ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfseq GIF version

Theorem nfseq 10646
Description: Hypothesis builder for the sequence builder operation. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nfseq.1 𝑥𝑀
nfseq.2 𝑥 +
nfseq.3 𝑥𝐹
Assertion
Ref Expression
nfseq 𝑥seq𝑀( + , 𝐹)

Proof of Theorem nfseq
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-seqfrec 10637 . 2 seq𝑀( + , 𝐹) = ran frec((𝑧 ∈ (ℤ𝑀), 𝑤 ∈ V ↦ ⟨(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)
2 nfcv 2352 . . . . . 6 𝑥
3 nfseq.1 . . . . . 6 𝑥𝑀
42, 3nffv 5613 . . . . 5 𝑥(ℤ𝑀)
5 nfcv 2352 . . . . 5 𝑥V
6 nfcv 2352 . . . . . 6 𝑥(𝑧 + 1)
7 nfcv 2352 . . . . . . 7 𝑥𝑤
8 nfseq.2 . . . . . . 7 𝑥 +
9 nfseq.3 . . . . . . . 8 𝑥𝐹
109, 6nffv 5613 . . . . . . 7 𝑥(𝐹‘(𝑧 + 1))
117, 8, 10nfov 6004 . . . . . 6 𝑥(𝑤 + (𝐹‘(𝑧 + 1)))
126, 11nfop 3852 . . . . 5 𝑥⟨(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))⟩
134, 5, 12nfmpo 6044 . . . 4 𝑥(𝑧 ∈ (ℤ𝑀), 𝑤 ∈ V ↦ ⟨(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))⟩)
149, 3nffv 5613 . . . . 5 𝑥(𝐹𝑀)
153, 14nfop 3852 . . . 4 𝑥𝑀, (𝐹𝑀)⟩
1613, 15nffrec 6512 . . 3 𝑥frec((𝑧 ∈ (ℤ𝑀), 𝑤 ∈ V ↦ ⟨(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)
1716nfrn 4945 . 2 𝑥ran frec((𝑧 ∈ (ℤ𝑀), 𝑤 ∈ V ↦ ⟨(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)
181, 17nfcxfr 2349 1 𝑥seq𝑀( + , 𝐹)
Colors of variables: wff set class
Syntax hints:  wnfc 2339  Vcvv 2779  cop 3649  ran crn 4697  cfv 5294  (class class class)co 5974  cmpo 5976  freccfrec 6506  1c1 7968   + caddc 7970  cuz 9690  seqcseq 10636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-rab 2497  df-v 2781  df-un 3181  df-in 3183  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-br 4063  df-opab 4125  df-mpt 4126  df-xp 4702  df-cnv 4704  df-dm 4706  df-rn 4707  df-res 4708  df-iota 5254  df-fv 5302  df-ov 5977  df-oprab 5978  df-mpo 5979  df-recs 6421  df-frec 6507  df-seqfrec 10637
This theorem is referenced by:  seq3f1olemstep  10703  seq3f1olemp  10704  nfsum1  11833  nfsum  11834  nfcprod1  12031  nfcprod  12032
  Copyright terms: Public domain W3C validator