ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfseq GIF version

Theorem nfseq 10531
Description: Hypothesis builder for the sequence builder operation. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nfseq.1 𝑥𝑀
nfseq.2 𝑥 +
nfseq.3 𝑥𝐹
Assertion
Ref Expression
nfseq 𝑥seq𝑀( + , 𝐹)

Proof of Theorem nfseq
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-seqfrec 10522 . 2 seq𝑀( + , 𝐹) = ran frec((𝑧 ∈ (ℤ𝑀), 𝑤 ∈ V ↦ ⟨(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)
2 nfcv 2336 . . . . . 6 𝑥
3 nfseq.1 . . . . . 6 𝑥𝑀
42, 3nffv 5565 . . . . 5 𝑥(ℤ𝑀)
5 nfcv 2336 . . . . 5 𝑥V
6 nfcv 2336 . . . . . 6 𝑥(𝑧 + 1)
7 nfcv 2336 . . . . . . 7 𝑥𝑤
8 nfseq.2 . . . . . . 7 𝑥 +
9 nfseq.3 . . . . . . . 8 𝑥𝐹
109, 6nffv 5565 . . . . . . 7 𝑥(𝐹‘(𝑧 + 1))
117, 8, 10nfov 5949 . . . . . 6 𝑥(𝑤 + (𝐹‘(𝑧 + 1)))
126, 11nfop 3821 . . . . 5 𝑥⟨(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))⟩
134, 5, 12nfmpo 5988 . . . 4 𝑥(𝑧 ∈ (ℤ𝑀), 𝑤 ∈ V ↦ ⟨(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))⟩)
149, 3nffv 5565 . . . . 5 𝑥(𝐹𝑀)
153, 14nfop 3821 . . . 4 𝑥𝑀, (𝐹𝑀)⟩
1613, 15nffrec 6451 . . 3 𝑥frec((𝑧 ∈ (ℤ𝑀), 𝑤 ∈ V ↦ ⟨(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)
1716nfrn 4908 . 2 𝑥ran frec((𝑧 ∈ (ℤ𝑀), 𝑤 ∈ V ↦ ⟨(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)
181, 17nfcxfr 2333 1 𝑥seq𝑀( + , 𝐹)
Colors of variables: wff set class
Syntax hints:  wnfc 2323  Vcvv 2760  cop 3622  ran crn 4661  cfv 5255  (class class class)co 5919  cmpo 5921  freccfrec 6445  1c1 7875   + caddc 7877  cuz 9595  seqcseq 10521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-un 3158  df-in 3160  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-xp 4666  df-cnv 4668  df-dm 4670  df-rn 4671  df-res 4672  df-iota 5216  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-recs 6360  df-frec 6446  df-seqfrec 10522
This theorem is referenced by:  seq3f1olemstep  10588  seq3f1olemp  10589  nfsum1  11502  nfsum  11503  nfcprod1  11700  nfcprod  11701
  Copyright terms: Public domain W3C validator