ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqbrtri GIF version

Theorem eqbrtri 4010
Description: Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
eqbrtr.1 𝐴 = 𝐵
eqbrtr.2 𝐵𝑅𝐶
Assertion
Ref Expression
eqbrtri 𝐴𝑅𝐶

Proof of Theorem eqbrtri
StepHypRef Expression
1 eqbrtr.2 . 2 𝐵𝑅𝐶
2 eqbrtr.1 . . 3 𝐴 = 𝐵
32breq1i 3996 . 2 (𝐴𝑅𝐶𝐵𝑅𝐶)
41, 3mpbir 145 1 𝐴𝑅𝐶
Colors of variables: wff set class
Syntax hints:   = wceq 1348   class class class wbr 3989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990
This theorem is referenced by:  eqbrtrri  4012  3brtr4i  4019  exmidonfinlem  7170  neg1lt0  8986  halflt1  9095  3halfnz  9309  declei  9378  numlti  9379  faclbnd3  10677  geo2lim  11479  0.999...  11484  geoihalfsum  11485  fprodap0  11584  fprodap0f  11599  tan0  11694  cos2bnd  11723  sin4lt0  11729  eirraplem  11739  1nprm  12068  znnen  12353  tan4thpi  13556  zabsle1  13694  ex-fl  13760  trilpolemisumle  14070
  Copyright terms: Public domain W3C validator