Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elpri | GIF version |
Description: If a class is an element of a pair, then it is one of the two paired elements. (Contributed by Scott Fenton, 1-Apr-2011.) |
Ref | Expression |
---|---|
elpri | ⊢ (𝐴 ∈ {𝐵, 𝐶} → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elprg 3609 | . 2 ⊢ (𝐴 ∈ {𝐵, 𝐶} → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) | |
2 | 1 | ibi 176 | 1 ⊢ (𝐴 ∈ {𝐵, 𝐶} → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 708 = wceq 1353 ∈ wcel 2146 {cpr 3590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-un 3131 df-sn 3595 df-pr 3596 |
This theorem is referenced by: nelpri 3613 nelprd 3615 opth1 4230 0nelop 4242 ontr2exmid 4518 onintexmid 4566 reg3exmidlemwe 4572 funtpg 5259 ftpg 5692 acexmidlemcase 5860 2oconcl 6430 el2oss1o 6434 en2eqpr 6897 eldju1st 7060 nninfisol 7121 finomni 7128 exmidomniim 7129 ismkvnex 7143 nninfwlpoimlemginf 7164 exmidonfinlem 7182 exmidfodomrlemr 7191 exmidfodomrlemrALT 7192 exmidaclem 7197 sup3exmid 8887 m1expcl2 10512 maxleim 11182 maxleast 11190 zmaxcl 11201 minmax 11206 xrmaxleim 11220 xrmaxaddlem 11236 xrminmax 11241 prm23lt5 12230 unct 12410 qtopbas 13593 limcimolemlt 13704 recnprss 13727 coseq0negpitopi 13828 lgslem4 13975 012of 14305 2o01f 14306 nninfalllem1 14318 nninfall 14319 nninfsellemqall 14325 nninfomnilem 14328 trilpolemclim 14345 trilpolemcl 14346 trilpolemisumle 14347 trilpolemeq1 14349 trilpolemlt1 14350 iswomni0 14360 nconstwlpolemgt0 14372 nconstwlpolem 14373 |
Copyright terms: Public domain | W3C validator |