Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pw1nel3 | GIF version |
Description: Negated excluded middle implies that the power set of 1o is not an element of 3o. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.) |
Ref | Expression |
---|---|
pw1nel3 | ⊢ (¬ EXMID → ¬ 𝒫 1o ∈ 3o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pw1ne0 7184 | . . . . 5 ⊢ 𝒫 1o ≠ ∅ | |
2 | pw1ne1 7185 | . . . . 5 ⊢ 𝒫 1o ≠ 1o | |
3 | 1, 2 | nelpri 3600 | . . . 4 ⊢ ¬ 𝒫 1o ∈ {∅, 1o} |
4 | 3 | a1i 9 | . . 3 ⊢ (¬ EXMID → ¬ 𝒫 1o ∈ {∅, 1o}) |
5 | df2o3 6398 | . . . 4 ⊢ 2o = {∅, 1o} | |
6 | 5 | eleq2i 2233 | . . 3 ⊢ (𝒫 1o ∈ 2o ↔ 𝒫 1o ∈ {∅, 1o}) |
7 | 4, 6 | sylnibr 667 | . 2 ⊢ (¬ EXMID → ¬ 𝒫 1o ∈ 2o) |
8 | exmidpweq 6875 | . . . 4 ⊢ (EXMID ↔ 𝒫 1o = 2o) | |
9 | 8 | notbii 658 | . . 3 ⊢ (¬ EXMID ↔ ¬ 𝒫 1o = 2o) |
10 | 1oex 6392 | . . . . . 6 ⊢ 1o ∈ V | |
11 | 10 | pwex 4162 | . . . . 5 ⊢ 𝒫 1o ∈ V |
12 | 11 | elsn 3592 | . . . 4 ⊢ (𝒫 1o ∈ {2o} ↔ 𝒫 1o = 2o) |
13 | 12 | notbii 658 | . . 3 ⊢ (¬ 𝒫 1o ∈ {2o} ↔ ¬ 𝒫 1o = 2o) |
14 | 9, 13 | sylbb2 137 | . 2 ⊢ (¬ EXMID → ¬ 𝒫 1o ∈ {2o}) |
15 | df-3o 6386 | . . . . . . 7 ⊢ 3o = suc 2o | |
16 | df-suc 4349 | . . . . . . 7 ⊢ suc 2o = (2o ∪ {2o}) | |
17 | 15, 16 | eqtri 2186 | . . . . . 6 ⊢ 3o = (2o ∪ {2o}) |
18 | 17 | eleq2i 2233 | . . . . 5 ⊢ (𝒫 1o ∈ 3o ↔ 𝒫 1o ∈ (2o ∪ {2o})) |
19 | elun 3263 | . . . . 5 ⊢ (𝒫 1o ∈ (2o ∪ {2o}) ↔ (𝒫 1o ∈ 2o ∨ 𝒫 1o ∈ {2o})) | |
20 | 18, 19 | bitri 183 | . . . 4 ⊢ (𝒫 1o ∈ 3o ↔ (𝒫 1o ∈ 2o ∨ 𝒫 1o ∈ {2o})) |
21 | 20 | notbii 658 | . . 3 ⊢ (¬ 𝒫 1o ∈ 3o ↔ ¬ (𝒫 1o ∈ 2o ∨ 𝒫 1o ∈ {2o})) |
22 | ioran 742 | . . 3 ⊢ (¬ (𝒫 1o ∈ 2o ∨ 𝒫 1o ∈ {2o}) ↔ (¬ 𝒫 1o ∈ 2o ∧ ¬ 𝒫 1o ∈ {2o})) | |
23 | 21, 22 | bitri 183 | . 2 ⊢ (¬ 𝒫 1o ∈ 3o ↔ (¬ 𝒫 1o ∈ 2o ∧ ¬ 𝒫 1o ∈ {2o})) |
24 | 7, 14, 23 | sylanbrc 414 | 1 ⊢ (¬ EXMID → ¬ 𝒫 1o ∈ 3o) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∨ wo 698 = wceq 1343 ∈ wcel 2136 ∪ cun 3114 ∅c0 3409 𝒫 cpw 3559 {csn 3576 {cpr 3577 EXMIDwem 4173 suc csuc 4343 1oc1o 6377 2oc2o 6378 3oc3o 6379 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 df-tr 4081 df-exmid 4174 df-iord 4344 df-on 4346 df-suc 4349 df-1o 6384 df-2o 6385 df-3o 6386 |
This theorem is referenced by: sucpw1ne3 7188 sucpw1nss3 7191 |
Copyright terms: Public domain | W3C validator |