ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw1nel3 GIF version

Theorem pw1nel3 7291
Description: Negated excluded middle implies that the power set of 1o is not an element of 3o. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.)
Assertion
Ref Expression
pw1nel3 EXMID → ¬ 𝒫 1o ∈ 3o)

Proof of Theorem pw1nel3
StepHypRef Expression
1 pw1ne0 7288 . . . . 5 𝒫 1o ≠ ∅
2 pw1ne1 7289 . . . . 5 𝒫 1o ≠ 1o
31, 2nelpri 3642 . . . 4 ¬ 𝒫 1o ∈ {∅, 1o}
43a1i 9 . . 3 EXMID → ¬ 𝒫 1o ∈ {∅, 1o})
5 df2o3 6483 . . . 4 2o = {∅, 1o}
65eleq2i 2260 . . 3 (𝒫 1o ∈ 2o ↔ 𝒫 1o ∈ {∅, 1o})
74, 6sylnibr 678 . 2 EXMID → ¬ 𝒫 1o ∈ 2o)
8 exmidpweq 6965 . . . 4 (EXMID ↔ 𝒫 1o = 2o)
98notbii 669 . . 3 EXMID ↔ ¬ 𝒫 1o = 2o)
10 1oex 6477 . . . . . 6 1o ∈ V
1110pwex 4212 . . . . 5 𝒫 1o ∈ V
1211elsn 3634 . . . 4 (𝒫 1o ∈ {2o} ↔ 𝒫 1o = 2o)
1312notbii 669 . . 3 (¬ 𝒫 1o ∈ {2o} ↔ ¬ 𝒫 1o = 2o)
149, 13sylbb2 138 . 2 EXMID → ¬ 𝒫 1o ∈ {2o})
15 df-3o 6471 . . . . . . 7 3o = suc 2o
16 df-suc 4402 . . . . . . 7 suc 2o = (2o ∪ {2o})
1715, 16eqtri 2214 . . . . . 6 3o = (2o ∪ {2o})
1817eleq2i 2260 . . . . 5 (𝒫 1o ∈ 3o ↔ 𝒫 1o ∈ (2o ∪ {2o}))
19 elun 3300 . . . . 5 (𝒫 1o ∈ (2o ∪ {2o}) ↔ (𝒫 1o ∈ 2o ∨ 𝒫 1o ∈ {2o}))
2018, 19bitri 184 . . . 4 (𝒫 1o ∈ 3o ↔ (𝒫 1o ∈ 2o ∨ 𝒫 1o ∈ {2o}))
2120notbii 669 . . 3 (¬ 𝒫 1o ∈ 3o ↔ ¬ (𝒫 1o ∈ 2o ∨ 𝒫 1o ∈ {2o}))
22 ioran 753 . . 3 (¬ (𝒫 1o ∈ 2o ∨ 𝒫 1o ∈ {2o}) ↔ (¬ 𝒫 1o ∈ 2o ∧ ¬ 𝒫 1o ∈ {2o}))
2321, 22bitri 184 . 2 (¬ 𝒫 1o ∈ 3o ↔ (¬ 𝒫 1o ∈ 2o ∧ ¬ 𝒫 1o ∈ {2o}))
247, 14, 23sylanbrc 417 1 EXMID → ¬ 𝒫 1o ∈ 3o)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709   = wceq 1364  wcel 2164  cun 3151  c0 3446  𝒫 cpw 3601  {csn 3618  {cpr 3619  EXMIDwem 4223  suc csuc 4396  1oc1o 6462  2oc2o 6463  3oc3o 6464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-uni 3836  df-tr 4128  df-exmid 4224  df-iord 4397  df-on 4399  df-suc 4402  df-1o 6469  df-2o 6470  df-3o 6471
This theorem is referenced by:  sucpw1ne3  7292  sucpw1nss3  7295
  Copyright terms: Public domain W3C validator