Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elpri | GIF version |
Description: If a class is an element of a pair, then it is one of the two paired elements. (Contributed by Scott Fenton, 1-Apr-2011.) |
Ref | Expression |
---|---|
elpri | ⊢ (𝐴 ∈ {𝐵, 𝐶} → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elprg 3603 | . 2 ⊢ (𝐴 ∈ {𝐵, 𝐶} → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) | |
2 | 1 | ibi 175 | 1 ⊢ (𝐴 ∈ {𝐵, 𝐶} → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 703 = wceq 1348 ∈ wcel 2141 {cpr 3584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-sn 3589 df-pr 3590 |
This theorem is referenced by: nelpri 3607 nelprd 3609 opth1 4221 0nelop 4233 ontr2exmid 4509 onintexmid 4557 reg3exmidlemwe 4563 funtpg 5249 ftpg 5680 acexmidlemcase 5848 2oconcl 6418 el2oss1o 6422 en2eqpr 6885 eldju1st 7048 nninfisol 7109 finomni 7116 exmidomniim 7117 ismkvnex 7131 nninfwlpoimlemginf 7152 exmidonfinlem 7170 exmidfodomrlemr 7179 exmidfodomrlemrALT 7180 exmidaclem 7185 sup3exmid 8873 m1expcl2 10498 maxleim 11169 maxleast 11177 zmaxcl 11188 minmax 11193 xrmaxleim 11207 xrmaxaddlem 11223 xrminmax 11228 prm23lt5 12217 unct 12397 qtopbas 13316 limcimolemlt 13427 recnprss 13450 coseq0negpitopi 13551 lgslem4 13698 012of 14028 2o01f 14029 nninfalllem1 14041 nninfall 14042 nninfsellemqall 14048 nninfomnilem 14051 trilpolemclim 14068 trilpolemcl 14069 trilpolemisumle 14070 trilpolemeq1 14072 trilpolemlt1 14073 iswomni0 14083 nconstwlpolemgt0 14095 nconstwlpolem 14096 |
Copyright terms: Public domain | W3C validator |