ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqbrtri GIF version

Theorem eqbrtri 4051
Description: Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
eqbrtr.1 𝐴 = 𝐵
eqbrtr.2 𝐵𝑅𝐶
Assertion
Ref Expression
eqbrtri 𝐴𝑅𝐶

Proof of Theorem eqbrtri
StepHypRef Expression
1 eqbrtr.2 . 2 𝐵𝑅𝐶
2 eqbrtr.1 . . 3 𝐴 = 𝐵
32breq1i 4037 . 2 (𝐴𝑅𝐶𝐵𝑅𝐶)
41, 3mpbir 146 1 𝐴𝑅𝐶
Colors of variables: wff set class
Syntax hints:   = wceq 1364   class class class wbr 4030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3158  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031
This theorem is referenced by:  eqbrtrri  4053  3brtr4i  4060  exmidpw2en  6970  exmidonfinlem  7255  neg1lt0  9092  halflt1  9202  3halfnz  9417  declei  9486  numlti  9487  faclbnd3  10817  geo2lim  11662  0.999...  11667  geoihalfsum  11668  fprodap0  11767  fprodap0f  11782  tan0  11877  cos2bnd  11906  sin4lt0  11913  eirraplem  11923  1nprm  12255  znnen  12558  cnfldstr  14057  tan4thpi  15017  zabsle1  15156  ex-fl  15287  trilpolemisumle  15598
  Copyright terms: Public domain W3C validator