| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pw1nel3 | GIF version | ||
| Description: Negated excluded middle implies that the power set of 1o is not an element of 3o. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.) |
| Ref | Expression |
|---|---|
| pw1nel3 | ⊢ (¬ EXMID → ¬ 𝒫 1o ∈ 3o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pw1ne0 7322 | . . . . 5 ⊢ 𝒫 1o ≠ ∅ | |
| 2 | pw1ne1 7323 | . . . . 5 ⊢ 𝒫 1o ≠ 1o | |
| 3 | 1, 2 | nelpri 3656 | . . . 4 ⊢ ¬ 𝒫 1o ∈ {∅, 1o} |
| 4 | 3 | a1i 9 | . . 3 ⊢ (¬ EXMID → ¬ 𝒫 1o ∈ {∅, 1o}) |
| 5 | df2o3 6506 | . . . 4 ⊢ 2o = {∅, 1o} | |
| 6 | 5 | eleq2i 2271 | . . 3 ⊢ (𝒫 1o ∈ 2o ↔ 𝒫 1o ∈ {∅, 1o}) |
| 7 | 4, 6 | sylnibr 678 | . 2 ⊢ (¬ EXMID → ¬ 𝒫 1o ∈ 2o) |
| 8 | exmidpweq 6988 | . . . 4 ⊢ (EXMID ↔ 𝒫 1o = 2o) | |
| 9 | 8 | notbii 669 | . . 3 ⊢ (¬ EXMID ↔ ¬ 𝒫 1o = 2o) |
| 10 | 1oex 6500 | . . . . . 6 ⊢ 1o ∈ V | |
| 11 | 10 | pwex 4226 | . . . . 5 ⊢ 𝒫 1o ∈ V |
| 12 | 11 | elsn 3648 | . . . 4 ⊢ (𝒫 1o ∈ {2o} ↔ 𝒫 1o = 2o) |
| 13 | 12 | notbii 669 | . . 3 ⊢ (¬ 𝒫 1o ∈ {2o} ↔ ¬ 𝒫 1o = 2o) |
| 14 | 9, 13 | sylbb2 138 | . 2 ⊢ (¬ EXMID → ¬ 𝒫 1o ∈ {2o}) |
| 15 | df-3o 6494 | . . . . . . 7 ⊢ 3o = suc 2o | |
| 16 | df-suc 4416 | . . . . . . 7 ⊢ suc 2o = (2o ∪ {2o}) | |
| 17 | 15, 16 | eqtri 2225 | . . . . . 6 ⊢ 3o = (2o ∪ {2o}) |
| 18 | 17 | eleq2i 2271 | . . . . 5 ⊢ (𝒫 1o ∈ 3o ↔ 𝒫 1o ∈ (2o ∪ {2o})) |
| 19 | elun 3313 | . . . . 5 ⊢ (𝒫 1o ∈ (2o ∪ {2o}) ↔ (𝒫 1o ∈ 2o ∨ 𝒫 1o ∈ {2o})) | |
| 20 | 18, 19 | bitri 184 | . . . 4 ⊢ (𝒫 1o ∈ 3o ↔ (𝒫 1o ∈ 2o ∨ 𝒫 1o ∈ {2o})) |
| 21 | 20 | notbii 669 | . . 3 ⊢ (¬ 𝒫 1o ∈ 3o ↔ ¬ (𝒫 1o ∈ 2o ∨ 𝒫 1o ∈ {2o})) |
| 22 | ioran 753 | . . 3 ⊢ (¬ (𝒫 1o ∈ 2o ∨ 𝒫 1o ∈ {2o}) ↔ (¬ 𝒫 1o ∈ 2o ∧ ¬ 𝒫 1o ∈ {2o})) | |
| 23 | 21, 22 | bitri 184 | . 2 ⊢ (¬ 𝒫 1o ∈ 3o ↔ (¬ 𝒫 1o ∈ 2o ∧ ¬ 𝒫 1o ∈ {2o})) |
| 24 | 7, 14, 23 | sylanbrc 417 | 1 ⊢ (¬ EXMID → ¬ 𝒫 1o ∈ 3o) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 709 = wceq 1372 ∈ wcel 2175 ∪ cun 3163 ∅c0 3459 𝒫 cpw 3615 {csn 3632 {cpr 3633 EXMIDwem 4237 suc csuc 4410 1oc1o 6485 2oc2o 6486 3oc3o 6487 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-uni 3850 df-tr 4142 df-exmid 4238 df-iord 4411 df-on 4413 df-suc 4416 df-1o 6492 df-2o 6493 df-3o 6494 |
| This theorem is referenced by: sucpw1ne3 7326 sucpw1nss3 7329 |
| Copyright terms: Public domain | W3C validator |