Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  fmptap GIF version

Theorem fmptap 5614
 Description: Append an additional value to a function. (Contributed by NM, 6-Jun-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypotheses
Ref Expression
fmptap.0a 𝐴 ∈ V
fmptap.0b 𝐵 ∈ V
fmptap.1 (𝑅 ∪ {𝐴}) = 𝑆
fmptap.2 (𝑥 = 𝐴𝐶 = 𝐵)
Assertion
Ref Expression
fmptap ((𝑥𝑅𝐶) ∪ {⟨𝐴, 𝐵⟩}) = (𝑥𝑆𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅   𝑥,𝑆
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem fmptap
StepHypRef Expression
1 fmptap.0a . . . . 5 𝐴 ∈ V
2 fmptap.0b . . . . 5 𝐵 ∈ V
3 fmptsn 5613 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {⟨𝐴, 𝐵⟩} = (𝑥 ∈ {𝐴} ↦ 𝐵))
41, 2, 3mp2an 423 . . . 4 {⟨𝐴, 𝐵⟩} = (𝑥 ∈ {𝐴} ↦ 𝐵)
5 elsni 3546 . . . . . 6 (𝑥 ∈ {𝐴} → 𝑥 = 𝐴)
6 fmptap.2 . . . . . 6 (𝑥 = 𝐴𝐶 = 𝐵)
75, 6syl 14 . . . . 5 (𝑥 ∈ {𝐴} → 𝐶 = 𝐵)
87mpteq2ia 4018 . . . 4 (𝑥 ∈ {𝐴} ↦ 𝐶) = (𝑥 ∈ {𝐴} ↦ 𝐵)
94, 8eqtr4i 2164 . . 3 {⟨𝐴, 𝐵⟩} = (𝑥 ∈ {𝐴} ↦ 𝐶)
109uneq2i 3228 . 2 ((𝑥𝑅𝐶) ∪ {⟨𝐴, 𝐵⟩}) = ((𝑥𝑅𝐶) ∪ (𝑥 ∈ {𝐴} ↦ 𝐶))
11 mptun 5258 . 2 (𝑥 ∈ (𝑅 ∪ {𝐴}) ↦ 𝐶) = ((𝑥𝑅𝐶) ∪ (𝑥 ∈ {𝐴} ↦ 𝐶))
12 fmptap.1 . . 3 (𝑅 ∪ {𝐴}) = 𝑆
13 mpteq1 4016 . . 3 ((𝑅 ∪ {𝐴}) = 𝑆 → (𝑥 ∈ (𝑅 ∪ {𝐴}) ↦ 𝐶) = (𝑥𝑆𝐶))
1412, 13ax-mp 5 . 2 (𝑥 ∈ (𝑅 ∪ {𝐴}) ↦ 𝐶) = (𝑥𝑆𝐶)
1510, 11, 143eqtr2i 2167 1 ((𝑥𝑅𝐶) ∪ {⟨𝐴, 𝐵⟩}) = (𝑥𝑆𝐶)
 Colors of variables: wff set class Syntax hints:   → wi 4   = wceq 1332   ∈ wcel 1481  Vcvv 2687   ∪ cun 3070  {csn 3528  ⟨cop 3531   ↦ cmpt 3993 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4050  ax-pow 4102  ax-pr 4135 This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-reu 2424  df-v 2689  df-un 3076  df-in 3078  df-ss 3085  df-pw 3513  df-sn 3534  df-pr 3535  df-op 3537  df-br 3934  df-opab 3994  df-mpt 3995  df-id 4219  df-xp 4549  df-rel 4550  df-cnv 4551  df-co 4552  df-dm 4553  df-rn 4554  df-fun 5129  df-fn 5130  df-f 5131  df-f1 5132  df-fo 5133  df-f1o 5134 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator