Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfseq | GIF version |
Description: Hypothesis builder for the sequence builder operation. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nfseq.1 | ⊢ Ⅎ𝑥𝑀 |
nfseq.2 | ⊢ Ⅎ𝑥 + |
nfseq.3 | ⊢ Ⅎ𝑥𝐹 |
Ref | Expression |
---|---|
nfseq | ⊢ Ⅎ𝑥seq𝑀( + , 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-seqfrec 10414 | . 2 ⊢ seq𝑀( + , 𝐹) = ran frec((𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ V ↦ 〈(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) | |
2 | nfcv 2317 | . . . . . 6 ⊢ Ⅎ𝑥ℤ≥ | |
3 | nfseq.1 | . . . . . 6 ⊢ Ⅎ𝑥𝑀 | |
4 | 2, 3 | nffv 5517 | . . . . 5 ⊢ Ⅎ𝑥(ℤ≥‘𝑀) |
5 | nfcv 2317 | . . . . 5 ⊢ Ⅎ𝑥V | |
6 | nfcv 2317 | . . . . . 6 ⊢ Ⅎ𝑥(𝑧 + 1) | |
7 | nfcv 2317 | . . . . . . 7 ⊢ Ⅎ𝑥𝑤 | |
8 | nfseq.2 | . . . . . . 7 ⊢ Ⅎ𝑥 + | |
9 | nfseq.3 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐹 | |
10 | 9, 6 | nffv 5517 | . . . . . . 7 ⊢ Ⅎ𝑥(𝐹‘(𝑧 + 1)) |
11 | 7, 8, 10 | nfov 5895 | . . . . . 6 ⊢ Ⅎ𝑥(𝑤 + (𝐹‘(𝑧 + 1))) |
12 | 6, 11 | nfop 3790 | . . . . 5 ⊢ Ⅎ𝑥〈(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))〉 |
13 | 4, 5, 12 | nfmpo 5934 | . . . 4 ⊢ Ⅎ𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ V ↦ 〈(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))〉) |
14 | 9, 3 | nffv 5517 | . . . . 5 ⊢ Ⅎ𝑥(𝐹‘𝑀) |
15 | 3, 14 | nfop 3790 | . . . 4 ⊢ Ⅎ𝑥〈𝑀, (𝐹‘𝑀)〉 |
16 | 13, 15 | nffrec 6387 | . . 3 ⊢ Ⅎ𝑥frec((𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ V ↦ 〈(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) |
17 | 16 | nfrn 4865 | . 2 ⊢ Ⅎ𝑥ran frec((𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ V ↦ 〈(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) |
18 | 1, 17 | nfcxfr 2314 | 1 ⊢ Ⅎ𝑥seq𝑀( + , 𝐹) |
Colors of variables: wff set class |
Syntax hints: Ⅎwnfc 2304 Vcvv 2735 〈cop 3592 ran crn 4621 ‘cfv 5208 (class class class)co 5865 ∈ cmpo 5867 freccfrec 6381 1c1 7787 + caddc 7789 ℤ≥cuz 9499 seqcseq 10413 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-un 3131 df-in 3133 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-mpt 4061 df-xp 4626 df-cnv 4628 df-dm 4630 df-rn 4631 df-res 4632 df-iota 5170 df-fv 5216 df-ov 5868 df-oprab 5869 df-mpo 5870 df-recs 6296 df-frec 6382 df-seqfrec 10414 |
This theorem is referenced by: seq3f1olemstep 10469 seq3f1olemp 10470 nfsum1 11330 nfsum 11331 nfcprod1 11528 nfcprod 11529 |
Copyright terms: Public domain | W3C validator |