ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqbrtri GIF version

Theorem eqbrtri 4050
Description: Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
eqbrtr.1 𝐴 = 𝐵
eqbrtr.2 𝐵𝑅𝐶
Assertion
Ref Expression
eqbrtri 𝐴𝑅𝐶

Proof of Theorem eqbrtri
StepHypRef Expression
1 eqbrtr.2 . 2 𝐵𝑅𝐶
2 eqbrtr.1 . . 3 𝐴 = 𝐵
32breq1i 4036 . 2 (𝐴𝑅𝐶𝐵𝑅𝐶)
41, 3mpbir 146 1 𝐴𝑅𝐶
Colors of variables: wff set class
Syntax hints:   = wceq 1364   class class class wbr 4029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030
This theorem is referenced by:  eqbrtrri  4052  3brtr4i  4059  exmidpw2en  6968  exmidonfinlem  7253  neg1lt0  9090  halflt1  9199  3halfnz  9414  declei  9483  numlti  9484  faclbnd3  10814  geo2lim  11659  0.999...  11664  geoihalfsum  11665  fprodap0  11764  fprodap0f  11779  tan0  11874  cos2bnd  11903  sin4lt0  11910  eirraplem  11920  1nprm  12252  znnen  12555  tan4thpi  14976  zabsle1  15115  ex-fl  15217  trilpolemisumle  15528
  Copyright terms: Public domain W3C validator