Step | Hyp | Ref
| Expression |
1 | | cnmptid.j |
. . . 4
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
2 | | toponuni 12653 |
. . . 4
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
3 | | mpteq1 4066 |
. . . 4
⊢ (𝑋 = ∪
𝐽 → (𝑥 ∈ 𝑋 ↦ 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑥)〉) = (𝑥 ∈ ∪ 𝐽 ↦ 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑥)〉)) |
4 | 1, 2, 3 | 3syl 17 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑥)〉) = (𝑥 ∈ ∪ 𝐽 ↦ 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑥)〉)) |
5 | | simpr 109 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) |
6 | | cnmpt11.a |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾)) |
7 | | cntop2 12842 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) |
8 | 6, 7 | syl 14 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ Top) |
9 | | toptopon2 12657 |
. . . . . . . . 9
⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘∪ 𝐾)) |
10 | 8, 9 | sylib 121 |
. . . . . . . 8
⊢ (𝜑 → 𝐾 ∈ (TopOn‘∪ 𝐾)) |
11 | | cnf2 12845 |
. . . . . . . 8
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘∪ 𝐾)
∧ (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾)) → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶∪ 𝐾) |
12 | 1, 10, 6, 11 | syl3anc 1228 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶∪ 𝐾) |
13 | 12 | fvmptelrn 5638 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ∪ 𝐾) |
14 | | eqid 2165 |
. . . . . . 7
⊢ (𝑥 ∈ 𝑋 ↦ 𝐴) = (𝑥 ∈ 𝑋 ↦ 𝐴) |
15 | 14 | fvmpt2 5569 |
. . . . . 6
⊢ ((𝑥 ∈ 𝑋 ∧ 𝐴 ∈ ∪ 𝐾) → ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥) = 𝐴) |
16 | 5, 13, 15 | syl2anc 409 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥) = 𝐴) |
17 | | cnmpt1t.b |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐿)) |
18 | | cntop2 12842 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐿) → 𝐿 ∈ Top) |
19 | 17, 18 | syl 14 |
. . . . . . . . 9
⊢ (𝜑 → 𝐿 ∈ Top) |
20 | | toptopon2 12657 |
. . . . . . . . 9
⊢ (𝐿 ∈ Top ↔ 𝐿 ∈ (TopOn‘∪ 𝐿)) |
21 | 19, 20 | sylib 121 |
. . . . . . . 8
⊢ (𝜑 → 𝐿 ∈ (TopOn‘∪ 𝐿)) |
22 | | cnf2 12845 |
. . . . . . . 8
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (TopOn‘∪ 𝐿)
∧ (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐿)) → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶∪ 𝐿) |
23 | 1, 21, 17, 22 | syl3anc 1228 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶∪ 𝐿) |
24 | 23 | fvmptelrn 5638 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ ∪ 𝐿) |
25 | | eqid 2165 |
. . . . . . 7
⊢ (𝑥 ∈ 𝑋 ↦ 𝐵) = (𝑥 ∈ 𝑋 ↦ 𝐵) |
26 | 25 | fvmpt2 5569 |
. . . . . 6
⊢ ((𝑥 ∈ 𝑋 ∧ 𝐵 ∈ ∪ 𝐿) → ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑥) = 𝐵) |
27 | 5, 24, 26 | syl2anc 409 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑥) = 𝐵) |
28 | 16, 27 | opeq12d 3766 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑥)〉 = 〈𝐴, 𝐵〉) |
29 | 28 | mpteq2dva 4072 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑥)〉) = (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)) |
30 | 4, 29 | eqtr3d 2200 |
. 2
⊢ (𝜑 → (𝑥 ∈ ∪ 𝐽 ↦ 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑥)〉) = (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)) |
31 | | eqid 2165 |
. . . 4
⊢ ∪ 𝐽 =
∪ 𝐽 |
32 | | nfcv 2308 |
. . . . 5
⊢
Ⅎ𝑦〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑥)〉 |
33 | | nffvmpt1 5497 |
. . . . . 6
⊢
Ⅎ𝑥((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑦) |
34 | | nffvmpt1 5497 |
. . . . . 6
⊢
Ⅎ𝑥((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑦) |
35 | 33, 34 | nfop 3774 |
. . . . 5
⊢
Ⅎ𝑥〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑦), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑦)〉 |
36 | | fveq2 5486 |
. . . . . 6
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥) = ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑦)) |
37 | | fveq2 5486 |
. . . . . 6
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑥) = ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑦)) |
38 | 36, 37 | opeq12d 3766 |
. . . . 5
⊢ (𝑥 = 𝑦 → 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑥)〉 = 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑦), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑦)〉) |
39 | 32, 35, 38 | cbvmpt 4077 |
. . . 4
⊢ (𝑥 ∈ ∪ 𝐽
↦ 〈((𝑥 ∈
𝑋 ↦ 𝐴)‘𝑥), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑥)〉) = (𝑦 ∈ ∪ 𝐽 ↦ 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑦), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑦)〉) |
40 | 31, 39 | txcnmpt 12913 |
. . 3
⊢ (((𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾) ∧ (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐿)) → (𝑥 ∈ ∪ 𝐽 ↦ 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑥)〉) ∈ (𝐽 Cn (𝐾 ×t 𝐿))) |
41 | 6, 17, 40 | syl2anc 409 |
. 2
⊢ (𝜑 → (𝑥 ∈ ∪ 𝐽 ↦ 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑥)〉) ∈ (𝐽 Cn (𝐾 ×t 𝐿))) |
42 | 30, 41 | eqeltrrd 2244 |
1
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) ∈ (𝐽 Cn (𝐾 ×t 𝐿))) |