ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpompt GIF version

Theorem mpompt 6018
Description: Express a two-argument function as a one-argument function, or vice-versa. (Contributed by Mario Carneiro, 17-Dec-2013.) (Revised by Mario Carneiro, 29-Dec-2014.)
Hypothesis
Ref Expression
mpompt.1 (𝑧 = ⟨𝑥, 𝑦⟩ → 𝐶 = 𝐷)
Assertion
Ref Expression
mpompt (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶) = (𝑥𝐴, 𝑦𝐵𝐷)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑦,𝐵,𝑧   𝑥,𝐶,𝑦   𝑧,𝐷   𝑥,𝐵
Allowed substitution hints:   𝐶(𝑧)   𝐷(𝑥,𝑦)

Proof of Theorem mpompt
StepHypRef Expression
1 iunxpconst 4724 . . 3 𝑥𝐴 ({𝑥} × 𝐵) = (𝐴 × 𝐵)
2 mpteq1 4118 . . 3 ( 𝑥𝐴 ({𝑥} × 𝐵) = (𝐴 × 𝐵) → (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ↦ 𝐶) = (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶))
31, 2ax-mp 5 . 2 (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ↦ 𝐶) = (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶)
4 mpompt.1 . . 3 (𝑧 = ⟨𝑥, 𝑦⟩ → 𝐶 = 𝐷)
54mpomptx 6017 . 2 (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ↦ 𝐶) = (𝑥𝐴, 𝑦𝐵𝐷)
63, 5eqtr3i 2219 1 (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶) = (𝑥𝐴, 𝑦𝐵𝐷)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  {csn 3623  cop 3626   ciun 3917  cmpt 4095   × cxp 4662  cmpo 5927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-iun 3919  df-opab 4096  df-mpt 4097  df-xp 4670  df-rel 4671  df-oprab 5929  df-mpo 5930
This theorem is referenced by:  fconstmpo  6021  fnovim  6035  fmpoco  6283  xpf1o  6914  txbas  14578  cnmpt1st  14608  cnmpt2nd  14609  cnmpt2c  14610  cnmpt2t  14613  txhmeo  14639  txswaphmeolem  14640
  Copyright terms: Public domain W3C validator