| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfseq | GIF version | ||
| Description: Hypothesis builder for the sequence builder operation. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfseq.1 | ⊢ Ⅎ𝑥𝑀 |
| nfseq.2 | ⊢ Ⅎ𝑥 + |
| nfseq.3 | ⊢ Ⅎ𝑥𝐹 |
| Ref | Expression |
|---|---|
| nfseq | ⊢ Ⅎ𝑥seq𝑀( + , 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-seqfrec 10678 | . 2 ⊢ seq𝑀( + , 𝐹) = ran frec((𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ V ↦ 〈(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) | |
| 2 | nfcv 2372 | . . . . . 6 ⊢ Ⅎ𝑥ℤ≥ | |
| 3 | nfseq.1 | . . . . . 6 ⊢ Ⅎ𝑥𝑀 | |
| 4 | 2, 3 | nffv 5639 | . . . . 5 ⊢ Ⅎ𝑥(ℤ≥‘𝑀) |
| 5 | nfcv 2372 | . . . . 5 ⊢ Ⅎ𝑥V | |
| 6 | nfcv 2372 | . . . . . 6 ⊢ Ⅎ𝑥(𝑧 + 1) | |
| 7 | nfcv 2372 | . . . . . . 7 ⊢ Ⅎ𝑥𝑤 | |
| 8 | nfseq.2 | . . . . . . 7 ⊢ Ⅎ𝑥 + | |
| 9 | nfseq.3 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐹 | |
| 10 | 9, 6 | nffv 5639 | . . . . . . 7 ⊢ Ⅎ𝑥(𝐹‘(𝑧 + 1)) |
| 11 | 7, 8, 10 | nfov 6037 | . . . . . 6 ⊢ Ⅎ𝑥(𝑤 + (𝐹‘(𝑧 + 1))) |
| 12 | 6, 11 | nfop 3873 | . . . . 5 ⊢ Ⅎ𝑥〈(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))〉 |
| 13 | 4, 5, 12 | nfmpo 6079 | . . . 4 ⊢ Ⅎ𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ V ↦ 〈(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))〉) |
| 14 | 9, 3 | nffv 5639 | . . . . 5 ⊢ Ⅎ𝑥(𝐹‘𝑀) |
| 15 | 3, 14 | nfop 3873 | . . . 4 ⊢ Ⅎ𝑥〈𝑀, (𝐹‘𝑀)〉 |
| 16 | 13, 15 | nffrec 6548 | . . 3 ⊢ Ⅎ𝑥frec((𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ V ↦ 〈(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) |
| 17 | 16 | nfrn 4969 | . 2 ⊢ Ⅎ𝑥ran frec((𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ V ↦ 〈(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) |
| 18 | 1, 17 | nfcxfr 2369 | 1 ⊢ Ⅎ𝑥seq𝑀( + , 𝐹) |
| Colors of variables: wff set class |
| Syntax hints: Ⅎwnfc 2359 Vcvv 2799 〈cop 3669 ran crn 4720 ‘cfv 5318 (class class class)co 6007 ∈ cmpo 6009 freccfrec 6542 1c1 8008 + caddc 8010 ℤ≥cuz 9730 seqcseq 10677 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-un 3201 df-in 3203 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-xp 4725 df-cnv 4727 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fv 5326 df-ov 6010 df-oprab 6011 df-mpo 6012 df-recs 6457 df-frec 6543 df-seqfrec 10678 |
| This theorem is referenced by: seq3f1olemstep 10744 seq3f1olemp 10745 nfsum1 11875 nfsum 11876 nfcprod1 12073 nfcprod 12074 |
| Copyright terms: Public domain | W3C validator |