ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqbrtri GIF version

Theorem eqbrtri 4003
Description: Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
eqbrtr.1 𝐴 = 𝐵
eqbrtr.2 𝐵𝑅𝐶
Assertion
Ref Expression
eqbrtri 𝐴𝑅𝐶

Proof of Theorem eqbrtri
StepHypRef Expression
1 eqbrtr.2 . 2 𝐵𝑅𝐶
2 eqbrtr.1 . . 3 𝐴 = 𝐵
32breq1i 3989 . 2 (𝐴𝑅𝐶𝐵𝑅𝐶)
41, 3mpbir 145 1 𝐴𝑅𝐶
Colors of variables: wff set class
Syntax hints:   = wceq 1343   class class class wbr 3982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983
This theorem is referenced by:  eqbrtrri  4005  3brtr4i  4012  exmidonfinlem  7149  neg1lt0  8965  halflt1  9074  3halfnz  9288  declei  9357  numlti  9358  faclbnd3  10656  geo2lim  11457  0.999...  11462  geoihalfsum  11463  fprodap0  11562  fprodap0f  11577  tan0  11672  cos2bnd  11701  sin4lt0  11707  eirraplem  11717  1nprm  12046  znnen  12331  tan4thpi  13402  zabsle1  13540  ex-fl  13606  trilpolemisumle  13917
  Copyright terms: Public domain W3C validator