ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  restco GIF version

Theorem restco 14410
Description: Composition of subspaces. (Contributed by Mario Carneiro, 15-Dec-2013.) (Revised by Mario Carneiro, 1-May-2015.)
Assertion
Ref Expression
restco ((𝐽𝑉𝐴𝑊𝐵𝑋) → ((𝐽t 𝐴) ↾t 𝐵) = (𝐽t (𝐴𝐵)))

Proof of Theorem restco
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2766 . . . . 5 𝑦 ∈ V
21inex1 4167 . . . 4 (𝑦𝐴) ∈ V
3 ineq1 3357 . . . . 5 (𝑥 = (𝑦𝐴) → (𝑥𝐵) = ((𝑦𝐴) ∩ 𝐵))
4 inass 3373 . . . . 5 ((𝑦𝐴) ∩ 𝐵) = (𝑦 ∩ (𝐴𝐵))
53, 4eqtrdi 2245 . . . 4 (𝑥 = (𝑦𝐴) → (𝑥𝐵) = (𝑦 ∩ (𝐴𝐵)))
62, 5abrexco 5806 . . 3 {𝑧 ∣ ∃𝑥 ∈ {𝑤 ∣ ∃𝑦𝐽 𝑤 = (𝑦𝐴)}𝑧 = (𝑥𝐵)} = {𝑧 ∣ ∃𝑦𝐽 𝑧 = (𝑦 ∩ (𝐴𝐵))}
7 eqid 2196 . . . . . 6 (𝑦𝐽 ↦ (𝑦𝐴)) = (𝑦𝐽 ↦ (𝑦𝐴))
87rnmpt 4914 . . . . 5 ran (𝑦𝐽 ↦ (𝑦𝐴)) = {𝑤 ∣ ∃𝑦𝐽 𝑤 = (𝑦𝐴)}
9 mpteq1 4117 . . . . 5 (ran (𝑦𝐽 ↦ (𝑦𝐴)) = {𝑤 ∣ ∃𝑦𝐽 𝑤 = (𝑦𝐴)} → (𝑥 ∈ ran (𝑦𝐽 ↦ (𝑦𝐴)) ↦ (𝑥𝐵)) = (𝑥 ∈ {𝑤 ∣ ∃𝑦𝐽 𝑤 = (𝑦𝐴)} ↦ (𝑥𝐵)))
108, 9ax-mp 5 . . . 4 (𝑥 ∈ ran (𝑦𝐽 ↦ (𝑦𝐴)) ↦ (𝑥𝐵)) = (𝑥 ∈ {𝑤 ∣ ∃𝑦𝐽 𝑤 = (𝑦𝐴)} ↦ (𝑥𝐵))
1110rnmpt 4914 . . 3 ran (𝑥 ∈ ran (𝑦𝐽 ↦ (𝑦𝐴)) ↦ (𝑥𝐵)) = {𝑧 ∣ ∃𝑥 ∈ {𝑤 ∣ ∃𝑦𝐽 𝑤 = (𝑦𝐴)}𝑧 = (𝑥𝐵)}
12 eqid 2196 . . . 4 (𝑦𝐽 ↦ (𝑦 ∩ (𝐴𝐵))) = (𝑦𝐽 ↦ (𝑦 ∩ (𝐴𝐵)))
1312rnmpt 4914 . . 3 ran (𝑦𝐽 ↦ (𝑦 ∩ (𝐴𝐵))) = {𝑧 ∣ ∃𝑦𝐽 𝑧 = (𝑦 ∩ (𝐴𝐵))}
146, 11, 133eqtr4i 2227 . 2 ran (𝑥 ∈ ran (𝑦𝐽 ↦ (𝑦𝐴)) ↦ (𝑥𝐵)) = ran (𝑦𝐽 ↦ (𝑦 ∩ (𝐴𝐵)))
15 restval 12916 . . . . 5 ((𝐽𝑉𝐴𝑊) → (𝐽t 𝐴) = ran (𝑦𝐽 ↦ (𝑦𝐴)))
16153adant3 1019 . . . 4 ((𝐽𝑉𝐴𝑊𝐵𝑋) → (𝐽t 𝐴) = ran (𝑦𝐽 ↦ (𝑦𝐴)))
1716oveq1d 5937 . . 3 ((𝐽𝑉𝐴𝑊𝐵𝑋) → ((𝐽t 𝐴) ↾t 𝐵) = (ran (𝑦𝐽 ↦ (𝑦𝐴)) ↾t 𝐵))
