ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpsubpropd2 GIF version

Theorem grpsubpropd2 12831
Description: Strong property deduction for the group subtraction operation. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
grpsubpropd2.1 (𝜑𝐵 = (Base‘𝐺))
grpsubpropd2.2 (𝜑𝐵 = (Base‘𝐻))
grpsubpropd2.3 (𝜑𝐺 ∈ Grp)
grpsubpropd2.4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝐻)𝑦))
Assertion
Ref Expression
grpsubpropd2 (𝜑 → (-g𝐺) = (-g𝐻))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐺,𝑦   𝑥,𝐻,𝑦   𝜑,𝑥,𝑦

Proof of Theorem grpsubpropd2
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 995 . . . . . 6 ((𝜑𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → 𝜑)
2 simp2 996 . . . . . . 7 ((𝜑𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → 𝑎 ∈ (Base‘𝐺))
3 grpsubpropd2.1 . . . . . . . 8 (𝜑𝐵 = (Base‘𝐺))
433ad2ant1 1016 . . . . . . 7 ((𝜑𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → 𝐵 = (Base‘𝐺))
52, 4eleqtrrd 2253 . . . . . 6 ((𝜑𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → 𝑎𝐵)
6 grpsubpropd2.3 . . . . . . . . 9 (𝜑𝐺 ∈ Grp)
763ad2ant1 1016 . . . . . . . 8 ((𝜑𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → 𝐺 ∈ Grp)
8 simp3 997 . . . . . . . 8 ((𝜑𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → 𝑏 ∈ (Base‘𝐺))
9 eqid 2173 . . . . . . . . 9 (Base‘𝐺) = (Base‘𝐺)
10 eqid 2173 . . . . . . . . 9 (invg𝐺) = (invg𝐺)
119, 10grpinvcl 12778 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑏 ∈ (Base‘𝐺)) → ((invg𝐺)‘𝑏) ∈ (Base‘𝐺))
127, 8, 11syl2anc 411 . . . . . . 7 ((𝜑𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → ((invg𝐺)‘𝑏) ∈ (Base‘𝐺))
1312, 4eleqtrrd 2253 . . . . . 6 ((𝜑𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → ((invg𝐺)‘𝑏) ∈ 𝐵)
14 grpsubpropd2.4 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝐻)𝑦))
1514oveqrspc2v 5889 . . . . . 6 ((𝜑 ∧ (𝑎𝐵 ∧ ((invg𝐺)‘𝑏) ∈ 𝐵)) → (𝑎(+g𝐺)((invg𝐺)‘𝑏)) = (𝑎(+g𝐻)((invg𝐺)‘𝑏)))
161, 5, 13, 15syl12anc 1234 . . . . 5 ((𝜑𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → (𝑎(+g𝐺)((invg𝐺)‘𝑏)) = (𝑎(+g𝐻)((invg𝐺)‘𝑏)))
17 grpsubpropd2.2 . . . . . . . . 9 (𝜑𝐵 = (Base‘𝐻))
18 eqid 2173 . . . . . . . . . . . . 13 (0g𝐺) = (0g𝐺)
199, 18grpidcl 12761 . . . . . . . . . . . 12 (𝐺 ∈ Grp → (0g𝐺) ∈ (Base‘𝐺))
206, 19syl 14 . . . . . . . . . . 11 (𝜑 → (0g𝐺) ∈ (Base‘𝐺))
2120, 3eleqtrrd 2253 . . . . . . . . . 10 (𝜑 → (0g𝐺) ∈ 𝐵)
2217, 21basmexd 12484 . . . . . . . . 9 (𝜑𝐻 ∈ V)
233, 17, 6, 22, 14grpinvpropdg 12801 . . . . . . . 8 (𝜑 → (invg𝐺) = (invg𝐻))
2423fveq1d 5506 . . . . . . 7 (𝜑 → ((invg𝐺)‘𝑏) = ((invg𝐻)‘𝑏))
2524oveq2d 5878 . . . . . 6 (𝜑 → (𝑎(+g𝐻)((invg𝐺)‘𝑏)) = (𝑎(+g𝐻)((invg𝐻)‘𝑏)))
26253ad2ant1 1016 . . . . 5 ((𝜑𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → (𝑎(+g𝐻)((invg𝐺)‘𝑏)) = (𝑎(+g𝐻)((invg𝐻)‘𝑏)))
2716, 26eqtrd 2206 . . . 4 ((𝜑𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → (𝑎(+g𝐺)((invg𝐺)‘𝑏)) = (𝑎(+g𝐻)((invg𝐻)‘𝑏)))
2827mpoeq3dva 5926 . . 3 (𝜑 → (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g𝐺)((invg𝐺)‘𝑏))) = (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g𝐻)((invg𝐻)‘𝑏))))
