![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fmptap | GIF version |
Description: Append an additional value to a function. (Contributed by NM, 6-Jun-2006.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
fmptap.0a | ⊢ 𝐴 ∈ V |
fmptap.0b | ⊢ 𝐵 ∈ V |
fmptap.1 | ⊢ (𝑅 ∪ {𝐴}) = 𝑆 |
fmptap.2 | ⊢ (𝑥 = 𝐴 → 𝐶 = 𝐵) |
Ref | Expression |
---|---|
fmptap | ⊢ ((𝑥 ∈ 𝑅 ↦ 𝐶) ∪ {〈𝐴, 𝐵〉}) = (𝑥 ∈ 𝑆 ↦ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmptap.0a | . . . . 5 ⊢ 𝐴 ∈ V | |
2 | fmptap.0b | . . . . 5 ⊢ 𝐵 ∈ V | |
3 | fmptsn 5502 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {〈𝐴, 𝐵〉} = (𝑥 ∈ {𝐴} ↦ 𝐵)) | |
4 | 1, 2, 3 | mp2an 418 | . . . 4 ⊢ {〈𝐴, 𝐵〉} = (𝑥 ∈ {𝐴} ↦ 𝐵) |
5 | elsni 3470 | . . . . . 6 ⊢ (𝑥 ∈ {𝐴} → 𝑥 = 𝐴) | |
6 | fmptap.2 | . . . . . 6 ⊢ (𝑥 = 𝐴 → 𝐶 = 𝐵) | |
7 | 5, 6 | syl 14 | . . . . 5 ⊢ (𝑥 ∈ {𝐴} → 𝐶 = 𝐵) |
8 | 7 | mpteq2ia 3932 | . . . 4 ⊢ (𝑥 ∈ {𝐴} ↦ 𝐶) = (𝑥 ∈ {𝐴} ↦ 𝐵) |
9 | 4, 8 | eqtr4i 2112 | . . 3 ⊢ {〈𝐴, 𝐵〉} = (𝑥 ∈ {𝐴} ↦ 𝐶) |
10 | 9 | uneq2i 3154 | . 2 ⊢ ((𝑥 ∈ 𝑅 ↦ 𝐶) ∪ {〈𝐴, 𝐵〉}) = ((𝑥 ∈ 𝑅 ↦ 𝐶) ∪ (𝑥 ∈ {𝐴} ↦ 𝐶)) |
11 | mptun 5159 | . 2 ⊢ (𝑥 ∈ (𝑅 ∪ {𝐴}) ↦ 𝐶) = ((𝑥 ∈ 𝑅 ↦ 𝐶) ∪ (𝑥 ∈ {𝐴} ↦ 𝐶)) | |
12 | fmptap.1 | . . 3 ⊢ (𝑅 ∪ {𝐴}) = 𝑆 | |
13 | mpteq1 3930 | . . 3 ⊢ ((𝑅 ∪ {𝐴}) = 𝑆 → (𝑥 ∈ (𝑅 ∪ {𝐴}) ↦ 𝐶) = (𝑥 ∈ 𝑆 ↦ 𝐶)) | |
14 | 12, 13 | ax-mp 7 | . 2 ⊢ (𝑥 ∈ (𝑅 ∪ {𝐴}) ↦ 𝐶) = (𝑥 ∈ 𝑆 ↦ 𝐶) |
15 | 10, 11, 14 | 3eqtr2i 2115 | 1 ⊢ ((𝑥 ∈ 𝑅 ↦ 𝐶) ∪ {〈𝐴, 𝐵〉}) = (𝑥 ∈ 𝑆 ↦ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1290 ∈ wcel 1439 Vcvv 2622 ∪ cun 3000 {csn 3452 〈cop 3455 ↦ cmpt 3907 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-sep 3965 ax-pow 4017 ax-pr 4047 |
This theorem depends on definitions: df-bi 116 df-3an 927 df-tru 1293 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ral 2365 df-rex 2366 df-reu 2367 df-v 2624 df-un 3006 df-in 3008 df-ss 3015 df-pw 3437 df-sn 3458 df-pr 3459 df-op 3461 df-br 3854 df-opab 3908 df-mpt 3909 df-id 4131 df-xp 4460 df-rel 4461 df-cnv 4462 df-co 4463 df-dm 4464 df-rn 4465 df-fun 5032 df-fn 5033 df-f 5034 df-f1 5035 df-fo 5036 df-f1o 5037 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |