ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnmpt1t GIF version

Theorem cnmpt1t 14872
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptid.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmpt11.a (𝜑 → (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾))
cnmpt1t.b (𝜑 → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐿))
Assertion
Ref Expression
cnmpt1t (𝜑 → (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) ∈ (𝐽 Cn (𝐾 ×t 𝐿)))
Distinct variable groups:   𝜑,𝑥   𝑥,𝐽   𝑥,𝑋   𝑥,𝐾   𝑥,𝐿
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem cnmpt1t
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cnmptid.j . . . 4 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 toponuni 14602 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
3 mpteq1 4144 . . . 4 (𝑋 = 𝐽 → (𝑥𝑋 ↦ ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩) = (𝑥 𝐽 ↦ ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩))
41, 2, 33syl 17 . . 3 (𝜑 → (𝑥𝑋 ↦ ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩) = (𝑥 𝐽 ↦ ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩))
5 simpr 110 . . . . . 6 ((𝜑𝑥𝑋) → 𝑥𝑋)
6 cnmpt11.a . . . . . . . . . 10 (𝜑 → (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾))
7 cntop2 14789 . . . . . . . . . 10 ((𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
86, 7syl 14 . . . . . . . . 9 (𝜑𝐾 ∈ Top)
9 toptopon2 14606 . . . . . . . . 9 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
108, 9sylib 122 . . . . . . . 8 (𝜑𝐾 ∈ (TopOn‘ 𝐾))
11 cnf2 14792 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ 𝐾) ∧ (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾)) → (𝑥𝑋𝐴):𝑋 𝐾)
121, 10, 6, 11syl3anc 1250 . . . . . . 7 (𝜑 → (𝑥𝑋𝐴):𝑋 𝐾)
1312fvmptelcdm 5756 . . . . . 6 ((𝜑𝑥𝑋) → 𝐴 𝐾)
14 eqid 2207 . . . . . . 7 (𝑥𝑋𝐴) = (𝑥𝑋𝐴)
1514fvmpt2 5686 . . . . . 6 ((𝑥𝑋𝐴 𝐾) → ((𝑥𝑋𝐴)‘𝑥) = 𝐴)
165, 13, 15syl2anc 411 . . . . 5 ((𝜑𝑥𝑋) → ((𝑥𝑋𝐴)‘𝑥) = 𝐴)
17 cnmpt1t.b . . . . . . . . . 10 (𝜑 → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐿))
18 cntop2 14789 . . . . . . . . . 10 ((𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐿) → 𝐿 ∈ Top)
1917, 18syl 14 . . . . . . . . 9 (𝜑𝐿 ∈ Top)
20 toptopon2 14606 . . . . . . . . 9 (𝐿 ∈ Top ↔ 𝐿 ∈ (TopOn‘ 𝐿))
2119, 20sylib 122 . . . . . . . 8 (𝜑𝐿 ∈ (TopOn‘ 𝐿))
22 cnf2 14792 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (TopOn‘ 𝐿) ∧ (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐿)) → (𝑥𝑋𝐵):𝑋 𝐿)
231, 21, 17, 22syl3anc 1250 . . . . . . 7 (𝜑 → (𝑥𝑋𝐵):𝑋 𝐿)
2423fvmptelcdm 5756 . . . . . 6 ((𝜑𝑥𝑋) → 𝐵 𝐿)
25 eqid 2207 . . . . . . 7 (𝑥𝑋𝐵) = (𝑥𝑋𝐵)
2625fvmpt2 5686 . . . . . 6 ((𝑥𝑋𝐵 𝐿) → ((𝑥𝑋𝐵)‘𝑥) = 𝐵)
275, 24, 26syl2anc 411 . . . . 5 ((𝜑𝑥𝑋) → ((𝑥𝑋𝐵)‘𝑥) = 𝐵)
2816, 27opeq12d 3841 . . . 4 ((𝜑𝑥𝑋) → ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩ = ⟨𝐴, 𝐵⟩)
2928mpteq2dva 4150 . . 3 (𝜑 → (𝑥𝑋 ↦ ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩) = (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩))
304, 29eqtr3d 2242 . 2 (𝜑 → (𝑥 𝐽 ↦ ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩) = (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩))
31 eqid 2207 . . . 4 𝐽 = 𝐽
32 nfcv 2350 . . . . 5 𝑦⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩
33 nffvmpt1 5610 . . . . . 6 𝑥((𝑥𝑋𝐴)‘𝑦)
34 nffvmpt1 5610 . . . . . 6 𝑥((𝑥𝑋𝐵)‘𝑦)
3533, 34nfop 3849 . . . . 5 𝑥⟨((𝑥𝑋𝐴)‘𝑦), ((𝑥𝑋𝐵)‘𝑦)⟩
36 fveq2 5599 . . . . . 6 (𝑥 = 𝑦 → ((𝑥𝑋𝐴)‘𝑥) = ((𝑥𝑋𝐴)‘𝑦))
37 fveq2 5599 . . . . . 6 (𝑥 = 𝑦 → ((𝑥𝑋𝐵)‘𝑥) = ((𝑥𝑋𝐵)‘𝑦))
3836, 37opeq12d 3841 . . . . 5 (𝑥 = 𝑦 → ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩ = ⟨((𝑥𝑋𝐴)‘𝑦), ((𝑥𝑋𝐵)‘𝑦)⟩)
3932, 35, 38cbvmpt 4155 . . . 4 (𝑥 𝐽 ↦ ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩) = (𝑦 𝐽 ↦ ⟨((𝑥𝑋𝐴)‘𝑦), ((𝑥𝑋𝐵)‘𝑦)⟩)
4031, 39txcnmpt 14860 . . 3 (((𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾) ∧ (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐿)) → (𝑥 𝐽 ↦ ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩) ∈ (𝐽 Cn (𝐾 ×t 𝐿)))
416, 17, 40syl2anc 411 . 2 (𝜑 → (𝑥 𝐽 ↦ ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩) ∈ (𝐽 Cn (𝐾 ×t 𝐿)))
4230, 41eqeltrrd 2285 1 (𝜑 → (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) ∈ (𝐽 Cn (𝐾 ×t 𝐿)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2178  cop 3646   cuni 3864  cmpt 4121  wf 5286  cfv 5290  (class class class)co 5967  Topctop 14584  TopOnctopon 14597   Cn ccn 14772   ×t ctx 14839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-map 6760  df-topgen 13207  df-top 14585  df-topon 14598  df-bases 14630  df-cn 14775  df-tx 14840
This theorem is referenced by:  cnmpt12f  14873  imasnopn  14886  cnrehmeocntop  15197
  Copyright terms: Public domain W3C validator