ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw1nel3 GIF version

Theorem pw1nel3 7187
Description: Negated excluded middle implies that the power set of 1o is not an element of 3o. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.)
Assertion
Ref Expression
pw1nel3 EXMID → ¬ 𝒫 1o ∈ 3o)

Proof of Theorem pw1nel3
StepHypRef Expression
1 pw1ne0 7184 . . . . 5 𝒫 1o ≠ ∅
2 pw1ne1 7185 . . . . 5 𝒫 1o ≠ 1o
31, 2nelpri 3600 . . . 4 ¬ 𝒫 1o ∈ {∅, 1o}
43a1i 9 . . 3 EXMID → ¬ 𝒫 1o ∈ {∅, 1o})
5 df2o3 6398 . . . 4 2o = {∅, 1o}
65eleq2i 2233 . . 3 (𝒫 1o ∈ 2o ↔ 𝒫 1o ∈ {∅, 1o})
74, 6sylnibr 667 . 2 EXMID → ¬ 𝒫 1o ∈ 2o)
8 exmidpweq 6875 . . . 4 (EXMID ↔ 𝒫 1o = 2o)
98notbii 658 . . 3 EXMID ↔ ¬ 𝒫 1o = 2o)
10 1oex 6392 . . . . . 6 1o ∈ V
1110pwex 4162 . . . . 5 𝒫 1o ∈ V
1211elsn 3592 . . . 4 (𝒫 1o ∈ {2o} ↔ 𝒫 1o = 2o)
1312notbii 658 . . 3 (¬ 𝒫 1o ∈ {2o} ↔ ¬ 𝒫 1o = 2o)
149, 13sylbb2 137 . 2 EXMID → ¬ 𝒫 1o ∈ {2o})
15 df-3o 6386 . . . . . . 7 3o = suc 2o
16 df-suc 4349 . . . . . . 7 suc 2o = (2o ∪ {2o})
1715, 16eqtri 2186 . . . . . 6 3o = (2o ∪ {2o})
1817eleq2i 2233 . . . . 5 (𝒫 1o ∈ 3o ↔ 𝒫 1o ∈ (2o ∪ {2o}))
19 elun 3263 . . . . 5 (𝒫 1o ∈ (2o ∪ {2o}) ↔ (𝒫 1o ∈ 2o ∨ 𝒫 1o ∈ {2o}))
2018, 19bitri 183 . . . 4 (𝒫 1o ∈ 3o ↔ (𝒫 1o ∈ 2o ∨ 𝒫 1o ∈ {2o}))
2120notbii 658 . . 3 (¬ 𝒫 1o ∈ 3o ↔ ¬ (𝒫 1o ∈ 2o ∨ 𝒫 1o ∈ {2o}))
22 ioran 742 . . 3 (¬ (𝒫 1o ∈ 2o ∨ 𝒫 1o ∈ {2o}) ↔ (¬ 𝒫 1o ∈ 2o ∧ ¬ 𝒫 1o ∈ {2o}))
2321, 22bitri 183 . 2 (¬ 𝒫 1o ∈ 3o ↔ (¬ 𝒫 1o ∈ 2o ∧ ¬ 𝒫 1o ∈ {2o}))
247, 14, 23sylanbrc 414 1 EXMID → ¬ 𝒫 1o ∈ 3o)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 698   = wceq 1343  wcel 2136  cun 3114  c0 3409  𝒫 cpw 3559  {csn 3576  {cpr 3577  EXMIDwem 4173  suc csuc 4343  1oc1o 6377  2oc2o 6378  3oc3o 6379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-uni 3790  df-tr 4081  df-exmid 4174  df-iord 4344  df-on 4346  df-suc 4349  df-1o 6384  df-2o 6385  df-3o 6386
This theorem is referenced by:  sucpw1ne3  7188  sucpw1nss3  7191
  Copyright terms: Public domain W3C validator