![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pw1nel3 | GIF version |
Description: Negated excluded middle implies that the power set of 1o is not an element of 3o. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.) |
Ref | Expression |
---|---|
pw1nel3 | ⊢ (¬ EXMID → ¬ 𝒫 1o ∈ 3o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pw1ne0 7290 | . . . . 5 ⊢ 𝒫 1o ≠ ∅ | |
2 | pw1ne1 7291 | . . . . 5 ⊢ 𝒫 1o ≠ 1o | |
3 | 1, 2 | nelpri 3643 | . . . 4 ⊢ ¬ 𝒫 1o ∈ {∅, 1o} |
4 | 3 | a1i 9 | . . 3 ⊢ (¬ EXMID → ¬ 𝒫 1o ∈ {∅, 1o}) |
5 | df2o3 6485 | . . . 4 ⊢ 2o = {∅, 1o} | |
6 | 5 | eleq2i 2260 | . . 3 ⊢ (𝒫 1o ∈ 2o ↔ 𝒫 1o ∈ {∅, 1o}) |
7 | 4, 6 | sylnibr 678 | . 2 ⊢ (¬ EXMID → ¬ 𝒫 1o ∈ 2o) |
8 | exmidpweq 6967 | . . . 4 ⊢ (EXMID ↔ 𝒫 1o = 2o) | |
9 | 8 | notbii 669 | . . 3 ⊢ (¬ EXMID ↔ ¬ 𝒫 1o = 2o) |
10 | 1oex 6479 | . . . . . 6 ⊢ 1o ∈ V | |
11 | 10 | pwex 4213 | . . . . 5 ⊢ 𝒫 1o ∈ V |
12 | 11 | elsn 3635 | . . . 4 ⊢ (𝒫 1o ∈ {2o} ↔ 𝒫 1o = 2o) |
13 | 12 | notbii 669 | . . 3 ⊢ (¬ 𝒫 1o ∈ {2o} ↔ ¬ 𝒫 1o = 2o) |
14 | 9, 13 | sylbb2 138 | . 2 ⊢ (¬ EXMID → ¬ 𝒫 1o ∈ {2o}) |
15 | df-3o 6473 | . . . . . . 7 ⊢ 3o = suc 2o | |
16 | df-suc 4403 | . . . . . . 7 ⊢ suc 2o = (2o ∪ {2o}) | |
17 | 15, 16 | eqtri 2214 | . . . . . 6 ⊢ 3o = (2o ∪ {2o}) |
18 | 17 | eleq2i 2260 | . . . . 5 ⊢ (𝒫 1o ∈ 3o ↔ 𝒫 1o ∈ (2o ∪ {2o})) |
19 | elun 3301 | . . . . 5 ⊢ (𝒫 1o ∈ (2o ∪ {2o}) ↔ (𝒫 1o ∈ 2o ∨ 𝒫 1o ∈ {2o})) | |
20 | 18, 19 | bitri 184 | . . . 4 ⊢ (𝒫 1o ∈ 3o ↔ (𝒫 1o ∈ 2o ∨ 𝒫 1o ∈ {2o})) |
21 | 20 | notbii 669 | . . 3 ⊢ (¬ 𝒫 1o ∈ 3o ↔ ¬ (𝒫 1o ∈ 2o ∨ 𝒫 1o ∈ {2o})) |
22 | ioran 753 | . . 3 ⊢ (¬ (𝒫 1o ∈ 2o ∨ 𝒫 1o ∈ {2o}) ↔ (¬ 𝒫 1o ∈ 2o ∧ ¬ 𝒫 1o ∈ {2o})) | |
23 | 21, 22 | bitri 184 | . 2 ⊢ (¬ 𝒫 1o ∈ 3o ↔ (¬ 𝒫 1o ∈ 2o ∧ ¬ 𝒫 1o ∈ {2o})) |
24 | 7, 14, 23 | sylanbrc 417 | 1 ⊢ (¬ EXMID → ¬ 𝒫 1o ∈ 3o) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 709 = wceq 1364 ∈ wcel 2164 ∪ cun 3152 ∅c0 3447 𝒫 cpw 3602 {csn 3619 {cpr 3620 EXMIDwem 4224 suc csuc 4397 1oc1o 6464 2oc2o 6465 3oc3o 6466 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-uni 3837 df-tr 4129 df-exmid 4225 df-iord 4398 df-on 4400 df-suc 4403 df-1o 6471 df-2o 6472 df-3o 6473 |
This theorem is referenced by: sucpw1ne3 7294 sucpw1nss3 7297 |
Copyright terms: Public domain | W3C validator |