![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pw1nel3 | GIF version |
Description: Negated excluded middle implies that the power set of 1o is not an element of 3o. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.) |
Ref | Expression |
---|---|
pw1nel3 | ⊢ (¬ EXMID → ¬ 𝒫 1o ∈ 3o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pw1ne0 7226 | . . . . 5 ⊢ 𝒫 1o ≠ ∅ | |
2 | pw1ne1 7227 | . . . . 5 ⊢ 𝒫 1o ≠ 1o | |
3 | 1, 2 | nelpri 3616 | . . . 4 ⊢ ¬ 𝒫 1o ∈ {∅, 1o} |
4 | 3 | a1i 9 | . . 3 ⊢ (¬ EXMID → ¬ 𝒫 1o ∈ {∅, 1o}) |
5 | df2o3 6430 | . . . 4 ⊢ 2o = {∅, 1o} | |
6 | 5 | eleq2i 2244 | . . 3 ⊢ (𝒫 1o ∈ 2o ↔ 𝒫 1o ∈ {∅, 1o}) |
7 | 4, 6 | sylnibr 677 | . 2 ⊢ (¬ EXMID → ¬ 𝒫 1o ∈ 2o) |
8 | exmidpweq 6908 | . . . 4 ⊢ (EXMID ↔ 𝒫 1o = 2o) | |
9 | 8 | notbii 668 | . . 3 ⊢ (¬ EXMID ↔ ¬ 𝒫 1o = 2o) |
10 | 1oex 6424 | . . . . . 6 ⊢ 1o ∈ V | |
11 | 10 | pwex 4183 | . . . . 5 ⊢ 𝒫 1o ∈ V |
12 | 11 | elsn 3608 | . . . 4 ⊢ (𝒫 1o ∈ {2o} ↔ 𝒫 1o = 2o) |
13 | 12 | notbii 668 | . . 3 ⊢ (¬ 𝒫 1o ∈ {2o} ↔ ¬ 𝒫 1o = 2o) |
14 | 9, 13 | sylbb2 138 | . 2 ⊢ (¬ EXMID → ¬ 𝒫 1o ∈ {2o}) |
15 | df-3o 6418 | . . . . . . 7 ⊢ 3o = suc 2o | |
16 | df-suc 4371 | . . . . . . 7 ⊢ suc 2o = (2o ∪ {2o}) | |
17 | 15, 16 | eqtri 2198 | . . . . . 6 ⊢ 3o = (2o ∪ {2o}) |
18 | 17 | eleq2i 2244 | . . . . 5 ⊢ (𝒫 1o ∈ 3o ↔ 𝒫 1o ∈ (2o ∪ {2o})) |
19 | elun 3276 | . . . . 5 ⊢ (𝒫 1o ∈ (2o ∪ {2o}) ↔ (𝒫 1o ∈ 2o ∨ 𝒫 1o ∈ {2o})) | |
20 | 18, 19 | bitri 184 | . . . 4 ⊢ (𝒫 1o ∈ 3o ↔ (𝒫 1o ∈ 2o ∨ 𝒫 1o ∈ {2o})) |
21 | 20 | notbii 668 | . . 3 ⊢ (¬ 𝒫 1o ∈ 3o ↔ ¬ (𝒫 1o ∈ 2o ∨ 𝒫 1o ∈ {2o})) |
22 | ioran 752 | . . 3 ⊢ (¬ (𝒫 1o ∈ 2o ∨ 𝒫 1o ∈ {2o}) ↔ (¬ 𝒫 1o ∈ 2o ∧ ¬ 𝒫 1o ∈ {2o})) | |
23 | 21, 22 | bitri 184 | . 2 ⊢ (¬ 𝒫 1o ∈ 3o ↔ (¬ 𝒫 1o ∈ 2o ∧ ¬ 𝒫 1o ∈ {2o})) |
24 | 7, 14, 23 | sylanbrc 417 | 1 ⊢ (¬ EXMID → ¬ 𝒫 1o ∈ 3o) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 708 = wceq 1353 ∈ wcel 2148 ∪ cun 3127 ∅c0 3422 𝒫 cpw 3575 {csn 3592 {cpr 3593 EXMIDwem 4194 suc csuc 4365 1oc1o 6409 2oc2o 6410 3oc3o 6411 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4121 ax-nul 4129 ax-pow 4174 ax-pr 4209 ax-un 4433 ax-setind 4536 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-v 2739 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-nul 3423 df-pw 3577 df-sn 3598 df-pr 3599 df-uni 3810 df-tr 4102 df-exmid 4195 df-iord 4366 df-on 4368 df-suc 4371 df-1o 6416 df-2o 6417 df-3o 6418 |
This theorem is referenced by: sucpw1ne3 7230 sucpw1nss3 7233 |
Copyright terms: Public domain | W3C validator |