| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nfseq | GIF version | ||
| Description: Hypothesis builder for the sequence builder operation. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 15-Oct-2016.) | 
| Ref | Expression | 
|---|---|
| nfseq.1 | ⊢ Ⅎ𝑥𝑀 | 
| nfseq.2 | ⊢ Ⅎ𝑥 + | 
| nfseq.3 | ⊢ Ⅎ𝑥𝐹 | 
| Ref | Expression | 
|---|---|
| nfseq | ⊢ Ⅎ𝑥seq𝑀( + , 𝐹) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-seqfrec 10540 | . 2 ⊢ seq𝑀( + , 𝐹) = ran frec((𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ V ↦ 〈(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) | |
| 2 | nfcv 2339 | . . . . . 6 ⊢ Ⅎ𝑥ℤ≥ | |
| 3 | nfseq.1 | . . . . . 6 ⊢ Ⅎ𝑥𝑀 | |
| 4 | 2, 3 | nffv 5568 | . . . . 5 ⊢ Ⅎ𝑥(ℤ≥‘𝑀) | 
| 5 | nfcv 2339 | . . . . 5 ⊢ Ⅎ𝑥V | |
| 6 | nfcv 2339 | . . . . . 6 ⊢ Ⅎ𝑥(𝑧 + 1) | |
| 7 | nfcv 2339 | . . . . . . 7 ⊢ Ⅎ𝑥𝑤 | |
| 8 | nfseq.2 | . . . . . . 7 ⊢ Ⅎ𝑥 + | |
| 9 | nfseq.3 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐹 | |
| 10 | 9, 6 | nffv 5568 | . . . . . . 7 ⊢ Ⅎ𝑥(𝐹‘(𝑧 + 1)) | 
| 11 | 7, 8, 10 | nfov 5952 | . . . . . 6 ⊢ Ⅎ𝑥(𝑤 + (𝐹‘(𝑧 + 1))) | 
| 12 | 6, 11 | nfop 3824 | . . . . 5 ⊢ Ⅎ𝑥〈(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))〉 | 
| 13 | 4, 5, 12 | nfmpo 5991 | . . . 4 ⊢ Ⅎ𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ V ↦ 〈(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))〉) | 
| 14 | 9, 3 | nffv 5568 | . . . . 5 ⊢ Ⅎ𝑥(𝐹‘𝑀) | 
| 15 | 3, 14 | nfop 3824 | . . . 4 ⊢ Ⅎ𝑥〈𝑀, (𝐹‘𝑀)〉 | 
| 16 | 13, 15 | nffrec 6454 | . . 3 ⊢ Ⅎ𝑥frec((𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ V ↦ 〈(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) | 
| 17 | 16 | nfrn 4911 | . 2 ⊢ Ⅎ𝑥ran frec((𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ V ↦ 〈(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) | 
| 18 | 1, 17 | nfcxfr 2336 | 1 ⊢ Ⅎ𝑥seq𝑀( + , 𝐹) | 
| Colors of variables: wff set class | 
| Syntax hints: Ⅎwnfc 2326 Vcvv 2763 〈cop 3625 ran crn 4664 ‘cfv 5258 (class class class)co 5922 ∈ cmpo 5924 freccfrec 6448 1c1 7880 + caddc 7882 ℤ≥cuz 9601 seqcseq 10539 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-in 3163 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-xp 4669 df-cnv 4671 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-recs 6363 df-frec 6449 df-seqfrec 10540 | 
| This theorem is referenced by: seq3f1olemstep 10606 seq3f1olemp 10607 nfsum1 11521 nfsum 11522 nfcprod1 11719 nfcprod 11720 | 
| Copyright terms: Public domain | W3C validator |