ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fmptap GIF version

Theorem fmptap 5828
Description: Append an additional value to a function. (Contributed by NM, 6-Jun-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypotheses
Ref Expression
fmptap.0a 𝐴 ∈ V
fmptap.0b 𝐵 ∈ V
fmptap.1 (𝑅 ∪ {𝐴}) = 𝑆
fmptap.2 (𝑥 = 𝐴𝐶 = 𝐵)
Assertion
Ref Expression
fmptap ((𝑥𝑅𝐶) ∪ {⟨𝐴, 𝐵⟩}) = (𝑥𝑆𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅   𝑥,𝑆
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem fmptap
StepHypRef Expression
1 fmptap.0a . . . . 5 𝐴 ∈ V
2 fmptap.0b . . . . 5 𝐵 ∈ V
3 fmptsn 5827 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {⟨𝐴, 𝐵⟩} = (𝑥 ∈ {𝐴} ↦ 𝐵))
41, 2, 3mp2an 426 . . . 4 {⟨𝐴, 𝐵⟩} = (𝑥 ∈ {𝐴} ↦ 𝐵)
5 elsni 3684 . . . . . 6 (𝑥 ∈ {𝐴} → 𝑥 = 𝐴)
6 fmptap.2 . . . . . 6 (𝑥 = 𝐴𝐶 = 𝐵)
75, 6syl 14 . . . . 5 (𝑥 ∈ {𝐴} → 𝐶 = 𝐵)
87mpteq2ia 4169 . . . 4 (𝑥 ∈ {𝐴} ↦ 𝐶) = (𝑥 ∈ {𝐴} ↦ 𝐵)
94, 8eqtr4i 2253 . . 3 {⟨𝐴, 𝐵⟩} = (𝑥 ∈ {𝐴} ↦ 𝐶)
109uneq2i 3355 . 2 ((𝑥𝑅𝐶) ∪ {⟨𝐴, 𝐵⟩}) = ((𝑥𝑅𝐶) ∪ (𝑥 ∈ {𝐴} ↦ 𝐶))
11 mptun 5454 . 2 (𝑥 ∈ (𝑅 ∪ {𝐴}) ↦ 𝐶) = ((𝑥𝑅𝐶) ∪ (𝑥 ∈ {𝐴} ↦ 𝐶))
12 fmptap.1 . . 3 (𝑅 ∪ {𝐴}) = 𝑆
13 mpteq1 4167 . . 3 ((𝑅 ∪ {𝐴}) = 𝑆 → (𝑥 ∈ (𝑅 ∪ {𝐴}) ↦ 𝐶) = (𝑥𝑆𝐶))
1412, 13ax-mp 5 . 2 (𝑥 ∈ (𝑅 ∪ {𝐴}) ↦ 𝐶) = (𝑥𝑆𝐶)
1510, 11, 143eqtr2i 2256 1 ((𝑥𝑅𝐶) ∪ {⟨𝐴, 𝐵⟩}) = (𝑥𝑆𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  Vcvv 2799  cun 3195  {csn 3666  cop 3669  cmpt 4144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator