| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfseq | GIF version | ||
| Description: Hypothesis builder for the sequence builder operation. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfseq.1 | ⊢ Ⅎ𝑥𝑀 |
| nfseq.2 | ⊢ Ⅎ𝑥 + |
| nfseq.3 | ⊢ Ⅎ𝑥𝐹 |
| Ref | Expression |
|---|---|
| nfseq | ⊢ Ⅎ𝑥seq𝑀( + , 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-seqfrec 10557 | . 2 ⊢ seq𝑀( + , 𝐹) = ran frec((𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ V ↦ 〈(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) | |
| 2 | nfcv 2339 | . . . . . 6 ⊢ Ⅎ𝑥ℤ≥ | |
| 3 | nfseq.1 | . . . . . 6 ⊢ Ⅎ𝑥𝑀 | |
| 4 | 2, 3 | nffv 5571 | . . . . 5 ⊢ Ⅎ𝑥(ℤ≥‘𝑀) |
| 5 | nfcv 2339 | . . . . 5 ⊢ Ⅎ𝑥V | |
| 6 | nfcv 2339 | . . . . . 6 ⊢ Ⅎ𝑥(𝑧 + 1) | |
| 7 | nfcv 2339 | . . . . . . 7 ⊢ Ⅎ𝑥𝑤 | |
| 8 | nfseq.2 | . . . . . . 7 ⊢ Ⅎ𝑥 + | |
| 9 | nfseq.3 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐹 | |
| 10 | 9, 6 | nffv 5571 | . . . . . . 7 ⊢ Ⅎ𝑥(𝐹‘(𝑧 + 1)) |
| 11 | 7, 8, 10 | nfov 5955 | . . . . . 6 ⊢ Ⅎ𝑥(𝑤 + (𝐹‘(𝑧 + 1))) |
| 12 | 6, 11 | nfop 3825 | . . . . 5 ⊢ Ⅎ𝑥〈(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))〉 |
| 13 | 4, 5, 12 | nfmpo 5995 | . . . 4 ⊢ Ⅎ𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ V ↦ 〈(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))〉) |
| 14 | 9, 3 | nffv 5571 | . . . . 5 ⊢ Ⅎ𝑥(𝐹‘𝑀) |
| 15 | 3, 14 | nfop 3825 | . . . 4 ⊢ Ⅎ𝑥〈𝑀, (𝐹‘𝑀)〉 |
| 16 | 13, 15 | nffrec 6463 | . . 3 ⊢ Ⅎ𝑥frec((𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ V ↦ 〈(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) |
| 17 | 16 | nfrn 4912 | . 2 ⊢ Ⅎ𝑥ran frec((𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ V ↦ 〈(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) |
| 18 | 1, 17 | nfcxfr 2336 | 1 ⊢ Ⅎ𝑥seq𝑀( + , 𝐹) |
| Colors of variables: wff set class |
| Syntax hints: Ⅎwnfc 2326 Vcvv 2763 〈cop 3626 ran crn 4665 ‘cfv 5259 (class class class)co 5925 ∈ cmpo 5927 freccfrec 6457 1c1 7897 + caddc 7899 ℤ≥cuz 9618 seqcseq 10556 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-in 3163 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-xp 4670 df-cnv 4672 df-dm 4674 df-rn 4675 df-res 4676 df-iota 5220 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-recs 6372 df-frec 6458 df-seqfrec 10557 |
| This theorem is referenced by: seq3f1olemstep 10623 seq3f1olemp 10624 nfsum1 11538 nfsum 11539 nfcprod1 11736 nfcprod 11737 |
| Copyright terms: Public domain | W3C validator |