| Step | Hyp | Ref
| Expression |
| 1 | | vex 2766 |
. . . . 5
⊢ 𝑦 ∈ V |
| 2 | 1 | inex1 4168 |
. . . 4
⊢ (𝑦 ∩ 𝐴) ∈ V |
| 3 | | ineq1 3358 |
. . . . 5
⊢ (𝑥 = (𝑦 ∩ 𝐴) → (𝑥 ∩ 𝐵) = ((𝑦 ∩ 𝐴) ∩ 𝐵)) |
| 4 | | inass 3374 |
. . . . 5
⊢ ((𝑦 ∩ 𝐴) ∩ 𝐵) = (𝑦 ∩ (𝐴 ∩ 𝐵)) |
| 5 | 3, 4 | eqtrdi 2245 |
. . . 4
⊢ (𝑥 = (𝑦 ∩ 𝐴) → (𝑥 ∩ 𝐵) = (𝑦 ∩ (𝐴 ∩ 𝐵))) |
| 6 | 2, 5 | abrexco 5809 |
. . 3
⊢ {𝑧 ∣ ∃𝑥 ∈ {𝑤 ∣ ∃𝑦 ∈ 𝐽 𝑤 = (𝑦 ∩ 𝐴)}𝑧 = (𝑥 ∩ 𝐵)} = {𝑧 ∣ ∃𝑦 ∈ 𝐽 𝑧 = (𝑦 ∩ (𝐴 ∩ 𝐵))} |
| 7 | | eqid 2196 |
. . . . . 6
⊢ (𝑦 ∈ 𝐽 ↦ (𝑦 ∩ 𝐴)) = (𝑦 ∈ 𝐽 ↦ (𝑦 ∩ 𝐴)) |
| 8 | 7 | rnmpt 4915 |
. . . . 5
⊢ ran
(𝑦 ∈ 𝐽 ↦ (𝑦 ∩ 𝐴)) = {𝑤 ∣ ∃𝑦 ∈ 𝐽 𝑤 = (𝑦 ∩ 𝐴)} |
| 9 | | mpteq1 4118 |
. . . . 5
⊢ (ran
(𝑦 ∈ 𝐽 ↦ (𝑦 ∩ 𝐴)) = {𝑤 ∣ ∃𝑦 ∈ 𝐽 𝑤 = (𝑦 ∩ 𝐴)} → (𝑥 ∈ ran (𝑦 ∈ 𝐽 ↦ (𝑦 ∩ 𝐴)) ↦ (𝑥 ∩ 𝐵)) = (𝑥 ∈ {𝑤 ∣ ∃𝑦 ∈ 𝐽 𝑤 = (𝑦 ∩ 𝐴)} ↦ (𝑥 ∩ 𝐵))) |
| 10 | 8, 9 | ax-mp 5 |
. . . 4
⊢ (𝑥 ∈ ran (𝑦 ∈ 𝐽 ↦ (𝑦 ∩ 𝐴)) ↦ (𝑥 ∩ 𝐵)) = (𝑥 ∈ {𝑤 ∣ ∃𝑦 ∈ 𝐽 𝑤 = (𝑦 ∩ 𝐴)} ↦ (𝑥 ∩ 𝐵)) |
| 11 | 10 | rnmpt 4915 |
. . 3
⊢ ran
(𝑥 ∈ ran (𝑦 ∈ 𝐽 ↦ (𝑦 ∩ 𝐴)) ↦ (𝑥 ∩ 𝐵)) = {𝑧 ∣ ∃𝑥 ∈ {𝑤 ∣ ∃𝑦 ∈ 𝐽 𝑤 = (𝑦 ∩ 𝐴)}𝑧 = (𝑥 ∩ 𝐵)} |
| 12 | | eqid 2196 |
. . . 4
⊢ (𝑦 ∈ 𝐽 ↦ (𝑦 ∩ (𝐴 ∩ 𝐵))) = (𝑦 ∈ 𝐽 ↦ (𝑦 ∩ (𝐴 ∩ 𝐵))) |
| 13 | 12 | rnmpt 4915 |
. . 3
⊢ ran
(𝑦 ∈ 𝐽 ↦ (𝑦 ∩ (𝐴 ∩ 𝐵))) = {𝑧 ∣ ∃𝑦 ∈ 𝐽 𝑧 = (𝑦 ∩ (𝐴 ∩ 𝐵))} |
| 14 | 6, 11, 13 | 3eqtr4i 2227 |
. 2
⊢ ran
(𝑥 ∈ ran (𝑦 ∈ 𝐽 ↦ (𝑦 ∩ 𝐴)) ↦ (𝑥 ∩ 𝐵)) = ran (𝑦 ∈ 𝐽 ↦ (𝑦 ∩ (𝐴 ∩ 𝐵))) |
| 15 | | restval 12947 |
. . . . 5
⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝐽 ↾t 𝐴) = ran (𝑦 ∈ 𝐽 ↦ (𝑦 ∩ 𝐴))) |
| 16 | 15 | 3adant3 1019 |
. . . 4
⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → (𝐽 ↾t 𝐴) = ran (𝑦 ∈ 𝐽 ↦ (𝑦 ∩ 𝐴))) |
| 17 | 16 | oveq1d 5940 |
. . 3
⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → ((𝐽 ↾t 𝐴) ↾t 𝐵) = (ran (𝑦 ∈ 𝐽 ↦ (𝑦 ∩ 𝐴)) ↾t 𝐵)) |
| 18 | | restfn 12945 |
. . . . . 6
⊢
↾t Fn (V × V) |
| 19 | | simp1 999 |
. . . . . . 7
⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → 𝐽 ∈ 𝑉) |
