Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpompt | GIF version |
Description: Express a two-argument function as a one-argument function, or vice-versa. (Contributed by Mario Carneiro, 17-Dec-2013.) (Revised by Mario Carneiro, 29-Dec-2014.) |
Ref | Expression |
---|---|
mpompt.1 | ⊢ (𝑧 = 〈𝑥, 𝑦〉 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
mpompt | ⊢ (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunxpconst 4671 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) = (𝐴 × 𝐵) | |
2 | mpteq1 4073 | . . 3 ⊢ (∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) = (𝐴 × 𝐵) → (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↦ 𝐶) = (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↦ 𝐶) = (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶) |
4 | mpompt.1 | . . 3 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → 𝐶 = 𝐷) | |
5 | 4 | mpomptx 5944 | . 2 ⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) |
6 | 3, 5 | eqtr3i 2193 | 1 ⊢ (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 {csn 3583 〈cop 3586 ∪ ciun 3873 ↦ cmpt 4050 × cxp 4609 ∈ cmpo 5855 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-iun 3875 df-opab 4051 df-mpt 4052 df-xp 4617 df-rel 4618 df-oprab 5857 df-mpo 5858 |
This theorem is referenced by: fconstmpo 5948 fnovim 5961 fmpoco 6195 xpf1o 6822 txbas 13052 cnmpt1st 13082 cnmpt2nd 13083 cnmpt2c 13084 cnmpt2t 13087 txhmeo 13113 txswaphmeolem 13114 |
Copyright terms: Public domain | W3C validator |