| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqbrtri | GIF version | ||
| Description: Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqbrtr.1 | ⊢ 𝐴 = 𝐵 |
| eqbrtr.2 | ⊢ 𝐵𝑅𝐶 |
| Ref | Expression |
|---|---|
| eqbrtri | ⊢ 𝐴𝑅𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqbrtr.2 | . 2 ⊢ 𝐵𝑅𝐶 | |
| 2 | eqbrtr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 2 | breq1i 4089 | . 2 ⊢ (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶) |
| 4 | 1, 3 | mpbir 146 | 1 ⊢ 𝐴𝑅𝐶 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 class class class wbr 4082 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 |
| This theorem is referenced by: eqbrtrri 4105 3brtr4i 4112 exmidpw2en 7062 exmidonfinlem 7359 neg1lt0 9206 halflt1 9316 3halfnz 9532 declei 9601 numlti 9602 faclbnd3 10952 geo2lim 12013 0.999... 12018 geoihalfsum 12019 fprodap0 12118 fprodap0f 12133 tan0 12228 cos2bnd 12257 sin4lt0 12264 eirraplem 12274 1nprm 12622 znnen 12955 cnfldstr 14507 tan4thpi 15500 zabsle1 15663 ex-fl 16019 trilpolemisumle 16337 |
| Copyright terms: Public domain | W3C validator |