![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elpri | GIF version |
Description: If a class is an element of a pair, then it is one of the two paired elements. (Contributed by Scott Fenton, 1-Apr-2011.) |
Ref | Expression |
---|---|
elpri | ⊢ (𝐴 ∈ {𝐵, 𝐶} → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elprg 3613 | . 2 ⊢ (𝐴 ∈ {𝐵, 𝐶} → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) | |
2 | 1 | ibi 176 | 1 ⊢ (𝐴 ∈ {𝐵, 𝐶} → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 708 = wceq 1353 ∈ wcel 2148 {cpr 3594 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2740 df-un 3134 df-sn 3599 df-pr 3600 |
This theorem is referenced by: nelpri 3617 nelprd 3619 opth1 4237 0nelop 4249 ontr2exmid 4525 onintexmid 4573 reg3exmidlemwe 4579 funtpg 5268 ftpg 5701 acexmidlemcase 5870 2oconcl 6440 el2oss1o 6444 en2eqpr 6907 eldju1st 7070 nninfisol 7131 finomni 7138 exmidomniim 7139 ismkvnex 7153 nninfwlpoimlemginf 7174 exmidonfinlem 7192 exmidfodomrlemr 7201 exmidfodomrlemrALT 7202 exmidaclem 7207 sup3exmid 8914 m1expcl2 10542 maxleim 11214 maxleast 11222 zmaxcl 11233 minmax 11238 xrmaxleim 11252 xrmaxaddlem 11268 xrminmax 11273 prm23lt5 12263 unct 12443 fnpr2ob 12759 fvprif 12762 xpsfeq 12764 qtopbas 14025 limcimolemlt 14136 recnprss 14159 coseq0negpitopi 14260 lgslem4 14407 lgseisenlem2 14454 2lgsoddprmlem3 14462 012of 14748 2o01f 14749 nninfalllem1 14760 nninfall 14761 nninfsellemqall 14767 nninfomnilem 14770 trilpolemclim 14787 trilpolemcl 14788 trilpolemisumle 14789 trilpolemeq1 14791 trilpolemlt1 14792 iswomni0 14802 nconstwlpolemgt0 14814 nconstwlpolem 14815 |
Copyright terms: Public domain | W3C validator |