293, 17eqtr3d 2208 . . . 4 (𝜑 → (Base‘𝐺) = (Base‘𝐻))
30 mpoeq12 5922 . . . 4 (((Base‘𝐺) = (Base‘𝐻) ∧ (Base‘𝐺) = (Base‘𝐻)) → (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g𝐻)((invg𝐻)‘𝑏))) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g𝐻)((invg𝐻)‘𝑏))))
3129, 29, 30syl2anc 411 . . 3 (𝜑 → (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g𝐻)((invg𝐻)‘𝑏))) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g𝐻)((invg𝐻)‘𝑏))))
3228, 31eqtrd 2206 . 2 (𝜑 → (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g𝐺)((invg𝐺)‘𝑏))) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g𝐻)((invg𝐻)‘𝑏))))
33 eqid 2173 . . . 4 (+g𝐺) = (+g𝐺)
34 eqid 2173 . . . 4 (-g𝐺) = (-g𝐺)
359, 33, 10, 34grpsubfvalg 12775 . . 3 (𝐺 ∈ Grp → (-g𝐺) = (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g𝐺)((invg𝐺)‘𝑏))))
366, 35syl 14 . 2 (𝜑 → (-g𝐺) = (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g𝐺)((invg𝐺)‘𝑏))))
37 eqid 2173 . . . 4 (Base‘𝐻) = (Base‘𝐻)
38 eqid 2173 . . . 4 (+g𝐻) = (+g𝐻)
39 eqid 2173 . . . 4 (invg𝐻) = (invg𝐻)
40 eqid 2173 . . . 4 (-g𝐻) = (-g𝐻)
4137, 38, 39, 40grpsubfvalg 12775 . . 3 (𝐻 ∈ V → (-g𝐻) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g𝐻)((invg𝐻)‘𝑏))))
4222, 41syl 14 . 2 (𝜑 → (-g𝐻) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g𝐻)((invg𝐻)‘𝑏))))
4332, 36, 423eqtr4d 2216 1 (𝜑 → (-g𝐺) = (-g𝐻))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 976   = wceq 1351  wcel 2144  Vcvv 2733  cfv 5205  (class class class)co 5862  cmpo 5864  Basecbs 12425  +gcplusg 12489  0gc0g 12623  Grpcgrp 12735  invgcminusg 12736  -gcsg 12737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 707  ax-5 1443  ax-7 1444  ax-gen 1445  ax-ie1 1489  ax-ie2 1490  ax-8 1500  ax-10 1501  ax-11 1502  ax-i12 1503  ax-bndl 1505  ax-4 1506  ax-17 1522  ax-i9 1526  ax-ial 1530  ax-i5r 1531  ax-13 2146  ax-14 2147  ax-ext 2155  ax-coll 4110  ax-sep 4113  ax-pow 4166  ax-pr 4200  ax-un 4424  ax-cnex 7874  ax-resscn 7875  ax-1re 7877  ax-addrcl 7880
This theorem depends on definitions:  df-bi 117  df-3an 978  df-tru 1354  df-nf 1457  df-sb 1759  df-eu 2025  df-mo 2026  df-clab 2160  df-cleq 2166  df-clel 2169  df-nfc 2304  df-ral 2456  df-rex 2457  df-reu 2458  df-rmo 2459  df-rab 2460  df-v 2735  df-sbc 2959  df-csb 3053  df-un 3128  df-in 3130  df-ss 3137  df-pw 3571  df-sn 3592  df-pr 3593  df-op 3595  df-uni 3803  df-int 3838  df-iun 3881  df-br 3996  df-opab 4057  df-mpt 4058  df-id 4284  df-xp 4623  df-rel 4624  df-cnv 4625  df-co 4626  df-dm 4627  df-rn 4628  df-res 4629  df-ima 4630  df-iota 5167  df-fun 5207  df-fn 5208  df-f 5209  df-f1 5210  df-fo 5211  df-f1o 5212  df-fv 5213  df-riota 5818  df-ov 5865  df-oprab 5866  df-mpo 5867  df-1st 6128  df-2nd 6129  df-inn 8888  df-2 8946  df-ndx 12428  df-slot 12429  df-base 12431  df-plusg 12502  df-0g 12625  df-mgm 12637  df-sgrp 12670  df-mnd 12680  df-grp 12738  df-minusg 12739  df-sbg 12740
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator