ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  restco GIF version

Theorem restco 14690
Description: Composition of subspaces. (Contributed by Mario Carneiro, 15-Dec-2013.) (Revised by Mario Carneiro, 1-May-2015.)
Assertion
Ref Expression
restco ((𝐽𝑉𝐴𝑊𝐵𝑋) → ((𝐽t 𝐴) ↾t 𝐵) = (𝐽t (𝐴𝐵)))

Proof of Theorem restco
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2776 . . . . 5 𝑦 ∈ V
21inex1 4182 . . . 4 (𝑦𝐴) ∈ V
3 ineq1 3368 . . . . 5 (𝑥 = (𝑦𝐴) → (𝑥𝐵) = ((𝑦𝐴) ∩ 𝐵))
4 inass 3384 . . . . 5 ((𝑦𝐴) ∩ 𝐵) = (𝑦 ∩ (𝐴𝐵))
53, 4eqtrdi 2255 . . . 4 (𝑥 = (𝑦𝐴) → (𝑥𝐵) = (𝑦 ∩ (𝐴𝐵)))
62, 5abrexco 5835 . . 3 {𝑧 ∣ ∃𝑥 ∈ {𝑤 ∣ ∃𝑦𝐽 𝑤 = (𝑦𝐴)}𝑧 = (𝑥𝐵)} = {𝑧 ∣ ∃𝑦𝐽 𝑧 = (𝑦 ∩ (𝐴𝐵))}
7 eqid 2206 . . . . . 6 (𝑦𝐽 ↦ (𝑦𝐴)) = (𝑦𝐽 ↦ (𝑦𝐴))
87rnmpt 4931 . . . . 5 ran (𝑦𝐽 ↦ (𝑦𝐴)) = {𝑤 ∣ ∃𝑦𝐽 𝑤 = (𝑦𝐴)}
9 mpteq1 4132 . . . . 5 (ran (𝑦𝐽 ↦ (𝑦𝐴)) = {𝑤 ∣ ∃𝑦𝐽 𝑤 = (𝑦𝐴)} → (𝑥 ∈ ran (𝑦𝐽 ↦ (𝑦𝐴)) ↦ (𝑥𝐵)) = (𝑥 ∈ {𝑤 ∣ ∃𝑦𝐽 𝑤 = (𝑦𝐴)} ↦ (𝑥𝐵)))
108, 9ax-mp 5 . . . 4 (𝑥 ∈ ran (𝑦𝐽 ↦ (𝑦𝐴)) ↦ (𝑥𝐵)) = (𝑥 ∈ {𝑤 ∣ ∃𝑦𝐽 𝑤 = (𝑦𝐴)} ↦ (𝑥𝐵))
1110rnmpt 4931 . . 3 ran (𝑥 ∈ ran (𝑦𝐽 ↦ (𝑦𝐴)) ↦ (𝑥𝐵)) = {𝑧 ∣ ∃𝑥 ∈ {𝑤 ∣ ∃𝑦𝐽 𝑤 = (𝑦𝐴)}𝑧 = (𝑥𝐵)}
12 eqid 2206 . . . 4 (𝑦𝐽 ↦ (𝑦 ∩ (𝐴𝐵))) = (𝑦𝐽 ↦ (𝑦 ∩ (𝐴𝐵)))
1312rnmpt 4931 . . 3 ran (𝑦𝐽 ↦ (𝑦 ∩ (𝐴𝐵))) = {𝑧 ∣ ∃𝑦𝐽 𝑧 = (𝑦 ∩ (𝐴𝐵))}
146, 11, 133eqtr4i 2237 . 2 ran (𝑥 ∈ ran (𝑦𝐽 ↦ (𝑦𝐴)) ↦ (𝑥𝐵)) = ran (𝑦𝐽 ↦ (𝑦 ∩ (𝐴𝐵)))
15 restval 13121 . . . . 5 ((𝐽𝑉𝐴𝑊) → (𝐽t 𝐴) = ran (𝑦𝐽 ↦ (𝑦𝐴)))
16153adant3 1020 . . . 4 ((𝐽𝑉𝐴𝑊𝐵𝑋) → (𝐽t 𝐴) = ran (𝑦𝐽 ↦ (𝑦𝐴)))
1716oveq1d 5966 . . 3 ((𝐽𝑉𝐴𝑊𝐵𝑋) → ((𝐽t 𝐴) ↾t 𝐵) = (ran (𝑦𝐽 ↦ (𝑦𝐴)) ↾t 𝐵))
18 restfn 13119 . . . . . 6 t Fn (V × V)
19 simp1 1000 . . . . . . 7 ((𝐽𝑉𝐴𝑊𝐵𝑋) → 𝐽𝑉)
2019elexd 2786 . . . . . 6 ((𝐽𝑉𝐴𝑊𝐵𝑋) → 𝐽 ∈ V)
21 simp2 1001 . . . . . . 7 ((𝐽𝑉𝐴𝑊𝐵𝑋) → 𝐴𝑊)
2221elexd 2786 . . . . . 6 ((𝐽𝑉𝐴𝑊𝐵𝑋) → 𝐴 ∈ V)
23 fnovex 5984 . . . . . 6 (( ↾t Fn (V × V) ∧ 𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝐽t 𝐴) ∈ V)
2418, 20, 22, 23mp3an2i 1355 . . . . 5 ((𝐽𝑉𝐴𝑊𝐵𝑋) → (𝐽t 𝐴) ∈ V)
2516, 24eqeltrrd 2284 . . . 4 ((𝐽𝑉𝐴𝑊𝐵𝑋) → ran (𝑦𝐽 ↦ (𝑦𝐴)) ∈ V)
26 simp3 1002 . . . 4 ((𝐽𝑉𝐴𝑊𝐵𝑋) → 𝐵𝑋)
27 restval 13121 . . . 4 ((ran (𝑦𝐽 ↦ (𝑦𝐴)) ∈ V ∧ 𝐵𝑋) → (ran (𝑦𝐽 ↦ (𝑦𝐴)) ↾t 𝐵) = ran (𝑥 ∈ ran (𝑦𝐽 ↦ (𝑦𝐴)) ↦ (𝑥𝐵)))
2825, 26, 27syl2anc 411 . . 3 ((𝐽𝑉𝐴𝑊𝐵𝑋) → (ran (𝑦𝐽 ↦ (𝑦𝐴)) ↾t 𝐵) = ran (𝑥 ∈ ran (𝑦𝐽 ↦ (𝑦𝐴)) ↦ (𝑥𝐵)))
2917, 28eqtrd 2239 . 2 ((𝐽𝑉𝐴𝑊𝐵𝑋) → ((𝐽t 𝐴) ↾t 𝐵) = ran (𝑥 ∈ ran (𝑦𝐽 ↦ (𝑦𝐴)) ↦ (𝑥𝐵)))
30 inex1g 4184 . . . 4 (𝐴𝑊 → (𝐴𝐵) ∈ V)
31303ad2ant2 1022 . . 3 ((𝐽𝑉𝐴𝑊𝐵𝑋) → (𝐴𝐵) ∈ V)
32 restval 13121 . . 3 ((𝐽𝑉 ∧ (𝐴𝐵) ∈ V) → (𝐽t (𝐴𝐵)) = ran (𝑦𝐽 ↦ (𝑦 ∩ (𝐴𝐵))))
3319, 31, 32syl2anc 411 . 2 ((𝐽𝑉𝐴𝑊𝐵𝑋) → (𝐽t (𝐴𝐵)) = ran (𝑦𝐽 ↦ (𝑦 ∩ (𝐴𝐵))))
3414, 29, 333eqtr4a 2265 1 ((𝐽𝑉𝐴𝑊𝐵𝑋) → ((𝐽t 𝐴) ↾t 𝐵) = (𝐽t (𝐴𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 981   = wceq 1373  wcel 2177  {cab 2192  wrex 2486  Vcvv 2773  cin 3166  cmpt 4109   × cxp 4677  ran crn 4680   Fn wfn 5271  (class class class)co 5951  t crest 13115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-rest 13117
This theorem is referenced by:  restabs  14691  restin  14692
  Copyright terms: Public domain W3C validator