ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fmptap GIF version

Theorem fmptap 5773
Description: Append an additional value to a function. (Contributed by NM, 6-Jun-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypotheses
Ref Expression
fmptap.0a 𝐴 ∈ V
fmptap.0b 𝐵 ∈ V
fmptap.1 (𝑅 ∪ {𝐴}) = 𝑆
fmptap.2 (𝑥 = 𝐴𝐶 = 𝐵)
Assertion
Ref Expression
fmptap ((𝑥𝑅𝐶) ∪ {⟨𝐴, 𝐵⟩}) = (𝑥𝑆𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅   𝑥,𝑆
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem fmptap
StepHypRef Expression
1 fmptap.0a . . . . 5 𝐴 ∈ V
2 fmptap.0b . . . . 5 𝐵 ∈ V
3 fmptsn 5772 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {⟨𝐴, 𝐵⟩} = (𝑥 ∈ {𝐴} ↦ 𝐵))
41, 2, 3mp2an 426 . . . 4 {⟨𝐴, 𝐵⟩} = (𝑥 ∈ {𝐴} ↦ 𝐵)
5 elsni 3650 . . . . . 6 (𝑥 ∈ {𝐴} → 𝑥 = 𝐴)
6 fmptap.2 . . . . . 6 (𝑥 = 𝐴𝐶 = 𝐵)
75, 6syl 14 . . . . 5 (𝑥 ∈ {𝐴} → 𝐶 = 𝐵)
87mpteq2ia 4129 . . . 4 (𝑥 ∈ {𝐴} ↦ 𝐶) = (𝑥 ∈ {𝐴} ↦ 𝐵)
94, 8eqtr4i 2228 . . 3 {⟨𝐴, 𝐵⟩} = (𝑥 ∈ {𝐴} ↦ 𝐶)
109uneq2i 3323 . 2 ((𝑥𝑅𝐶) ∪ {⟨𝐴, 𝐵⟩}) = ((𝑥𝑅𝐶) ∪ (𝑥 ∈ {𝐴} ↦ 𝐶))
11 mptun 5406 . 2 (𝑥 ∈ (𝑅 ∪ {𝐴}) ↦ 𝐶) = ((𝑥𝑅𝐶) ∪ (𝑥 ∈ {𝐴} ↦ 𝐶))
12 fmptap.1 . . 3 (𝑅 ∪ {𝐴}) = 𝑆
13 mpteq1 4127 . . 3 ((𝑅 ∪ {𝐴}) = 𝑆 → (𝑥 ∈ (𝑅 ∪ {𝐴}) ↦ 𝐶) = (𝑥𝑆𝐶))
1412, 13ax-mp 5 . 2 (𝑥 ∈ (𝑅 ∪ {𝐴}) ↦ 𝐶) = (𝑥𝑆𝐶)
1510, 11, 143eqtr2i 2231 1 ((𝑥𝑅𝐶) ∪ {⟨𝐴, 𝐵⟩}) = (𝑥𝑆𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1372  wcel 2175  Vcvv 2771  cun 3163  {csn 3632  cop 3635  cmpt 4104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-reu 2490  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator