Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqbrtri | GIF version |
Description: Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqbrtr.1 | ⊢ 𝐴 = 𝐵 |
eqbrtr.2 | ⊢ 𝐵𝑅𝐶 |
Ref | Expression |
---|---|
eqbrtri | ⊢ 𝐴𝑅𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqbrtr.2 | . 2 ⊢ 𝐵𝑅𝐶 | |
2 | eqbrtr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
3 | 2 | breq1i 3989 | . 2 ⊢ (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶) |
4 | 1, 3 | mpbir 145 | 1 ⊢ 𝐴𝑅𝐶 |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 class class class wbr 3982 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 |
This theorem is referenced by: eqbrtrri 4005 3brtr4i 4012 exmidonfinlem 7149 neg1lt0 8965 halflt1 9074 3halfnz 9288 declei 9357 numlti 9358 faclbnd3 10656 geo2lim 11457 0.999... 11462 geoihalfsum 11463 fprodap0 11562 fprodap0f 11577 tan0 11672 cos2bnd 11701 sin4lt0 11707 eirraplem 11717 1nprm 12046 znnen 12331 tan4thpi 13402 zabsle1 13540 ex-fl 13606 trilpolemisumle 13917 |
Copyright terms: Public domain | W3C validator |