ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw1nel3 GIF version

Theorem pw1nel3 7325
Description: Negated excluded middle implies that the power set of 1o is not an element of 3o. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.)
Assertion
Ref Expression
pw1nel3 EXMID → ¬ 𝒫 1o ∈ 3o)

Proof of Theorem pw1nel3
StepHypRef Expression
1 pw1ne0 7322 . . . . 5 𝒫 1o ≠ ∅
2 pw1ne1 7323 . . . . 5 𝒫 1o ≠ 1o
31, 2nelpri 3656 . . . 4 ¬ 𝒫 1o ∈ {∅, 1o}
43a1i 9 . . 3 EXMID → ¬ 𝒫 1o ∈ {∅, 1o})
5 df2o3 6506 . . . 4 2o = {∅, 1o}
65eleq2i 2271 . . 3 (𝒫 1o ∈ 2o ↔ 𝒫 1o ∈ {∅, 1o})
74, 6sylnibr 678 . 2 EXMID → ¬ 𝒫 1o ∈ 2o)
8 exmidpweq 6988 . . . 4 (EXMID ↔ 𝒫 1o = 2o)
98notbii 669 . . 3 EXMID ↔ ¬ 𝒫 1o = 2o)
10 1oex 6500 . . . . . 6 1o ∈ V
1110pwex 4226 . . . . 5 𝒫 1o ∈ V
1211elsn 3648 . . . 4 (𝒫 1o ∈ {2o} ↔ 𝒫 1o = 2o)
1312notbii 669 . . 3 (¬ 𝒫 1o ∈ {2o} ↔ ¬ 𝒫 1o = 2o)
149, 13sylbb2 138 . 2 EXMID → ¬ 𝒫 1o ∈ {2o})
15 df-3o 6494 . . . . . . 7 3o = suc 2o
16 df-suc 4416 . . . . . . 7 suc 2o = (2o ∪ {2o})
1715, 16eqtri 2225 . . . . . 6 3o = (2o ∪ {2o})
1817eleq2i 2271 . . . . 5 (𝒫 1o ∈ 3o ↔ 𝒫 1o ∈ (2o ∪ {2o}))
19 elun 3313 . . . . 5 (𝒫 1o ∈ (2o ∪ {2o}) ↔ (𝒫 1o ∈ 2o ∨ 𝒫 1o ∈ {2o}))
2018, 19bitri 184 . . . 4 (𝒫 1o ∈ 3o ↔ (𝒫 1o ∈ 2o ∨ 𝒫 1o ∈ {2o}))
2120notbii 669 . . 3 (¬ 𝒫 1o ∈ 3o ↔ ¬ (𝒫 1o ∈ 2o ∨ 𝒫 1o ∈ {2o}))
22 ioran 753 . . 3 (¬ (𝒫 1o ∈ 2o ∨ 𝒫 1o ∈ {2o}) ↔ (¬ 𝒫 1o ∈ 2o ∧ ¬ 𝒫 1o ∈ {2o}))
2321, 22bitri 184 . 2 (¬ 𝒫 1o ∈ 3o ↔ (¬ 𝒫 1o ∈ 2o ∧ ¬ 𝒫 1o ∈ {2o}))
247, 14, 23sylanbrc 417 1 EXMID → ¬ 𝒫 1o ∈ 3o)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709   = wceq 1372  wcel 2175  cun 3163  c0 3459  𝒫 cpw 3615  {csn 3632  {cpr 3633  EXMIDwem 4237  suc csuc 4410  1oc1o 6485  2oc2o 6486  3oc3o 6487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-uni 3850  df-tr 4142  df-exmid 4238  df-iord 4411  df-on 4413  df-suc 4416  df-1o 6492  df-2o 6493  df-3o 6494
This theorem is referenced by:  sucpw1ne3  7326  sucpw1nss3  7329
  Copyright terms: Public domain W3C validator