| 20 | 19 | elexd 2776 |
. . . . . 6
⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → 𝐽 ∈ V) |
| 21 | | simp2 1000 |
. . . . . . 7
⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → 𝐴 ∈ 𝑊) |
| 22 | 21 | elexd 2776 |
. . . . . 6
⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → 𝐴 ∈ V) |
| 23 | | fnovex 5958 |
. . . . . 6
⊢ ((
↾t Fn (V × V) ∧ 𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝐽 ↾t 𝐴) ∈ V) |
| 24 | 18, 20, 22, 23 | mp3an2i 1353 |
. . . . 5
⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → (𝐽 ↾t 𝐴) ∈ V) |
| 25 | 16, 24 | eqeltrrd 2274 |
. . . 4
⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → ran (𝑦 ∈ 𝐽 ↦ (𝑦 ∩ 𝐴)) ∈ V) |
| 26 | | simp3 1001 |
. . . 4
⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → 𝐵 ∈ 𝑋) |
| 27 | | restval 12947 |
. . . 4
⊢ ((ran
(𝑦 ∈ 𝐽 ↦ (𝑦 ∩ 𝐴)) ∈ V ∧ 𝐵 ∈ 𝑋) → (ran (𝑦 ∈ 𝐽 ↦ (𝑦 ∩ 𝐴)) ↾t 𝐵) = ran (𝑥 ∈ ran (𝑦 ∈ 𝐽 ↦ (𝑦 ∩ 𝐴)) ↦ (𝑥 ∩ 𝐵))) |
| 28 | 25, 26, 27 | syl2anc 411 |
. . 3
⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → (ran (𝑦 ∈ 𝐽 ↦ (𝑦 ∩ 𝐴)) ↾t 𝐵) = ran (𝑥 ∈ ran (𝑦 ∈ 𝐽 ↦ (𝑦 ∩ 𝐴)) ↦ (𝑥 ∩ 𝐵))) |
| 29 | 17, 28 | eqtrd 2229 |
. 2
⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → ((𝐽 ↾t 𝐴) ↾t 𝐵) = ran (𝑥 ∈ ran (𝑦 ∈ 𝐽 ↦ (𝑦 ∩ 𝐴)) ↦ (𝑥 ∩ 𝐵))) |
| 30 | | inex1g 4170 |
. . . 4
⊢ (𝐴 ∈ 𝑊 → (𝐴 ∩ 𝐵) ∈ V) |
| 31 | 30 | 3ad2ant2 1021 |
. . 3
⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → (𝐴 ∩ 𝐵) ∈ V) |
| 32 | | restval 12947 |
. . 3
⊢ ((𝐽 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ∈ V) → (𝐽 ↾t (𝐴 ∩ 𝐵)) = ran (𝑦 ∈ 𝐽 ↦ (𝑦 ∩ (𝐴 ∩ 𝐵)))) |
| 33 | 19, 31, 32 | syl2anc 411 |
. 2
⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → (𝐽 ↾t (𝐴 ∩ 𝐵)) = ran (𝑦 ∈ 𝐽 ↦ (𝑦 ∩ (𝐴 ∩ 𝐵)))) |
| 34 | 14, 29, 33 | 3eqtr4a 2255 |
1
⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → ((𝐽 ↾t 𝐴) ↾t 𝐵) = (𝐽 ↾t (𝐴 ∩ 𝐵))) |