| Step | Hyp | Ref
 | Expression | 
| 1 |   | cnmptid.j | 
. . . 4
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | 
| 2 |   | toponuni 14251 | 
. . . 4
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | 
| 3 |   | mpteq1 4117 | 
. . . 4
⊢ (𝑋 = ∪
𝐽 → (𝑥 ∈ 𝑋 ↦ 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑥)〉) = (𝑥 ∈ ∪ 𝐽 ↦ 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑥)〉)) | 
| 4 | 1, 2, 3 | 3syl 17 | 
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑥)〉) = (𝑥 ∈ ∪ 𝐽 ↦ 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑥)〉)) | 
| 5 |   | simpr 110 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) | 
| 6 |   | cnmpt11.a | 
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾)) | 
| 7 |   | cntop2 14438 | 
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) | 
| 8 | 6, 7 | syl 14 | 
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ Top) | 
| 9 |   | toptopon2 14255 | 
. . . . . . . . 9
⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘∪ 𝐾)) | 
| 10 | 8, 9 | sylib 122 | 
. . . . . . . 8
⊢ (𝜑 → 𝐾 ∈ (TopOn‘∪ 𝐾)) | 
| 11 |   | cnf2 14441 | 
. . . . . . . 8
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘∪ 𝐾)
∧ (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾)) → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶∪ 𝐾) | 
| 12 | 1, 10, 6, 11 | syl3anc 1249 | 
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶∪ 𝐾) | 
| 13 | 12 | fvmptelcdm 5715 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ∪ 𝐾) | 
| 14 |   | eqid 2196 | 
. . . . . . 7
⊢ (𝑥 ∈ 𝑋 ↦ 𝐴) = (𝑥 ∈ 𝑋 ↦ 𝐴) | 
| 15 | 14 | fvmpt2 5645 | 
. . . . . 6
⊢ ((𝑥 ∈ 𝑋 ∧ 𝐴 ∈ ∪ 𝐾) → ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥) = 𝐴) | 
| 16 | 5, 13, 15 | syl2anc 411 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥) = 𝐴) | 
| 17 |   | cnmpt1t.b | 
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐿)) | 
| 18 |   | cntop2 14438 | 
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐿) → 𝐿 ∈ Top) | 
| 19 | 17, 18 | syl 14 | 
. . . . . . . . 9
⊢ (𝜑 → 𝐿 ∈ Top) | 
| 20 |   | toptopon2 14255 | 
. . . . . . . . 9
⊢ (𝐿 ∈ Top ↔ 𝐿 ∈ (TopOn‘∪ 𝐿)) | 
| 21 | 19, 20 | sylib 122 | 
. . . . . . . 8
⊢ (𝜑 → 𝐿 ∈ (TopOn‘∪ 𝐿)) | 
| 22 |   | cnf2 14441 | 
. . . . . . . 8
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (TopOn‘∪ 𝐿)
∧ (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐿)) → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶∪ 𝐿) | 
| 23 | 1, 21, 17, 22 | syl3anc 1249 | 
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶∪ 𝐿) | 
| 24 | 23 | fvmptelcdm 5715 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ ∪ 𝐿) | 
| 25 |   | eqid 2196 | 
. . . . . . 7
⊢ (𝑥 ∈ 𝑋 ↦ 𝐵) = (𝑥 ∈ 𝑋 ↦ 𝐵) | 
| 26 | 25 | fvmpt2 5645 | 
. . . . . 6
⊢ ((𝑥 ∈ 𝑋 ∧ 𝐵 ∈ ∪ 𝐿) → ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑥) = 𝐵) | 
| 27 | 5, 24, 26 | syl2anc 411 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑥) = 𝐵) | 
| 28 | 16, 27 | opeq12d 3816 | 
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑥)〉 = 〈𝐴, 𝐵〉) | 
| 29 | 28 | mpteq2dva 4123 | 
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑥)〉) = (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)) | 
| 30 | 4, 29 | eqtr3d 2231 | 
. 2
⊢ (𝜑 → (𝑥 ∈ ∪ 𝐽 ↦ 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑥)〉) = (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)) | 
| 31 |   | eqid 2196 | 
. . . 4
⊢ ∪ 𝐽 =
∪ 𝐽 | 
| 32 |   | nfcv 2339 | 
. . . . 5
⊢
Ⅎ𝑦〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑥)〉 | 
| 33 |   | nffvmpt1 5569 | 
. . . . . 6
⊢
Ⅎ𝑥((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑦) | 
| 34 |   | nffvmpt1 5569 | 
. . . . . 6
⊢
Ⅎ𝑥((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑦) | 
| 35 | 33, 34 | nfop 3824 | 
. . . . 5
⊢
Ⅎ𝑥〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑦), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑦)〉 | 
| 36 |   | fveq2 5558 | 
. . . . . 6
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥) = ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑦)) | 
| 37 |   | fveq2 5558 | 
. . . . . 6
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑥) = ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑦)) | 
| 38 | 36, 37 | opeq12d 3816 | 
. . . . 5
⊢ (𝑥 = 𝑦 → 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑥)〉 = 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑦), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑦)〉) | 
| 39 | 32, 35, 38 | cbvmpt 4128 | 
. . . 4
⊢ (𝑥 ∈ ∪ 𝐽
↦ 〈((𝑥 ∈
𝑋 ↦ 𝐴)‘𝑥), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑥)〉) = (𝑦 ∈ ∪ 𝐽 ↦ 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑦), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑦)〉) | 
| 40 | 31, 39 | txcnmpt 14509 | 
. . 3
⊢ (((𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾) ∧ (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐿)) → (𝑥 ∈ ∪ 𝐽 ↦ 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑥)〉) ∈ (𝐽 Cn (𝐾 ×t 𝐿))) | 
| 41 | 6, 17, 40 | syl2anc 411 | 
. 2
⊢ (𝜑 → (𝑥 ∈ ∪ 𝐽 ↦ 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑥)〉) ∈ (𝐽 Cn (𝐾 ×t 𝐿))) | 
| 42 | 30, 41 | eqeltrrd 2274 | 
1
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) ∈ (𝐽 Cn (𝐾 ×t 𝐿))) |