| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfseq | GIF version | ||
| Description: Hypothesis builder for the sequence builder operation. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfseq.1 | ⊢ Ⅎ𝑥𝑀 |
| nfseq.2 | ⊢ Ⅎ𝑥 + |
| nfseq.3 | ⊢ Ⅎ𝑥𝐹 |
| Ref | Expression |
|---|---|
| nfseq | ⊢ Ⅎ𝑥seq𝑀( + , 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-seqfrec 10637 | . 2 ⊢ seq𝑀( + , 𝐹) = ran frec((𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ V ↦ 〈(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) | |
| 2 | nfcv 2352 | . . . . . 6 ⊢ Ⅎ𝑥ℤ≥ | |
| 3 | nfseq.1 | . . . . . 6 ⊢ Ⅎ𝑥𝑀 | |
| 4 | 2, 3 | nffv 5613 | . . . . 5 ⊢ Ⅎ𝑥(ℤ≥‘𝑀) |
| 5 | nfcv 2352 | . . . . 5 ⊢ Ⅎ𝑥V | |
| 6 | nfcv 2352 | . . . . . 6 ⊢ Ⅎ𝑥(𝑧 + 1) | |
| 7 | nfcv 2352 | . . . . . . 7 ⊢ Ⅎ𝑥𝑤 | |
| 8 | nfseq.2 | . . . . . . 7 ⊢ Ⅎ𝑥 + | |
| 9 | nfseq.3 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐹 | |
| 10 | 9, 6 | nffv 5613 | . . . . . . 7 ⊢ Ⅎ𝑥(𝐹‘(𝑧 + 1)) |
| 11 | 7, 8, 10 | nfov 6004 | . . . . . 6 ⊢ Ⅎ𝑥(𝑤 + (𝐹‘(𝑧 + 1))) |
| 12 | 6, 11 | nfop 3852 | . . . . 5 ⊢ Ⅎ𝑥〈(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))〉 |
| 13 | 4, 5, 12 | nfmpo 6044 | . . . 4 ⊢ Ⅎ𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ V ↦ 〈(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))〉) |
| 14 | 9, 3 | nffv 5613 | . . . . 5 ⊢ Ⅎ𝑥(𝐹‘𝑀) |
| 15 | 3, 14 | nfop 3852 | . . . 4 ⊢ Ⅎ𝑥〈𝑀, (𝐹‘𝑀)〉 |
| 16 | 13, 15 | nffrec 6512 | . . 3 ⊢ Ⅎ𝑥frec((𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ V ↦ 〈(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) |
| 17 | 16 | nfrn 4945 | . 2 ⊢ Ⅎ𝑥ran frec((𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ V ↦ 〈(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) |
| 18 | 1, 17 | nfcxfr 2349 | 1 ⊢ Ⅎ𝑥seq𝑀( + , 𝐹) |
| Colors of variables: wff set class |
| Syntax hints: Ⅎwnfc 2339 Vcvv 2779 〈cop 3649 ran crn 4697 ‘cfv 5294 (class class class)co 5974 ∈ cmpo 5976 freccfrec 6506 1c1 7968 + caddc 7970 ℤ≥cuz 9690 seqcseq 10636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-rab 2497 df-v 2781 df-un 3181 df-in 3183 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-opab 4125 df-mpt 4126 df-xp 4702 df-cnv 4704 df-dm 4706 df-rn 4707 df-res 4708 df-iota 5254 df-fv 5302 df-ov 5977 df-oprab 5978 df-mpo 5979 df-recs 6421 df-frec 6507 df-seqfrec 10637 |
| This theorem is referenced by: seq3f1olemstep 10703 seq3f1olemp 10704 nfsum1 11833 nfsum 11834 nfcprod1 12031 nfcprod 12032 |
| Copyright terms: Public domain | W3C validator |