Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pw1nel3 | GIF version |
Description: Negated excluded middle implies that the power set of 1o is not an element of 3o. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.) |
Ref | Expression |
---|---|
pw1nel3 | ⊢ (¬ EXMID → ¬ 𝒫 1o ∈ 3o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pw1ne0 7146 | . . . . 5 ⊢ 𝒫 1o ≠ ∅ | |
2 | pw1ne1 7147 | . . . . 5 ⊢ 𝒫 1o ≠ 1o | |
3 | 1, 2 | nelpri 3584 | . . . 4 ⊢ ¬ 𝒫 1o ∈ {∅, 1o} |
4 | 3 | a1i 9 | . . 3 ⊢ (¬ EXMID → ¬ 𝒫 1o ∈ {∅, 1o}) |
5 | df2o3 6371 | . . . 4 ⊢ 2o = {∅, 1o} | |
6 | 5 | eleq2i 2224 | . . 3 ⊢ (𝒫 1o ∈ 2o ↔ 𝒫 1o ∈ {∅, 1o}) |
7 | 4, 6 | sylnibr 667 | . 2 ⊢ (¬ EXMID → ¬ 𝒫 1o ∈ 2o) |
8 | exmidpweq 6847 | . . . 4 ⊢ (EXMID ↔ 𝒫 1o = 2o) | |
9 | 8 | notbii 658 | . . 3 ⊢ (¬ EXMID ↔ ¬ 𝒫 1o = 2o) |
10 | 1oex 6365 | . . . . . 6 ⊢ 1o ∈ V | |
11 | 10 | pwex 4143 | . . . . 5 ⊢ 𝒫 1o ∈ V |
12 | 11 | elsn 3576 | . . . 4 ⊢ (𝒫 1o ∈ {2o} ↔ 𝒫 1o = 2o) |
13 | 12 | notbii 658 | . . 3 ⊢ (¬ 𝒫 1o ∈ {2o} ↔ ¬ 𝒫 1o = 2o) |
14 | 9, 13 | sylbb2 137 | . 2 ⊢ (¬ EXMID → ¬ 𝒫 1o ∈ {2o}) |
15 | df-3o 6359 | . . . . . . 7 ⊢ 3o = suc 2o | |
16 | df-suc 4330 | . . . . . . 7 ⊢ suc 2o = (2o ∪ {2o}) | |
17 | 15, 16 | eqtri 2178 | . . . . . 6 ⊢ 3o = (2o ∪ {2o}) |
18 | 17 | eleq2i 2224 | . . . . 5 ⊢ (𝒫 1o ∈ 3o ↔ 𝒫 1o ∈ (2o ∪ {2o})) |
19 | elun 3248 | . . . . 5 ⊢ (𝒫 1o ∈ (2o ∪ {2o}) ↔ (𝒫 1o ∈ 2o ∨ 𝒫 1o ∈ {2o})) | |
20 | 18, 19 | bitri 183 | . . . 4 ⊢ (𝒫 1o ∈ 3o ↔ (𝒫 1o ∈ 2o ∨ 𝒫 1o ∈ {2o})) |
21 | 20 | notbii 658 | . . 3 ⊢ (¬ 𝒫 1o ∈ 3o ↔ ¬ (𝒫 1o ∈ 2o ∨ 𝒫 1o ∈ {2o})) |
22 | ioran 742 | . . 3 ⊢ (¬ (𝒫 1o ∈ 2o ∨ 𝒫 1o ∈ {2o}) ↔ (¬ 𝒫 1o ∈ 2o ∧ ¬ 𝒫 1o ∈ {2o})) | |
23 | 21, 22 | bitri 183 | . 2 ⊢ (¬ 𝒫 1o ∈ 3o ↔ (¬ 𝒫 1o ∈ 2o ∧ ¬ 𝒫 1o ∈ {2o})) |
24 | 7, 14, 23 | sylanbrc 414 | 1 ⊢ (¬ EXMID → ¬ 𝒫 1o ∈ 3o) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∨ wo 698 = wceq 1335 ∈ wcel 2128 ∪ cun 3100 ∅c0 3394 𝒫 cpw 3543 {csn 3560 {cpr 3561 EXMIDwem 4154 suc csuc 4324 1oc1o 6350 2oc2o 6351 3oc3o 6352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-nul 4090 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-v 2714 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-uni 3773 df-tr 4063 df-exmid 4155 df-iord 4325 df-on 4327 df-suc 4330 df-1o 6357 df-2o 6358 df-3o 6359 |
This theorem is referenced by: sucpw1ne3 7150 sucpw1nss3 7153 |
Copyright terms: Public domain | W3C validator |