| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fmptap | GIF version | ||
| Description: Append an additional value to a function. (Contributed by NM, 6-Jun-2006.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| fmptap.0a | ⊢ 𝐴 ∈ V |
| fmptap.0b | ⊢ 𝐵 ∈ V |
| fmptap.1 | ⊢ (𝑅 ∪ {𝐴}) = 𝑆 |
| fmptap.2 | ⊢ (𝑥 = 𝐴 → 𝐶 = 𝐵) |
| Ref | Expression |
|---|---|
| fmptap | ⊢ ((𝑥 ∈ 𝑅 ↦ 𝐶) ∪ {〈𝐴, 𝐵〉}) = (𝑥 ∈ 𝑆 ↦ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmptap.0a | . . . . 5 ⊢ 𝐴 ∈ V | |
| 2 | fmptap.0b | . . . . 5 ⊢ 𝐵 ∈ V | |
| 3 | fmptsn 5791 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {〈𝐴, 𝐵〉} = (𝑥 ∈ {𝐴} ↦ 𝐵)) | |
| 4 | 1, 2, 3 | mp2an 426 | . . . 4 ⊢ {〈𝐴, 𝐵〉} = (𝑥 ∈ {𝐴} ↦ 𝐵) |
| 5 | elsni 3656 | . . . . . 6 ⊢ (𝑥 ∈ {𝐴} → 𝑥 = 𝐴) | |
| 6 | fmptap.2 | . . . . . 6 ⊢ (𝑥 = 𝐴 → 𝐶 = 𝐵) | |
| 7 | 5, 6 | syl 14 | . . . . 5 ⊢ (𝑥 ∈ {𝐴} → 𝐶 = 𝐵) |
| 8 | 7 | mpteq2ia 4141 | . . . 4 ⊢ (𝑥 ∈ {𝐴} ↦ 𝐶) = (𝑥 ∈ {𝐴} ↦ 𝐵) |
| 9 | 4, 8 | eqtr4i 2230 | . . 3 ⊢ {〈𝐴, 𝐵〉} = (𝑥 ∈ {𝐴} ↦ 𝐶) |
| 10 | 9 | uneq2i 3328 | . 2 ⊢ ((𝑥 ∈ 𝑅 ↦ 𝐶) ∪ {〈𝐴, 𝐵〉}) = ((𝑥 ∈ 𝑅 ↦ 𝐶) ∪ (𝑥 ∈ {𝐴} ↦ 𝐶)) |
| 11 | mptun 5422 | . 2 ⊢ (𝑥 ∈ (𝑅 ∪ {𝐴}) ↦ 𝐶) = ((𝑥 ∈ 𝑅 ↦ 𝐶) ∪ (𝑥 ∈ {𝐴} ↦ 𝐶)) | |
| 12 | fmptap.1 | . . 3 ⊢ (𝑅 ∪ {𝐴}) = 𝑆 | |
| 13 | mpteq1 4139 | . . 3 ⊢ ((𝑅 ∪ {𝐴}) = 𝑆 → (𝑥 ∈ (𝑅 ∪ {𝐴}) ↦ 𝐶) = (𝑥 ∈ 𝑆 ↦ 𝐶)) | |
| 14 | 12, 13 | ax-mp 5 | . 2 ⊢ (𝑥 ∈ (𝑅 ∪ {𝐴}) ↦ 𝐶) = (𝑥 ∈ 𝑆 ↦ 𝐶) |
| 15 | 10, 11, 14 | 3eqtr2i 2233 | 1 ⊢ ((𝑥 ∈ 𝑅 ↦ 𝐶) ∪ {〈𝐴, 𝐵〉}) = (𝑥 ∈ 𝑆 ↦ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 Vcvv 2773 ∪ cun 3168 {csn 3638 〈cop 3641 ↦ cmpt 4116 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-br 4055 df-opab 4117 df-mpt 4118 df-id 4353 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |