ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfseq GIF version

Theorem nfseq 10609
Description: Hypothesis builder for the sequence builder operation. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nfseq.1 𝑥𝑀
nfseq.2 𝑥 +
nfseq.3 𝑥𝐹
Assertion
Ref Expression
nfseq 𝑥seq𝑀( + , 𝐹)

Proof of Theorem nfseq
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-seqfrec 10600 . 2 seq𝑀( + , 𝐹) = ran frec((𝑧 ∈ (ℤ𝑀), 𝑤 ∈ V ↦ ⟨(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)
2 nfcv 2349 . . . . . 6 𝑥
3 nfseq.1 . . . . . 6 𝑥𝑀
42, 3nffv 5593 . . . . 5 𝑥(ℤ𝑀)
5 nfcv 2349 . . . . 5 𝑥V
6 nfcv 2349 . . . . . 6 𝑥(𝑧 + 1)
7 nfcv 2349 . . . . . . 7 𝑥𝑤
8 nfseq.2 . . . . . . 7 𝑥 +
9 nfseq.3 . . . . . . . 8 𝑥𝐹
109, 6nffv 5593 . . . . . . 7 𝑥(𝐹‘(𝑧 + 1))
117, 8, 10nfov 5981 . . . . . 6 𝑥(𝑤 + (𝐹‘(𝑧 + 1)))
126, 11nfop 3837 . . . . 5 𝑥⟨(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))⟩
134, 5, 12nfmpo 6021 . . . 4 𝑥(𝑧 ∈ (ℤ𝑀), 𝑤 ∈ V ↦ ⟨(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))⟩)
149, 3nffv 5593 . . . . 5 𝑥(𝐹𝑀)
153, 14nfop 3837 . . . 4 𝑥𝑀, (𝐹𝑀)⟩
1613, 15nffrec 6489 . . 3 𝑥frec((𝑧 ∈ (ℤ𝑀), 𝑤 ∈ V ↦ ⟨(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)
1716nfrn 4928 . 2 𝑥ran frec((𝑧 ∈ (ℤ𝑀), 𝑤 ∈ V ↦ ⟨(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)
181, 17nfcxfr 2346 1 𝑥seq𝑀( + , 𝐹)
Colors of variables: wff set class
Syntax hints:  wnfc 2336  Vcvv 2773  cop 3637  ran crn 4680  cfv 5276  (class class class)co 5951  cmpo 5953  freccfrec 6483  1c1 7933   + caddc 7935  cuz 9655  seqcseq 10599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-un 3171  df-in 3173  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-br 4048  df-opab 4110  df-mpt 4111  df-xp 4685  df-cnv 4687  df-dm 4689  df-rn 4690  df-res 4691  df-iota 5237  df-fv 5284  df-ov 5954  df-oprab 5955  df-mpo 5956  df-recs 6398  df-frec 6484  df-seqfrec 10600
This theorem is referenced by:  seq3f1olemstep  10666  seq3f1olemp  10667  nfsum1  11711  nfsum  11712  nfcprod1  11909  nfcprod  11910
  Copyright terms: Public domain W3C validator