =
(Base‘𝐺) |
10 | | eqid 2173 |
. . . . . . . . 9
⊢
(invg‘𝐺) = (invg‘𝐺) |
11 | 9, 10 | grpinvcl 12778 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑏 ∈ (Base‘𝐺)) →
((invg‘𝐺)‘𝑏) ∈ (Base‘𝐺)) |
12 | 7, 8, 11 | syl2anc 411 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → ((invg‘𝐺)‘𝑏) ∈ (Base‘𝐺)) |
13 | 12, 4 | eleqtrrd 2253 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → ((invg‘𝐺)‘𝑏) ∈ 𝐵) |
14 | | grpsubpropd2.4 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐺)𝑦) = (𝑥(+g‘𝐻)𝑦)) |
15 | 14 | oveqrspc2v 5889 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ ((invg‘𝐺)‘𝑏) ∈ 𝐵)) → (𝑎(+g‘𝐺)((invg‘𝐺)‘𝑏)) = (𝑎(+g‘𝐻)((invg‘𝐺)‘𝑏))) |
16 | 1, 5, 13, 15 | syl12anc 1234 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → (𝑎(+g‘𝐺)((invg‘𝐺)‘𝑏)) = (𝑎(+g‘𝐻)((invg‘𝐺)‘𝑏))) |
17 | | grpsubpropd2.2 |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 = (Base‘𝐻)) |
18 | | eqid 2173 |
. . . . . . . . . . . . 13
⊢
(0g‘𝐺) = (0g‘𝐺) |
19 | 9, 18 | grpidcl 12761 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ Grp →
(0g‘𝐺)
∈ (Base‘𝐺)) |
20 | 6, 19 | syl 14 |
. . . . . . . . . . 11
⊢ (𝜑 → (0g‘𝐺) ∈ (Base‘𝐺)) |
21 | 20, 3 | eleqtrrd 2253 |
. . . . . . . . . 10
⊢ (𝜑 → (0g‘𝐺) ∈ 𝐵) |
22 | 17, 21 | basmexd 12484 |
. . . . . . . . 9
⊢ (𝜑 → 𝐻 ∈ V) |
23 | 3, 17, 6, 22, 14 | grpinvpropdg 12801 |
. . . . . . . 8
⊢ (𝜑 →
(invg‘𝐺) =
(invg‘𝐻)) |
24 | 23 | fveq1d 5506 |
. . . . . . 7
⊢ (𝜑 →
((invg‘𝐺)‘𝑏) = ((invg‘𝐻)‘𝑏)) |
25 | 24 | oveq2d 5878 |
. . . . . 6
⊢ (𝜑 → (𝑎(+g‘𝐻)((invg‘𝐺)‘𝑏)) = (𝑎(+g‘𝐻)((invg‘𝐻)‘𝑏))) |
26 | 25 | 3ad2ant1 1016 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → (𝑎(+g‘𝐻)((invg‘𝐺)‘𝑏)) = (𝑎(+g‘𝐻)((invg‘𝐻)‘𝑏))) |
27 | 16, 26 | eqtrd 2206 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → (𝑎(+g‘𝐺)((invg‘𝐺)‘𝑏)) = (𝑎(+g‘𝐻)((invg‘𝐻)‘𝑏))) |
28 | 27 | mpoeq3dva 5926 |
. . 3
⊢ (𝜑 → (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g‘𝐺)((invg‘𝐺)‘𝑏))) = (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g‘𝐻)((invg‘𝐻)‘𝑏)))) |
29 | 3, 17 | eqtr3d 2208 |
. . . 4
⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐻)) |
30 | | mpoeq12 5922 |
. . . 4
⊢
(((Base‘𝐺) =
(Base‘𝐻) ∧
(Base‘𝐺) =
(Base‘𝐻)) →
(𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g‘𝐻)((invg‘𝐻)‘𝑏))) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g‘𝐻)((invg‘𝐻)‘𝑏)))) |
31 | 29, 29, 30 | syl2anc 411 |
. . 3
⊢ (𝜑 → (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g‘𝐻)((invg‘𝐻)‘𝑏))) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g‘𝐻)((invg‘𝐻)‘𝑏)))) |
32 | 28, 31 | eqtrd 2206 |
. 2
⊢ (𝜑 → (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g‘𝐺)((invg‘𝐺)‘𝑏))) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g‘𝐻)((invg‘𝐻)‘𝑏)))) |
33 | | eqid 2173 |
. . . 4
⊢
(+g‘𝐺) = (+g‘𝐺) |
34 | | eqid 2173 |
. . . 4
⊢
(-g‘𝐺) = (-g‘𝐺) |
35 | 9, 33, 10, 34 | grpsubfvalg 12775 |
. . 3
⊢ (𝐺 ∈ Grp →
(-g‘𝐺) =
(𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g‘𝐺)((invg‘𝐺)‘𝑏)))) |
36 | 6, 35 | syl 14 |
. 2
⊢ (𝜑 → (-g‘𝐺) = (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g‘𝐺)((invg‘𝐺)‘𝑏)))) |
37 | | eqid 2173 |
. . . 4
⊢
(Base‘𝐻) =
(Base‘𝐻) |
38 | | eqid 2173 |
. . . 4
⊢
(+g‘𝐻) = (+g‘𝐻) |
39 | | eqid 2173 |
. . . 4
⊢
(invg‘𝐻) = (invg‘𝐻) |
40 | | eqid 2173 |
. . . 4
⊢
(-g‘𝐻) = (-g‘𝐻) |
41 | 37, 38, 39, 40 | grpsubfvalg 12775 |
. . 3
⊢ (𝐻 ∈ V →
(-g‘𝐻) =
(𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g‘𝐻)((invg‘𝐻)‘𝑏)))) |
42 | 22, 41 | syl 14 |
. 2
⊢ (𝜑 → (-g‘𝐻) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g‘𝐻)((invg‘𝐻)‘𝑏)))) |
43 | 32, 36, 42 | 3eqtr4d 2216 |
1
⊢ (𝜑 → (-g‘𝐺) = (-g‘𝐻)) |