ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw1nel3 GIF version

Theorem pw1nel3 7208
Description: Negated excluded middle implies that the power set of 1o is not an element of 3o. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.)
Assertion
Ref Expression
pw1nel3 EXMID → ¬ 𝒫 1o ∈ 3o)

Proof of Theorem pw1nel3
StepHypRef Expression
1 pw1ne0 7205 . . . . 5 𝒫 1o ≠ ∅
2 pw1ne1 7206 . . . . 5 𝒫 1o ≠ 1o
31, 2nelpri 3607 . . . 4 ¬ 𝒫 1o ∈ {∅, 1o}
43a1i 9 . . 3 EXMID → ¬ 𝒫 1o ∈ {∅, 1o})
5 df2o3 6409 . . . 4 2o = {∅, 1o}
65eleq2i 2237 . . 3 (𝒫 1o ∈ 2o ↔ 𝒫 1o ∈ {∅, 1o})
74, 6sylnibr 672 . 2 EXMID → ¬ 𝒫 1o ∈ 2o)
8 exmidpweq 6887 . . . 4 (EXMID ↔ 𝒫 1o = 2o)
98notbii 663 . . 3 EXMID ↔ ¬ 𝒫 1o = 2o)
10 1oex 6403 . . . . . 6 1o ∈ V
1110pwex 4169 . . . . 5 𝒫 1o ∈ V
1211elsn 3599 . . . 4 (𝒫 1o ∈ {2o} ↔ 𝒫 1o = 2o)
1312notbii 663 . . 3 (¬ 𝒫 1o ∈ {2o} ↔ ¬ 𝒫 1o = 2o)
149, 13sylbb2 137 . 2 EXMID → ¬ 𝒫 1o ∈ {2o})
15 df-3o 6397 . . . . . . 7 3o = suc 2o
16 df-suc 4356 . . . . . . 7 suc 2o = (2o ∪ {2o})
1715, 16eqtri 2191 . . . . . 6 3o = (2o ∪ {2o})
1817eleq2i 2237 . . . . 5 (𝒫 1o ∈ 3o ↔ 𝒫 1o ∈ (2o ∪ {2o}))
19 elun 3268 . . . . 5 (𝒫 1o ∈ (2o ∪ {2o}) ↔ (𝒫 1o ∈ 2o ∨ 𝒫 1o ∈ {2o}))
2018, 19bitri 183 . . . 4 (𝒫 1o ∈ 3o ↔ (𝒫 1o ∈ 2o ∨ 𝒫 1o ∈ {2o}))
2120notbii 663 . . 3 (¬ 𝒫 1o ∈ 3o ↔ ¬ (𝒫 1o ∈ 2o ∨ 𝒫 1o ∈ {2o}))
22 ioran 747 . . 3 (¬ (𝒫 1o ∈ 2o ∨ 𝒫 1o ∈ {2o}) ↔ (¬ 𝒫 1o ∈ 2o ∧ ¬ 𝒫 1o ∈ {2o}))
2321, 22bitri 183 . 2 (¬ 𝒫 1o ∈ 3o ↔ (¬ 𝒫 1o ∈ 2o ∧ ¬ 𝒫 1o ∈ {2o}))
247, 14, 23sylanbrc 415 1 EXMID → ¬ 𝒫 1o ∈ 3o)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 703   = wceq 1348  wcel 2141  cun 3119  c0 3414  𝒫 cpw 3566  {csn 3583  {cpr 3584  EXMIDwem 4180  suc csuc 4350  1oc1o 6388  2oc2o 6389  3oc3o 6390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-uni 3797  df-tr 4088  df-exmid 4181  df-iord 4351  df-on 4353  df-suc 4356  df-1o 6395  df-2o 6396  df-3o 6397
This theorem is referenced by:  sucpw1ne3  7209  sucpw1nss3  7212
  Copyright terms: Public domain W3C validator