ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnmpt1t GIF version

Theorem cnmpt1t 13079
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptid.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmpt11.a (𝜑 → (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾))
cnmpt1t.b (𝜑 → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐿))
Assertion
Ref Expression
cnmpt1t (𝜑 → (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) ∈ (𝐽 Cn (𝐾 ×t 𝐿)))
Distinct variable groups:   𝜑,𝑥   𝑥,𝐽   𝑥,𝑋   𝑥,𝐾   𝑥,𝐿
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem cnmpt1t
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cnmptid.j . . . 4 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 toponuni 12807 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
3 mpteq1 4073 . . . 4 (𝑋 = 𝐽 → (𝑥𝑋 ↦ ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩) = (𝑥 𝐽 ↦ ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩))
41, 2, 33syl 17 . . 3 (𝜑 → (𝑥𝑋 ↦ ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩) = (𝑥 𝐽 ↦ ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩))
5 simpr 109 . . . . . 6 ((𝜑𝑥𝑋) → 𝑥𝑋)
6 cnmpt11.a . . . . . . . . . 10 (𝜑 → (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾))
7 cntop2 12996 . . . . . . . . . 10 ((𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
86, 7syl 14 . . . . . . . . 9 (𝜑𝐾 ∈ Top)
9 toptopon2 12811 . . . . . . . . 9 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
108, 9sylib 121 . . . . . . . 8 (𝜑𝐾 ∈ (TopOn‘ 𝐾))
11 cnf2 12999 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ 𝐾) ∧ (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾)) → (𝑥𝑋𝐴):𝑋 𝐾)
121, 10, 6, 11syl3anc 1233 . . . . . . 7 (𝜑 → (𝑥𝑋𝐴):𝑋 𝐾)
1312fvmptelrn 5649 . . . . . 6 ((𝜑𝑥𝑋) → 𝐴 𝐾)
14 eqid 2170 . . . . . . 7 (𝑥𝑋𝐴) = (𝑥𝑋𝐴)
1514fvmpt2 5579 . . . . . 6 ((𝑥𝑋𝐴 𝐾) → ((𝑥𝑋𝐴)‘𝑥) = 𝐴)
165, 13, 15syl2anc 409 . . . . 5 ((𝜑𝑥𝑋) → ((𝑥𝑋𝐴)‘𝑥) = 𝐴)
17 cnmpt1t.b . . . . . . . . . 10 (𝜑 → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐿))
18 cntop2 12996 . . . . . . . . . 10 ((𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐿) → 𝐿 ∈ Top)
1917, 18syl 14 . . . . . . . . 9 (𝜑𝐿 ∈ Top)
20 toptopon2 12811 . . . . . . . . 9 (𝐿 ∈ Top ↔ 𝐿 ∈ (TopOn‘ 𝐿))
2119, 20sylib 121 . . . . . . . 8 (𝜑𝐿 ∈ (TopOn‘ 𝐿))
22 cnf2 12999 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (TopOn‘ 𝐿) ∧ (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐿)) → (𝑥𝑋𝐵):𝑋 𝐿)
231, 21, 17, 22syl3anc 1233 . . . . . . 7 (𝜑 → (𝑥𝑋𝐵):𝑋 𝐿)
2423fvmptelrn 5649 . . . . . 6 ((𝜑𝑥𝑋) → 𝐵 𝐿)
25 eqid 2170 . . . . . . 7 (𝑥𝑋𝐵) = (𝑥𝑋𝐵)
2625fvmpt2 5579 . . . . . 6 ((𝑥𝑋𝐵 𝐿) → ((𝑥𝑋𝐵)‘𝑥) = 𝐵)
275, 24, 26syl2anc 409 . . . . 5 ((𝜑𝑥𝑋) → ((𝑥𝑋𝐵)‘𝑥) = 𝐵)
2816, 27opeq12d 3773 . . . 4 ((𝜑𝑥𝑋) → ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩ = ⟨𝐴, 𝐵⟩)
2928mpteq2dva 4079 . . 3 (𝜑 → (𝑥𝑋 ↦ ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩) = (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩))
304, 29eqtr3d 2205 . 2 (𝜑 → (𝑥 𝐽 ↦ ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩) = (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩))
31 eqid 2170 . . . 4 𝐽 = 𝐽
32 nfcv 2312 . . . . 5 𝑦⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩
33 nffvmpt1 5507 . . . . . 6 𝑥((𝑥𝑋𝐴)‘𝑦)
34 nffvmpt1 5507 . . . . . 6 𝑥((𝑥𝑋𝐵)‘𝑦)
3533, 34nfop 3781 . . . . 5 𝑥⟨((𝑥𝑋𝐴)‘𝑦), ((𝑥𝑋𝐵)‘𝑦)⟩
36 fveq2 5496 . . . . . 6 (𝑥 = 𝑦 → ((𝑥𝑋𝐴)‘𝑥) = ((𝑥𝑋𝐴)‘𝑦))
37 fveq2 5496 . . . . . 6 (𝑥 = 𝑦 → ((𝑥𝑋𝐵)‘𝑥) = ((𝑥𝑋𝐵)‘𝑦))
3836, 37opeq12d 3773 . . . . 5 (𝑥 = 𝑦 → ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩ = ⟨((𝑥𝑋𝐴)‘𝑦), ((𝑥𝑋𝐵)‘𝑦)⟩)
3932, 35, 38cbvmpt 4084 . . . 4 (𝑥 𝐽 ↦ ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩) = (𝑦 𝐽 ↦ ⟨((𝑥𝑋𝐴)‘𝑦), ((𝑥𝑋𝐵)‘𝑦)⟩)
4031, 39txcnmpt 13067 . . 3 (((𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾) ∧ (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐿)) → (𝑥 𝐽 ↦ ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩) ∈ (𝐽 Cn (𝐾 ×t 𝐿)))
416, 17, 40syl2anc 409 . 2 (𝜑 → (𝑥 𝐽 ↦ ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩) ∈ (𝐽 Cn (𝐾 ×t 𝐿)))
4230, 41eqeltrrd 2248 1 (𝜑 → (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) ∈ (𝐽 Cn (𝐾 ×t 𝐿)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  cop 3586   cuni 3796  cmpt 4050  wf 5194  cfv 5198  (class class class)co 5853  Topctop 12789  TopOnctopon 12802   Cn ccn 12979   ×t ctx 13046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-map 6628  df-topgen 12600  df-top 12790  df-topon 12803  df-bases 12835  df-cn 12982  df-tx 13047
This theorem is referenced by:  cnmpt12f  13080  imasnopn  13093  cnrehmeocntop  13387
  Copyright terms: Public domain W3C validator