![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfseq | GIF version |
Description: Hypothesis builder for the sequence builder operation. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nfseq.1 | ⊢ Ⅎ𝑥𝑀 |
nfseq.2 | ⊢ Ⅎ𝑥 + |
nfseq.3 | ⊢ Ⅎ𝑥𝐹 |
Ref | Expression |
---|---|
nfseq | ⊢ Ⅎ𝑥seq𝑀( + , 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-seqfrec 10448 | . 2 ⊢ seq𝑀( + , 𝐹) = ran frec((𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ V ↦ ⟨(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))⟩), ⟨𝑀, (𝐹‘𝑀)⟩) | |
2 | nfcv 2319 | . . . . . 6 ⊢ Ⅎ𝑥ℤ≥ | |
3 | nfseq.1 | . . . . . 6 ⊢ Ⅎ𝑥𝑀 | |
4 | 2, 3 | nffv 5527 | . . . . 5 ⊢ Ⅎ𝑥(ℤ≥‘𝑀) |
5 | nfcv 2319 | . . . . 5 ⊢ Ⅎ𝑥V | |
6 | nfcv 2319 | . . . . . 6 ⊢ Ⅎ𝑥(𝑧 + 1) | |
7 | nfcv 2319 | . . . . . . 7 ⊢ Ⅎ𝑥𝑤 | |
8 | nfseq.2 | . . . . . . 7 ⊢ Ⅎ𝑥 + | |
9 | nfseq.3 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐹 | |
10 | 9, 6 | nffv 5527 | . . . . . . 7 ⊢ Ⅎ𝑥(𝐹‘(𝑧 + 1)) |
11 | 7, 8, 10 | nfov 5907 | . . . . . 6 ⊢ Ⅎ𝑥(𝑤 + (𝐹‘(𝑧 + 1))) |
12 | 6, 11 | nfop 3796 | . . . . 5 ⊢ Ⅎ𝑥⟨(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))⟩ |
13 | 4, 5, 12 | nfmpo 5946 | . . . 4 ⊢ Ⅎ𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ V ↦ ⟨(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))⟩) |
14 | 9, 3 | nffv 5527 | . . . . 5 ⊢ Ⅎ𝑥(𝐹‘𝑀) |
15 | 3, 14 | nfop 3796 | . . . 4 ⊢ Ⅎ𝑥⟨𝑀, (𝐹‘𝑀)⟩ |
16 | 13, 15 | nffrec 6399 | . . 3 ⊢ Ⅎ𝑥frec((𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ V ↦ ⟨(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))⟩), ⟨𝑀, (𝐹‘𝑀)⟩) |
17 | 16 | nfrn 4874 | . 2 ⊢ Ⅎ𝑥ran frec((𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ V ↦ ⟨(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))⟩), ⟨𝑀, (𝐹‘𝑀)⟩) |
18 | 1, 17 | nfcxfr 2316 | 1 ⊢ Ⅎ𝑥seq𝑀( + , 𝐹) |
Colors of variables: wff set class |
Syntax hints: Ⅎwnfc 2306 Vcvv 2739 ⟨cop 3597 ran crn 4629 ‘cfv 5218 (class class class)co 5877 ∈ cmpo 5879 freccfrec 6393 1c1 7814 + caddc 7816 ℤ≥cuz 9530 seqcseq 10447 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-un 3135 df-in 3137 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-mpt 4068 df-xp 4634 df-cnv 4636 df-dm 4638 df-rn 4639 df-res 4640 df-iota 5180 df-fv 5226 df-ov 5880 df-oprab 5881 df-mpo 5882 df-recs 6308 df-frec 6394 df-seqfrec 10448 |
This theorem is referenced by: seq3f1olemstep 10503 seq3f1olemp 10504 nfsum1 11366 nfsum 11367 nfcprod1 11564 nfcprod 11565 |
Copyright terms: Public domain | W3C validator |