Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elpri | GIF version |
Description: If a class is an element of a pair, then it is one of the two paired elements. (Contributed by Scott Fenton, 1-Apr-2011.) |
Ref | Expression |
---|---|
elpri | ⊢ (𝐴 ∈ {𝐵, 𝐶} → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elprg 3596 | . 2 ⊢ (𝐴 ∈ {𝐵, 𝐶} → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) | |
2 | 1 | ibi 175 | 1 ⊢ (𝐴 ∈ {𝐵, 𝐶} → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 698 = wceq 1343 ∈ wcel 2136 {cpr 3577 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 |
This theorem is referenced by: nelpri 3600 nelprd 3602 opth1 4214 0nelop 4226 ontr2exmid 4502 onintexmid 4550 reg3exmidlemwe 4556 funtpg 5239 ftpg 5669 acexmidlemcase 5837 2oconcl 6407 el2oss1o 6411 en2eqpr 6873 eldju1st 7036 nninfisol 7097 finomni 7104 exmidomniim 7105 ismkvnex 7119 exmidonfinlem 7149 exmidfodomrlemr 7158 exmidfodomrlemrALT 7159 exmidaclem 7164 sup3exmid 8852 m1expcl2 10477 maxleim 11147 maxleast 11155 zmaxcl 11166 minmax 11171 xrmaxleim 11185 xrmaxaddlem 11201 xrminmax 11206 prm23lt5 12195 unct 12375 qtopbas 13162 limcimolemlt 13273 recnprss 13296 coseq0negpitopi 13397 lgslem4 13544 012of 13875 2o01f 13876 nninfalllem1 13888 nninfall 13889 nninfsellemqall 13895 nninfomnilem 13898 trilpolemclim 13915 trilpolemcl 13916 trilpolemisumle 13917 trilpolemeq1 13919 trilpolemlt1 13920 iswomni0 13930 nconstwlpolemgt0 13942 nconstwlpolem 13943 |
Copyright terms: Public domain | W3C validator |