18 restfn 12914 . . . . . 6 t Fn (V × V)
19 simp1 999 . . . . . . 7 ((𝐽𝑉𝐴𝑊𝐵𝑋) → 𝐽𝑉)
2019elexd 2776 . . . . . 6 ((𝐽𝑉𝐴𝑊𝐵𝑋) → 𝐽 ∈ V)
21 simp2 1000 . . . . . . 7 ((𝐽𝑉𝐴𝑊𝐵𝑋) → 𝐴𝑊)
2221elexd 2776 . . . . . 6 ((𝐽𝑉𝐴𝑊𝐵𝑋) → 𝐴 ∈ V)
23 fnovex 5955 . . . . . 6 (( ↾t Fn (V × V) ∧ 𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝐽t 𝐴) ∈ V)
2418, 20, 22, 23mp3an2i 1353 . . . . 5 ((𝐽𝑉𝐴𝑊𝐵𝑋) → (𝐽t 𝐴) ∈ V)
2516, 24eqeltrrd 2274 . . . 4 ((𝐽𝑉𝐴𝑊𝐵𝑋) → ran (𝑦𝐽 ↦ (𝑦𝐴)) ∈ V)
26 simp3 1001 . . . 4 ((𝐽𝑉𝐴𝑊𝐵𝑋) → 𝐵𝑋)
27 restval 12916 . . . 4 ((ran (𝑦𝐽 ↦ (𝑦𝐴)) ∈ V ∧ 𝐵𝑋) → (ran (𝑦𝐽 ↦ (𝑦𝐴)) ↾t 𝐵) = ran (𝑥 ∈ ran (𝑦𝐽 ↦ (𝑦𝐴)) ↦ (𝑥𝐵)))
2825, 26, 27syl2anc 411 . . 3 ((𝐽𝑉𝐴𝑊𝐵𝑋) → (ran (𝑦𝐽 ↦ (𝑦𝐴)) ↾t 𝐵) = ran (𝑥 ∈ ran (𝑦𝐽 ↦ (𝑦𝐴)) ↦ (𝑥𝐵)))
2917, 28eqtrd 2229 . 2 ((𝐽𝑉𝐴𝑊𝐵𝑋) → ((𝐽t 𝐴) ↾t 𝐵) = ran (𝑥 ∈ ran (𝑦𝐽 ↦ (𝑦𝐴)) ↦ (𝑥𝐵)))
30 inex1g 4169 . . . 4 (𝐴𝑊 → (𝐴𝐵) ∈ V)
31303ad2ant2 1021 . . 3 ((𝐽𝑉𝐴𝑊𝐵𝑋) → (𝐴𝐵) ∈ V)
32 restval 12916 . . 3 ((𝐽𝑉 ∧ (𝐴𝐵) ∈ V) → (𝐽t (𝐴𝐵)) = ran (𝑦𝐽 ↦ (𝑦 ∩ (𝐴𝐵))))
3319, 31, 32syl2anc 411 . 2 ((𝐽𝑉𝐴𝑊𝐵𝑋) → (𝐽t (𝐴𝐵)) = ran (𝑦𝐽 ↦ (𝑦 ∩ (𝐴𝐵))))
3414, 29, 333eqtr4a 2255 1 ((𝐽𝑉𝐴𝑊𝐵𝑋) → ((𝐽t 𝐴) ↾t 𝐵) = (𝐽t (𝐴𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 980   = wceq 1364  wcel 2167  {cab 2182  wrex 2476  Vcvv 2763  cin 3156  cmpt 4094   × cxp 4661  ran crn 4664   Fn wfn 5253  (class class class)co 5922  t crest 12910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-rest 12912
This theorem is referenced by:  restabs  14411  restin  14412
  Copyright terms: Public domain W3C validator