| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > pw1nel3 | GIF version | ||
| Description: Negated excluded middle implies that the power set of 1o is not an element of 3o. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.) | 
| Ref | Expression | 
|---|---|
| pw1nel3 | ⊢ (¬ EXMID → ¬ 𝒫 1o ∈ 3o) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pw1ne0 7295 | . . . . 5 ⊢ 𝒫 1o ≠ ∅ | |
| 2 | pw1ne1 7296 | . . . . 5 ⊢ 𝒫 1o ≠ 1o | |
| 3 | 1, 2 | nelpri 3646 | . . . 4 ⊢ ¬ 𝒫 1o ∈ {∅, 1o} | 
| 4 | 3 | a1i 9 | . . 3 ⊢ (¬ EXMID → ¬ 𝒫 1o ∈ {∅, 1o}) | 
| 5 | df2o3 6488 | . . . 4 ⊢ 2o = {∅, 1o} | |
| 6 | 5 | eleq2i 2263 | . . 3 ⊢ (𝒫 1o ∈ 2o ↔ 𝒫 1o ∈ {∅, 1o}) | 
| 7 | 4, 6 | sylnibr 678 | . 2 ⊢ (¬ EXMID → ¬ 𝒫 1o ∈ 2o) | 
| 8 | exmidpweq 6970 | . . . 4 ⊢ (EXMID ↔ 𝒫 1o = 2o) | |
| 9 | 8 | notbii 669 | . . 3 ⊢ (¬ EXMID ↔ ¬ 𝒫 1o = 2o) | 
| 10 | 1oex 6482 | . . . . . 6 ⊢ 1o ∈ V | |
| 11 | 10 | pwex 4216 | . . . . 5 ⊢ 𝒫 1o ∈ V | 
| 12 | 11 | elsn 3638 | . . . 4 ⊢ (𝒫 1o ∈ {2o} ↔ 𝒫 1o = 2o) | 
| 13 | 12 | notbii 669 | . . 3 ⊢ (¬ 𝒫 1o ∈ {2o} ↔ ¬ 𝒫 1o = 2o) | 
| 14 | 9, 13 | sylbb2 138 | . 2 ⊢ (¬ EXMID → ¬ 𝒫 1o ∈ {2o}) | 
| 15 | df-3o 6476 | . . . . . . 7 ⊢ 3o = suc 2o | |
| 16 | df-suc 4406 | . . . . . . 7 ⊢ suc 2o = (2o ∪ {2o}) | |
| 17 | 15, 16 | eqtri 2217 | . . . . . 6 ⊢ 3o = (2o ∪ {2o}) | 
| 18 | 17 | eleq2i 2263 | . . . . 5 ⊢ (𝒫 1o ∈ 3o ↔ 𝒫 1o ∈ (2o ∪ {2o})) | 
| 19 | elun 3304 | . . . . 5 ⊢ (𝒫 1o ∈ (2o ∪ {2o}) ↔ (𝒫 1o ∈ 2o ∨ 𝒫 1o ∈ {2o})) | |
| 20 | 18, 19 | bitri 184 | . . . 4 ⊢ (𝒫 1o ∈ 3o ↔ (𝒫 1o ∈ 2o ∨ 𝒫 1o ∈ {2o})) | 
| 21 | 20 | notbii 669 | . . 3 ⊢ (¬ 𝒫 1o ∈ 3o ↔ ¬ (𝒫 1o ∈ 2o ∨ 𝒫 1o ∈ {2o})) | 
| 22 | ioran 753 | . . 3 ⊢ (¬ (𝒫 1o ∈ 2o ∨ 𝒫 1o ∈ {2o}) ↔ (¬ 𝒫 1o ∈ 2o ∧ ¬ 𝒫 1o ∈ {2o})) | |
| 23 | 21, 22 | bitri 184 | . 2 ⊢ (¬ 𝒫 1o ∈ 3o ↔ (¬ 𝒫 1o ∈ 2o ∧ ¬ 𝒫 1o ∈ {2o})) | 
| 24 | 7, 14, 23 | sylanbrc 417 | 1 ⊢ (¬ EXMID → ¬ 𝒫 1o ∈ 3o) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 709 = wceq 1364 ∈ wcel 2167 ∪ cun 3155 ∅c0 3450 𝒫 cpw 3605 {csn 3622 {cpr 3623 EXMIDwem 4227 suc csuc 4400 1oc1o 6467 2oc2o 6468 3oc3o 6469 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-uni 3840 df-tr 4132 df-exmid 4228 df-iord 4401 df-on 4403 df-suc 4406 df-1o 6474 df-2o 6475 df-3o 6476 | 
| This theorem is referenced by: sucpw1ne3 7299 sucpw1nss3 7302 | 
| Copyright terms: Public domain | W3C validator |