ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw1nel3 GIF version

Theorem pw1nel3 7298
Description: Negated excluded middle implies that the power set of 1o is not an element of 3o. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.)
Assertion
Ref Expression
pw1nel3 EXMID → ¬ 𝒫 1o ∈ 3o)

Proof of Theorem pw1nel3
StepHypRef Expression
1 pw1ne0 7295 . . . . 5 𝒫 1o ≠ ∅
2 pw1ne1 7296 . . . . 5 𝒫 1o ≠ 1o
31, 2nelpri 3646 . . . 4 ¬ 𝒫 1o ∈ {∅, 1o}
43a1i 9 . . 3 EXMID → ¬ 𝒫 1o ∈ {∅, 1o})
5 df2o3 6488 . . . 4 2o = {∅, 1o}
65eleq2i 2263 . . 3 (𝒫 1o ∈ 2o ↔ 𝒫 1o ∈ {∅, 1o})
74, 6sylnibr 678 . 2 EXMID → ¬ 𝒫 1o ∈ 2o)
8 exmidpweq 6970 . . . 4 (EXMID ↔ 𝒫 1o = 2o)
98notbii 669 . . 3 EXMID ↔ ¬ 𝒫 1o = 2o)
10 1oex 6482 . . . . . 6 1o ∈ V
1110pwex 4216 . . . . 5 𝒫 1o ∈ V
1211elsn 3638 . . . 4 (𝒫 1o ∈ {2o} ↔ 𝒫 1o = 2o)
1312notbii 669 . . 3 (¬ 𝒫 1o ∈ {2o} ↔ ¬ 𝒫 1o = 2o)
149, 13sylbb2 138 . 2 EXMID → ¬ 𝒫 1o ∈ {2o})
15 df-3o 6476 . . . . . . 7 3o = suc 2o
16 df-suc 4406 . . . . . . 7 suc 2o = (2o ∪ {2o})
1715, 16eqtri 2217 . . . . . 6 3o = (2o ∪ {2o})
1817eleq2i 2263 . . . . 5 (𝒫 1o ∈ 3o ↔ 𝒫 1o ∈ (2o ∪ {2o}))
19 elun 3304 . . . . 5 (𝒫 1o ∈ (2o ∪ {2o}) ↔ (𝒫 1o ∈ 2o ∨ 𝒫 1o ∈ {2o}))
2018, 19bitri 184 . . . 4 (𝒫 1o ∈ 3o ↔ (𝒫 1o ∈ 2o ∨ 𝒫 1o ∈ {2o}))
2120notbii 669 . . 3 (¬ 𝒫 1o ∈ 3o ↔ ¬ (𝒫 1o ∈ 2o ∨ 𝒫 1o ∈ {2o}))
22 ioran 753 . . 3 (¬ (𝒫 1o ∈ 2o ∨ 𝒫 1o ∈ {2o}) ↔ (¬ 𝒫 1o ∈ 2o ∧ ¬ 𝒫 1o ∈ {2o}))
2321, 22bitri 184 . 2 (¬ 𝒫 1o ∈ 3o ↔ (¬ 𝒫 1o ∈ 2o ∧ ¬ 𝒫 1o ∈ {2o}))
247, 14, 23sylanbrc 417 1 EXMID → ¬ 𝒫 1o ∈ 3o)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709   = wceq 1364  wcel 2167  cun 3155  c0 3450  𝒫 cpw 3605  {csn 3622  {cpr 3623  EXMIDwem 4227  suc csuc 4400  1oc1o 6467  2oc2o 6468  3oc3o 6469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-uni 3840  df-tr 4132  df-exmid 4228  df-iord 4401  df-on 4403  df-suc 4406  df-1o 6474  df-2o 6475  df-3o 6476
This theorem is referenced by:  sucpw1ne3  7299  sucpw1nss3  7302
  Copyright terms: Public domain W3C validator