ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfseq GIF version

Theorem nfseq 10423
Description: Hypothesis builder for the sequence builder operation. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nfseq.1 𝑥𝑀
nfseq.2 𝑥 +
nfseq.3 𝑥𝐹
Assertion
Ref Expression
nfseq 𝑥seq𝑀( + , 𝐹)

Proof of Theorem nfseq
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-seqfrec 10414 . 2 seq𝑀( + , 𝐹) = ran frec((𝑧 ∈ (ℤ𝑀), 𝑤 ∈ V ↦ ⟨(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)
2 nfcv 2317 . . . . . 6 𝑥
3 nfseq.1 . . . . . 6 𝑥𝑀
42, 3nffv 5517 . . . . 5 𝑥(ℤ𝑀)
5 nfcv 2317 . . . . 5 𝑥V
6 nfcv 2317 . . . . . 6 𝑥(𝑧 + 1)
7 nfcv 2317 . . . . . . 7 𝑥𝑤
8 nfseq.2 . . . . . . 7 𝑥 +
9 nfseq.3 . . . . . . . 8 𝑥𝐹
109, 6nffv 5517 . . . . . . 7 𝑥(𝐹‘(𝑧 + 1))
117, 8, 10nfov 5895 . . . . . 6 𝑥(𝑤 + (𝐹‘(𝑧 + 1)))
126, 11nfop 3790 . . . . 5 𝑥⟨(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))⟩
134, 5, 12nfmpo 5934 . . . 4 𝑥(𝑧 ∈ (ℤ𝑀), 𝑤 ∈ V ↦ ⟨(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))⟩)
149, 3nffv 5517 . . . . 5 𝑥(𝐹𝑀)
153, 14nfop 3790 . . . 4 𝑥𝑀, (𝐹𝑀)⟩
1613, 15nffrec 6387 . . 3 𝑥frec((𝑧 ∈ (ℤ𝑀), 𝑤 ∈ V ↦ ⟨(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)
1716nfrn 4865 . 2 𝑥ran frec((𝑧 ∈ (ℤ𝑀), 𝑤 ∈ V ↦ ⟨(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)
181, 17nfcxfr 2314 1 𝑥seq𝑀( + , 𝐹)
Colors of variables: wff set class
Syntax hints:  wnfc 2304  Vcvv 2735  cop 3592  ran crn 4621  cfv 5208  (class class class)co 5865  cmpo 5867  freccfrec 6381  1c1 7787   + caddc 7789  cuz 9499  seqcseq 10413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-rab 2462  df-v 2737  df-un 3131  df-in 3133  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-mpt 4061  df-xp 4626  df-cnv 4628  df-dm 4630  df-rn 4631  df-res 4632  df-iota 5170  df-fv 5216  df-ov 5868  df-oprab 5869  df-mpo 5870  df-recs 6296  df-frec 6382  df-seqfrec 10414
This theorem is referenced by:  seq3f1olemstep  10469  seq3f1olemp  10470  nfsum1  11330  nfsum  11331  nfcprod1  11528  nfcprod  11529
  Copyright terms: Public domain W3C validator